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On-chip deterministic operation of quantum dots
in dual-mode waveguides for a plug-and-play
single-photon source
Ravitej Uppu 1✉, Hans T. Eriksen1, Henri Thyrrestrup1, Aslı D. Uğurlu1, Ying Wang1, Sven Scholz2,

Andreas D. Wieck 2, Arne Ludwig 2, Matthias C. Löbl 3, Richard J. Warburton 3, Peter Lodahl1 &

Leonardo Midolo 1✉

A deterministic source of coherent single photons is an enabling device for quantum infor-

mation processing. Quantum dots in nanophotonic structures have been employed as

excellent sources of single photons with the promise of scaling up towards multiple photons

and emitters. It remains a challenge to implement deterministic resonant optical excitation of

the quantum dot required for generating coherent single photons, since residual light from

the excitation laser should be suppressed without compromising source efficiency and

scalability. Here, we present a planar nanophotonic circuit that enables deterministic pulsed

resonant excitation of quantum dots using two orthogonal waveguide modes for separating

the laser and the emitted photons. We report a coherent and stable single-photon source that

simultaneously achieves high-purity (g(2)(0)= 0.020 ± 0.005), high-indistinguishability

(V= 96 ± 2%), and >80% coupling efficiency into the waveguide. Such ‘plug-and-play’

single-photon source can be integrated with on-chip optical networks implementing photonic

quantum processors.
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Photonic quantum information processing encompasses a
wide array of emerging quantum technologies including
quantum simulators1–3, quantum key distribution4,5,

quantum repeaters6,7, and ultimately a full-fledged quantum
internet8,9. Deterministic generation of coherent single photons is
a key building block in realizing these technologies. Quantum
dots (QDs) in nanophotonic structures are excellent sources of
single photons10–14, and planar waveguides are well suited for
scaling up to multiple photons and emitters thanks to near-unity
photon-emitter coupling15 and advanced on-chip functional-
ities16. An ideal single-photon source requires suppressing noise
and decoherence, which notably has been demonstrated in elec-
trically contacted heterostructures17–20 through resonant optical
excitation. However, resonant optical excitation is challenging to
implement experimentally as it requires suppressing the excita-
tion laser (same frequency as the QD emission) without affecting
the source efficiency.

The conventional approach to pulsed resonant excitation of a
QD employs a cross-polarized excitation-collection scheme10–12,
which inherently limits the collection efficiency of the generated
single photons to ≤50%. Recently, elliptical microcavities were
proposed and tested to overcome this limit on efficiency14,
although this method is complicated by the need of controlling
two narrow-band cavity resonances relative to the QD. In com-
parison, planar nanophotonic waveguides offer broadband and
robust operation and are naturally suited for efficient laser sup-
pression since the excitation laser and the collection mode can be
spatially separated, allowing to construct devices with near-unity
generation efficiency. However, resonant excitation of planar
devices has so far relied on coupling the pump laser through leaky
radiation mode19,21–23, which results in high alignment sensitivity
and possibly uncontrolled specular scattering.

In this work, we demonstrate a tailored nanophotonic circuit
that enables resonant pulsed excitation launched through a
grating coupler into a waveguide and subsequent out-coupling
of highly coherent single photons from the chip with an addi-
tional grating coupler. The circuit distributes the excitation
laser to the QDs and strongly suppresses the laser in collection,
while maintaining >80% coupling efficiency of single photons.
Importantly, as the laser is distributed through the waveguide
mode, any QD coupled to the waveguide can be excited by the
laser. The circuit realizes an input–output building block that
could either be operated as a single-photon source by fiber
coupling or integrated as a circuit element in a multiport optical
network. The latter is a drop-in replacement of the commonly
employed probabilistic photon sources in advanced photonic
quantum processors3,24, which will greatly benefit the scaling
up towards multiphoton and multiemitter quantum informa-
tion processing25,26.

