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Introduction.—Recent years have been witness to tre-
mendous advances in our understanding of—and our
ability to compute—scattering amplitudes in perturbative
quantum field theory (see, e.g., Refs. [1–6], and references
therein). Perhaps the most impressive testament to these
advances is found in the planar limit of maximally super-
symmetric (N ¼ 4) Yang-Mills theory (SYM) [7,8]. In this
theory, loop integrands can be recursed to all orders [9],
with local formulas known at all particle multiplicities
through three loops [10–12] and for four particles through
ten loops [13–15]. Integrated expressions are also known
for six particles through seven loops [16,17], and symbols
are known for seven particles through four loops [18,19].
These computational triumphs only scratch the surface of
the theoretical advances that have accompanied them (see,
for example, Refs. [20–25]); having access to this increas-
ingly substantial compendium of concrete “data” has
unquestionably fueled more general progress.
In nonplanar theories, considerably less data are avail-

able. This is true even for the simplest quantum field
theories, such as color-dressed (or “nonplanar”) SYM and
maximal (N ¼ 8) supergravity (SUGRA). In both theories,
amplitude integrands are known for four particles through
five loops [26–31], and for five or six particles only through
a modest two loops [32–34]. (Notably, the three-loop four-
particle [35] and two-loop five-particle amplitudes have
also recently been integrated [36–40].) It is known that the

integrands for SUGRA amplitudes will involve terms with
arbitrarily bad ultraviolet behavior (such as double poles at
infinity) starting from seven particles [41]. In contrast,
amplitude integrands in SYM are expected to be free of
poles at infinity to all loop orders [33,42,43]. Therefore,
these amplitude integrands should be expressible in terms
of an integrand basis with “triangle power counting” (a
notion whose precise definition beyond the planar limit will
be described in a forthcoming work [44]).
In this Letter, we show that this is indeed the case by

presenting the first fully explicit, color-dressed, prescriptive
representation of all-multiplicity maximally-helicity-violat-
ing (MHV) amplitude integrands in SYM at two loops. In
the spirit of the original “guess” at tree-level of Parke and
Taylor [45] and similar guesses—later proven—at one
[46,47], two [9,48], and three loops [12,49] in the planar
sector, we have checked that our result smoothly repro-
duces known results for 4 through 6 particles, and passes
many nontrivial tests at higher multiplicity.
All-multiplicity MHV amplitude integrands.—The two-

loop MHV all-multiplicity SYM integrand representation
we construct in this work is explicitly prescriptive [12]:
expressed in terms of a basis of integrands diagonalized
with respect to a spanning set of field theory cuts (see, e.g.,
Refs. [50–54] for related work). Our basis consists of all
two-loop integrands that have at most single poles at
infinity. In terms of these, all integrands with more than
4L propagators at L loops are reducible, making the system
explicitly triangular in cuts (and hence easy to diagonalize).
It is worth pointing out that our setup leads to a surprisingly
small number of relevant integrand basis elements in
comparison to (for arbitrary n) the infinite number of
Feynman diagrams required in traditional field theory
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methods (or even for BCJ [55], for example). Because
individual integrands have support on poles at infinite loop
momentum, the cancellation of these residues at infinity for
SYM amplitudes [41] amounts to a nontrivial consis-
tency check.
As our basis is diagonal in a spanning set of cuts, each

integrand’s coefficient is simply a residue of field theory—
in our case, always a leading singularity (or zero). Thus, our
representation takes the simple form:

AMHV;ð2-loopÞ
n ¼

X
ðinequivalentÞ

leading singularities f

f × I f; ð1Þ

where f belongs to one of the six classes of (color-dressed)
field theory leading singularities with MHV-helicity sup-
port given in Table I. The sum is over all distributions of
external legs. Two leading singularities are considered
equivalent if they are isomorphic as helicity-decorated
graphs. Helicity degrees for MHV=MHV are indicated
in Table I by blue and white vertices, respectively.
The representation Eq. (1) is a sum over all distinct leg

distributions—including cases where the sets of legs A, B,
C attached to MHV vertices are allowed to be empty. Such
leading singularities have the interpretation of a residue
taken in a soft (and sometimes collinear) region, which sets
the momentum flowing through the “doubled” propagator
to zero. The numerators of integrands corresponding to
such cases always become proportional to the doubled
propagator, leaving us with an ordinary collection of
Feynman propagators. For example,