Results
Operational principle of the single-photon source circuit. The
operational principle of the device is presented in Fig. 1a. We
design a two-mode nanophotonic waveguide where the embed-
ded QD is efficiently coupled to the fundamental mode and
weakly coupled to the first-order mode. The coupling of the QD
to a waveguide mode is quantified through the β-factor. By
selectively launching the laser into the first-order mode (excita-
tion mode E), the QD is excited and the single-photon emission
collected through the fundamental mode (collection mode C). In
order to efficiently collect only the single photons, the residual
excitation in laser mode E must be filtered out, while ensuring
lossless propagation of mode C. An adiabatically tapered wave-
guide section is employed to satisfy these demands simulta-
neously. In the taper section, the E mode becomes leaky and is

extinguished by the deliberate introduction of sharp waveguide
bends. The adiabatic taper ensures the efficient transfer of the
mode C into the single-mode regime that subsequently can be
coupled into an optical fiber. We furthermore employ a one-
dimensional photonic crystal as a backward reflector for single
photons propagating in the mode C to maximize unidirectional
out-coupling efficiency. A scanning electron microscope image of
the nanofabricated device highlighting the three key elements of
the device (photonic crystal, two-mode waveguide with emitters,
and waveguide taper-based pump laser filter) is shown in Fig. 1b
(see Supplementary Note 1 for the fabrication method). Three
high-efficiency (>65%) grating couplers27 are fabricated for in-
and out-coupling of light from free-space to the device.

The input excitation grating is connected to a 300-nm-wide
single-mode waveguide, followed by a Y-splitter that launches the
excitation laser into both the E and C modes of the two-mode
waveguide28. The Y-splitter together with the photonic crystal
selectively prepares the mode of the excitation pulse (Supple-
mentary Notes 2 and 3). The photonic-crystal section is a key
design element of the device serving a dual purpose: (1) as a
backward reflector for unidirectional collection of single-photon
emission and (2) to selectively prepare the excitation laser in the
mode E. It is designed such that it reflects the C mode and
transmits the E mode into the emitter section of the waveguide.
Figure 1c shows the measured transmission spectrum Tp(λ) of the
excitation laser through the device, which quantifies how well the
residual excitation light can be suppressed. Tp is extracted by
comparing the transmitted laser intensity in two nominally
similar devices with and without the photonic-crystal section. For
reference, the calculated performance for an ideal device without
any fabrication imperfections is shown in Fig. 1c, and remarkably
ideal performance with Tp ~ 10−5 is observed in certain
wavelength bands. The minor deviations in the measurements
from ideal performance can be attributed to an unintentional
disorder in the nanofabricated photonic crystal.

Pre-characterization of the device. In order to assess the per-
formance of the device as a single-photon source, the laser sup-
pression Tp should be related to the single-photon emission
probability. An essential figure-of-merit is the intensity of the
residual pump intensity relative to the intensity of the emitted
single-photon signal, i.e., the single-photon impurity ξ, which is
the ratio of the number of laser photons to the single photons. ξ is
related to the measured second-order coherence function through
g(2)(τ = 0) = 2ξ − ξ229. We relate Tp and ξ as follows: The
residual laser intensity at the out-coupling grating is given by
IpTp, where Ip is the input pump laser intensity. Under pulsed
resonant excitation, we express the single-photon intensity at the
collection grating as Isp ≈ βEβCIp/2, which is a simplified
expression for clarity that holds below saturation of the QD and
when omitting any effect of dephasing. The factor of 1/2 accounts
for the power splitting of the excitation laser into the modes E
and C at the Y-splitter. Supplementary Note 8 details the com-
plete theory without these restrictions. βE and βC are the photon
β-factors15 expressing the probability of the QD to absorb a pump
photon and emit a single photon into the waveguide, respectively.
Consequently we have

ξ ¼ IpTp

Isp
¼ 2Tp

βEβC
: ð1Þ

The QD position affects the emitter-photon coupling βC and βE
and therefore the value of ξ. Figure 2 (bottom panel) shows the
calculated β-factors as a function of transverse offset from the
waveguide center. A QD positioned exactly at the center of
the waveguide maximally couples to βC, but is not pumped by the
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excitation laser in the mode E as βE ~ 0. The optimum QD
position that simultaneously minimizes the photon impurity ξ
and maintains a high βC is seen in Fig. 2 for the measured device
parameters, (Tp = 2 ⋅ 10−5). For a QD position where a high
single-photon coupling efficiency of βC ≃ 0.9 can be reached, we
obtain ξ ≃ 5 ⋅ 10−4, which implies that g(2)(0) ≃ 10−3 can be
achieved. We note that further reduction in Tp, e.g., by optimizing
the filter design or reducing fabrication disorder, could lead to
even better single-photon purity even when βC approaches unity.

From a practical standpoint, the probability of locating well-
positioned QDs is dependent on the density of the QDs in the
wafer and the length of the emitter section. The wafer employed
in our measurements has a QD density of ≈ 10/μm2 with emitter
section dimensions of 40 μm × 0.45 μm. From Fig. 2, we observe
that βC > 0.5 requires that the QD is located within an offset of
75 nm from the center. Given the spectral inhomogeneity of QDs,
we estimate to find around 10 QDs that are well-positioned in the
emitter section within the spectral window where Tp < 10−4 (c.f.
Supplementary Note 4 regarding QD selection in two devices).

We carried out resonance-fluorescence measurements on seven
devices and found at least one QD per device with βC ≈ 0.8.

Pulsed resonant excitation of a quantum dot. Experimental
demonstration of waveguide-assisted pulsed resonant excitation
of an optimally coupled QD was demonstrated on the device
shown in Fig. 1b. Resonance-fluorescence measurement from a
neutral exciton under continuous wave excitation is shown in
Fig. 3a, which is carried out to identify QD resonances and
demonstrate low-noise performance. We observe distinct QD
resonances, free of excitation laser background (Tp = 2 ⋅ 10−5),
with a linewidth of 800 MHz that tune with the applied bias
voltage. The broadening of the QD resonances beyond the natural
linewidth (250 MHz, as estimated from lifetime measurement)
occurs primarily due to slow spectral diffusion (time scale of 10
ms), which is not relevant for pulsed operation and could be
rectified by active feedback30,31. Deterministic pulsed resonant
excitation is performed with 26 ps optical pulses tuned to the QD
resonance. The observed Rabi oscillations of the detected inten-
sity are shown in Fig. 3b that are modeled as a driven two-level
system including minor pure dephasing, see Supplementary
Note 8 for details of the model. The single-photon impurity ξ was
extracted at each excitation power by comparing the detected
intensity with the QD tuned on- and off-resonance by using the
electrical control. The power-dependent ξ reflects the fact that the
QD transition saturates when approaching π-pulse excitation
while the residual laser background scales linearly with pump
power, and this behavior is fully captured by the theoretical
model, cf. Fig. 3b. The coupling efficiency of the QD emission to
the waveguide, quantified through βC, is extracted by comparing
the measured ξ(P → 0) = 1.7 ⋅ 10−3 and Tp = 2 ⋅ 10−5 values
with the calculations in Fig. 2. This comparison results in βC =
0.8, which corresponds to a QD position offset from center of the
waveguide by ≈20 nm. Hence, the device enables 80% collection
efficiency of the single photons into the waveguide while ensuring
low laser background. At π-pulse, i.e., deterministic QD pre-
paration, we find ξ = 0.004 (g(2)(0) = 0.008). We detect a single-
photon rate of 1.8 MHz, which is primarily limited by the

a
Excitation

Detection 
Grating

Photonic
Crystal

Emitter
Section

b

P
um

p 
la

se
r 

fil
te

r

c

920 940 960
10–6

10–5

10–4

10–3

10–2

10–1

100

T
ra

ns
m

is
si

on
 T

p

Wavelength (nm)

Measured

Ideal device

Mode C 

Mode E

QD

Grating

Fig. 1 Waveguide-based excitation scheme. a Illustration of the mode filtering operation. The resonant pump laser in the first-order waveguide mode
excites the emitter and is subsequently squeezed out of the waveguide in the taper section. The QD emission into the fundamental mode of the waveguide
is collected efficiently and guided. The photonic crystal acts a mirror for the fundamental mode, thereby enabling the directional out-coupling of the QD
signal. b Scanning electron microscope image of the fabricated device (length of scale bar is 10 μm). The excitation and collection spots are highlighted
with red and green spots. The Y-splitter is used to excite the fundamental and first-order modes of the waveguide. The photonic crystal (zoomed in the
inset to highlight the lattice of air holes) selectively transmits only the first-order mode into the emitter section. The pump laser filter section is composed
of a waveguide taper and two 90∘ bends to suppress the pump laser. The bottom-left grating is used to align the in-coupling of the laser beam by
monitoring the reflected signal from the photonic crystal. c The measured and calculated transmission Tp spectrum of the device for a laser coupled in at
the excitation grating and collected at the detection grating.

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

�-
fa

ct
or

Offset from center (nm)

Im
pu

rit
y 
�

 C
1E-4

1E-3

1E-2

Tp = 2.10–5

 E

a

b

Fig. 2 Predicted device performance. a Expected single-photon impurity ξ
for the experimentally achieved value of Tp = 2 ⋅ 10−5 and as a function of
different emitter locations in the waveguide. b Calculated β-factor for the
two waveguide modes as a function of the offset distance of the emitter
from the center of the waveguide.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17603-9 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:3782 | https://doi.org/10.1038/s41467-020-17603-9 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


collection optics in the device characterization setup and can
readily be improved further. Supplementary Note 5 presents a
detailed description of the observed source efficiency that fully
accounts for the independently measured parameters.

Single-photon source purity and indistinguishability. Having
demonstrated pulsed resonant excitation through the waveguide
mode, we proceed to the characterization of the quality of the
single-photon source. Figure 3c shows the intensity-correlation
histogram measured at π-pulse excitation using a Hanbury Brown
and Twiss interferometer. A clearly suppressed peak at time delay
τ = 0 ns is observed that is normalized to the long τ limit to
extract g(2)(τ = 0) = 0.020 ± 0.005. The observed value of g(2)(0)
is higher than the expected value for the measured device para-
meters, which can be attributed to the temporal extent of the
excitation laser pulses (26 ps) in comparison to the QD decay
time (640 ps) that results in non-zero two-photon emission
probability32. We estimate that excitation laser with <3 ps pulse
width would be required to reach the g(2)(0) value limited by the
device32,33. Even better performance could be achieved by redu-
cing Tp either by design or through an improvement in the
fabrication. The current design enables Tp ≈ 10−6 (Fig. 1c) cor-
responding to g(2)(0) ≈ 10−4, which approaches the best reported
value in the literature obtained with two-photon resonant exci-
tation34, where pump filtering is not a challenge.

Most applications of single photons in quantum information
require high indistinguishability of the photons, which we measure
in a Hong–Ou–Mandel (HOM) experiment by interfering two
subsequently emitted photons in an unbalanced fiber-based
Mach–Zehnder interferometer, cf. Fig. 3d. Figure 3e shows the
recorded correlation histogram between the two detectors, where
the strong suppression of coincidences for zero detector time delay
testifies the high degree of indistinguishability of the emitted
photons. By controlling the polarization of the incoming photons,
the reference case of fully distinguishable photons (perpendicular
polarization case) is recorded and we extract the HOM interference
visibility V that quantifies the photon indistinguishability. We
measure a raw visibility of Vraw = (91 ± 2)%, which, after
correcting for the finite g(2)(0) and setup imperfections corre-
sponds to V = (96 ± 2)% (see Supplementary Note 6 for details).

The measured indistinguishability is on par with the best reported
value with cross-polarized resonant excitation10 and only super-
seded by experiments relying on excitation pulse-engineering35,36.

Discussion
In conclusion, we have experimentally demonstrated an efficient
waveguide circuit for deterministic pulsed resonant excitation of
QDs embedded in planar photonic nanostructures. The circuit
enables the realization of an efficient “plug-and-play” single-
photon source featuring near-unity single-photon coupling, as
well as high purity and indistinguishability. The robust excitation
process implies that the device could be operated continuously
without any realignment, and as a proof-of-concept we operated
the source hands-free for over 110 h with <2% fluctuation in the
generation rate (Supplementary Note 7). The circuit will also
enable improving the collection efficiency for more advanced
excitation schemes relying on dichromatic laser pulses36, which
are typically limited by low-efficiency spectral filters. Large Pur-
cell enhancement of the radiative decay rate for overcoming
residual decoherence and increasing the source repetition rate can
also be achieved through a small modification of the circuit37.
The modified circuit includes an additional photonic crystal
(same parameters as the first one) after the emitter section to
form a standing-wave cavity for QD emission in mode C. An
obvious next step is to implement direct chip-to-fiber coupling38

thereby circumventing the loss associated with collection, mode
shaping and subsequent fiber coupling. Another opportunity is to
scale-up the circuit so that one excitation pulse could be pumping
multiple QDs in parallel. In order to overcome the spectral
inhomogeneity of QDs, such a device will require independent
tunability of the different QDs to match the frequency of the
excitation pulse39,40. With such an approach with the circuit, the
benefits of the scalable planar platform will be fully exploited in
the ongoing pursuit of scaling up single-photon technology41.

Methods
Experimental setup. In order to perform single-photon generation experiments, the
sample is cooled to a temperature of 1.6 K in a closed-cycle cryostat with optical and
electrical access. The excitation laser and the QD emission are focused and collected
at the respective grating outcouplers (Fig. 1b) using a wide field-of-view microscope
objective. A 20:80 (reflection:transmission) beam splitter is used to separate the
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excitation and collection into separate optical paths, with the high-efficiency path
used for collection. The collected single-photon emission is coupled into a single-
mode optical fiber and sent through a spectral filter constituting of an etalon
(linewidth = 3 GHz; free spectral range = 100 GHz). The spectrally filtered single-
photon stream can be directed to either a compact fiber-based unbalanced
Mach–Zehnder for measuring two-photon interference or directly to a super-
conducting nanowire single-photon detector (SNSPD). The gate voltage across the
QD is tuned using a low-noise voltage source with an RMS noise <50 μV, which
corresponds to <0.1Γ, where Γ is the linewidth of the QD.

Samples. A scanning electron microscope image of the nanofabricated device with a
footprint of 50 × 45 μm2 is shown in Fig. 1b. The photonic-crystal section is a one-
dimensional lattice of 40 air holes with radius of 70 nm and lattice spacing of 210 nm.
The emitter section (450-nm-wide and 170-nm-thin suspended GaAs nanobeam
waveguide) supports the two propagating modes E and C. Self-assembled indium
arsenide (InAs) QDs, embedded in a p-i-n diode (see Supplementary Fig. 1 for
details), are randomly located across the waveguide with an average density of 10/
μm2. This density is high enough to comfortably find several QDs within the best laser
suppression windows in all 20 fabricated devices. The suspended waveguide is elec-
trically contacted (contacts not shown in the figure) to tune the QDs and to suppress
noise leading to spectral drift. The pump laser filter is a 5-μm-long linear taper, which
gradually reduces the waveguide width from 450 to 200 nm. Two consecutive 90°
waveguide bends are introduced to further extinguish the weakly-guided E mode.
Three shallow-etched grating couplers are fabricated for in- and out-coupling of light
from free-space to the waveguides. These gratings enable >65% collection efficiency
of light in the C mode from the waveguide into a single-mode optical fiber27.

Data availability
The data are available from the corresponding authors upon reasonable request.

Code availability
COMSOL Multiphysics was used for designing the nanostructure. Data analysis was
performed using MATLAB. The scripts are available from the corresponding authors
upon reasonable request.

Received: 25 April 2020; Accepted: 9 July 2020;

References
1. Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. Phys. 8,

285–291 (2012).
2. Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys.

86, 153 (2014).
3. Flamini, F., Spagnolo, N. & Sciarrino, F. Photonic quantum infomation

processing: a review. Rep. Prog. Phys. 82, 016001 (2018).
4. Kołodyński, J., et al., Device-independent quantum key distribution with

single-photon sources. Quantum 4, 260 (2020).
5. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev.

Mod. Phys. 74, 145 (2002).
6. Borregaard, J., Sørensen, A. S. & Lodahl, P., Quantum networks with

deterministic spin–photon interfaces. Adv. Quantum Technol. 2, 1800091
(2019).

7. Azuma, K., Tamaki, K. & Lo, H.-K. All-photonic quantum repeaters. Nat.
Commun. 6, 6787 (2015).

8. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).
9. Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road

ahead. Science 362, eaam9288 (2018).
10. Wang, H. et al. Near-transform-limited single photons from an efficient solid-

state quantum emitter. Phys. Rev. Lett. 116, 213601 (2016).
11. Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat.

Photonics 10, 340–345 (2016).
12. Liu, F. et al. High purcell factor generation of indistinguishable on-chip single

photons. Nat. Nanotechnol. 13, 835–840 (2018).
13. Kiršanskė, G. et al. Indistinguishable and efficient single photons from a

quantum dot in a planar nanobeam waveguide. Phys. Rev. B 96, 165306
(2017).

14. Wang, H. et al. Towards optimal single-photon sources from polarized
microcavities. Nat. Photonics 13, 770–775 (2019).

15. Arcari, M. et al. Near-unity coupling efficiency of a quantum emitter to a
photonic crystal waveguide. Phys. Rev. Lett. 113, 093603 (2014).

16. Papon, C. et al. Nanomechanical single-photon routing. Optica 6, 524–530
(2019).

17. Kuhlmann, A. V. et al. Transform-limited single photons from a single
quantum dot. Nat. Commun. 6, 8204 (2015).

18. Löbl, M. C. et al. Narrow optical linewidths and spin pumping on charge-
tunable close-to-surface self-assembled quantum dots in an ultrathin diode.
Phys. Rev. B 96, 165440 (2017).

19. Thyrrestrup, H. et al. Quantum optics with near-lifetime-limited quantum-dot
transitions in a nanophotonic waveguide. Nano Lett. 18, 1801–1806 (2018).

20. Najer, D. et al. A gated quantum dot strongly coupled to an optical
microcavity. Nature 575, 622–627 (2019).

21. Javadi, A., Mahmoodian, S., Söllner, I. & Lodahl, P. Numerical modeling of the
coupling efficiency of single quantum emitters in photonic-crystal waveguides.
J. Opt. Soc. B 35, 514–522 (2018).

22. Monniello, L. et al. Indistinguishable single photons generated by a quantum
dot under resonant excitation observable without postselection. Phys. Rev. B
90, 041303 (2014).

23. Melet, R. et al. Resonant excitonic emission of a single quantum dot in the
Rabi regime. Phys. Rev. B 78, 073301 (2008).

24. Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).
25. Rudolph, T. Why I am optimistic about the silicon-photonic route to quantum

computing. APL Photonics 2, 030901 (2017).
26. Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic

quantum technologies. Nat. Photonics 14, 273–284 (2019).
27. Zhou, X. et al. High-efficiency shallow-etched grating on GaAs membranes for

quantum photonic applications. Appl. Phys. Lett. 113, 251103 (2018).
28. Syms, R. & Cozens, J. R. Optical Guided Waves and Devices Vol. 2 (McGraw-

Hill London, 1992).
29. Kako, S. et al. A gallium nitride single-photon source operating at 200 K. Nat.

Mater. 5, 887–892 (2006).
30. Prechtel, J. H. et al. Frequency-stabilized source of single photons from a

solid-state qubit. Phys. Rev. X 3, 041006 (2013).
31. Hansom, J., Schulte, C. H. H., Matthiesen, C., Stanley, M. J. & Atatüre, M.

Frequency stabilization of the zero-phonon line of a quantum dot via phonon-
assisted active feedback. Appl. Phys. Lett. 105, 172107 (2014).

32. Fischer, K. A. et al. Pulsed rabi oscillations in quantum two-level systems:
beyond the area theorem. Quantum Sci. Technol. 3, 014006 (2017).

33. Das, S. et al. A wave-function ansatz method for calculating field correlations
and its application to the study of spectral filtering and quantum dynamics of
multi-emitter systems. Preprint at https://arxiv.org/abs/1912.08303 (2019).

34. Schweickert, L. et al. On-demand generation of background-free single
photons from a solid-state source. Appl. Phys. Lett. 112, 093106 (2018).

35. Wei, Y.-J. et al. Deterministic and robust generation of single photons from a
single quantum dot with 99.5% indistinguishability using adiabatic rapid
passage. Nano Lett. 14, 6515–6519 (2014).

36. He, M.-Y. et al. Coherently driving a single quantum two-level system with
dichromatic laser pulses. Nat. Phys. 15, 941–946 (2019).

37. Dreessen, C. L. et al. Suppressing phonon decoherence of high performance
single-photon sources in nanophotonic waveguides. Quantum Sci. Technol. 4,
015003 (2019).

38. Ugurlu, A. D. et al. Suspended spot-size converters for scalable single-photon
devices. Adv. Quantum Technol. 3, 1900076 (2019).

39. Grim, J. Q. et al. Scalable in operando strain tuning in nanophotonic
waveguides enabling three-quantum-dot superradiance. Nat. Mater. 18,
963–969 (2019).

40. Machielse, B. et al. Quantum interference of electromechanically stabilized
emitters in nanophotonic devices. Phys. Rev. X 9, 031022 (2019).

41. Wang, H. et al. Boson sampling with 20 input photons and a 60-mode
interferometer in a 1014-dimensional Hilbert space. Phys. Rev. Lett. 123,
250503 (2019).

Acknowledgements
We gratefully acknowledge financial support from Danmarks Grundforskningsfond
(DNRF) (Center for Hybrid Quantum Networks (Hy-Q)), H2020 European Research
Council (ERC) (SCALE), Styrelsen for Forskning og Innovation (FI) (5072-00016B
QUANTECH), Bundesministerium für Bildung und Forschung (BMBF) (16KIS0867,
Q.Link.X), and Deutsche Forschungsgemeinschaft (DFG) (TRR 160).

Author contributions
R.U., H.A.E., and A.D.U performed the experiments. H.T. and L.M. performed the
numerical calculations for device design. Y.W. fabricated the device. A.L. and S.S. per-
formed the heterostructure wafer growth with input from M.C.L., A.D.W., and R.J.W.
R.U. and H.T analyzed the data. R.U., H.T., L.M., and P.L. wrote the manuscript with
input from all co-authors. L.M., P.L., A.D.W., and R.J.W. supervised the project.

Competing interests
The authors filed a patent application related to this work (patent applicant: University of
Copenhagen; Inventors: Leonardo Midolo, Ravitej Uppu, Henri Thyrrestrup, and Peter
Lodahl; Application number: EP19218224; Status: submitted; the patent covers the
method and optical circuit for in-plane waveguide-based resonance fluorescence). P.L. is
founder of the company Sparrow Quantum that commercializes single-photon sources.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17603-9 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:3782 | https://doi.org/10.1038/s41467-020-17603-9 | www.nature.com/naturecommunications 5

https://arxiv.org/abs/1912.08303
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-17603-9.

Correspondence and requests for materials should be addressed to R.U. or L.M.

Peer review information: Nature Communications thanks the anonymous reviewer(s)
for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17603-9

6 NATURE COMMUNICATIONS |         (2020) 11:3782 | https://doi.org/10.1038/s41467-020-17603-9 | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-020-17603-9
https://doi.org/10.1038/s41467-020-17603-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	On-chip deterministic operation of quantum dots in�dual-mode waveguides for a plug-and-play single-photon source
	Results
	Operational principle of the single-photon source circuit
	Pre-characterization of the device
	Pulsed resonant excitation of a quantum dot
	Single-photon source purity and indistinguishability

	Discussion
	Methods
	Experimental setup
	Samples

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