ð2Þ

where p2
B ≔ ðPb∈B pbÞ2. [Moreover, we can see that this

numerator will vanish when the total momentum B is
massless (or empty).]
Note that our instruction to sum over “all” distributions

of legs for the figures in Table I seems to include cases with
massless triangles or even bubbles (as for hexabox B when
B ¼ C ¼ ∅); in all such cases, the corresponding integrand
numerators either vanish or the contributions cancel in sum.
The leading singularities in Table I, appearing as

coefficients f in Eq. (1), should be understood as fully-
color-dressed on-shell functions in SYM. As such, every
(tree-amplitude) vertex is fully (Bose) symmetric. Without
any reference to a particular gauge group (or trace decom-
position), these factors can be defined concretely in terms
of locally (cyclically) ordered MHV on-shell diagrams
[56,57] and graphs built out of (graphs of) structure
constants of the type considered in Ref. [58] (see also
Refs. [59,60]). Explicit expressions for all these leading
singularities were given in Appendix B of Ref. [34]. (These
formulas are all smooth under taking any of the leg ranges
A, B, C to be empty, requiring no special cases in their
definitions.)
Explicit integrand topologies and numerators.—

Attached to each leading singularity of Table I, we must
construct an integrand that has unit support on the corre-
sponding point in loop momentum space. Recall that when
a MHV vertex in a leading singularity has no external legs
attached to it, the corresponding residue is to be understood
as the double constraint taking the momentum through that
edge to be on shell and soft. Normalizing these integrands
on their associated kinematic points is a good start, but is
not sufficient to define our basis.
As stated above, our starting point is a complete basis of

integrands (in four dimensions) with at most single poles at
infinite loop momentum. In this space, there will be many
integrands (numerator degrees of freedom) that can be
normalized at points where no amplitudes in SYM have
support. For example, integrands of the type shown in
Table II are defined to have unit residue on a contour
defined by cutting all seven propagators and symmetrically
sending each loop to infinity. (When one or both of the leg
ranges A, B are empty, the numerator in Table II cancels the
doubled propagator; the contour is then defined by starting

TABLE I. The six topology groups of two-loop leading singularities of MHV amplitudes. Explicit formulas are given in Ref. [34].

Kissing boxes Pentabox Hexabox A Hexabox B Double pent. A Double pent. B

kb½α; β; γ; δ; A; B; C� pb½α; β; γ; A; B; C� hbA½α; β; γ; δ; A; B; C� hbB½α; β; A; B; C� dpA½α; β; A; B; C� dpB½α; β; γ; A; B; C�
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from the “heptacut” that takes all propagators on shell and
for which the momentum flowing through any empty
vertices is taken to be collinear to either α or β.) As all
amplitude integrands in SYM should vanish at these points,
the coefficients of these integrands in the sum (1) must be
zero. Nevertheless, the entire (initially triangular) system of
integrands must be diagonalized.
Besides points where general SYM amplitude integrands

vanish, we take advantage of the particular simplicity of
MHV amplitudes. Focusing on the simplest helicity con-
figuration allows us to eliminate further integrand degrees
of freedom by normalizing them on residues where MHV
integrands have to vanish due to helicity selection rules.
Note, however, that this procedure does not eliminate all
integrand topologies without MHV support (see discus-
sion below).
It turns out that the “leading” (noncontact) to be clear, we

define contact terms as factors in the numerator propor-
tional to one or more inverse propagators of the graph terms
of the integrand numerators for six-particle amplitudes in
Ref. [34] are automatically diagonal with respect to
themselves. However, the naive numerators for two classes
of integrands—the pentaboxes and double pentagons of
type A—have support on the cuts defining the integrands of
Table II. As such, diagonalization with respect to these

“contact terms” results in some changes with respect to the
naive numerators. Taking into account these minor rota-
tions in the basis, we obtain the form of our answer. (It is
worth pointing out that while the numerator of hexabox B
in Table III appears to have contact terms, these should not
be viewed as contact terms: they are fully fixed by graph
symmetries, power counting, integral purity, and chirality.)
The resulting integrand basis we find is summarized in

Tables III and IV. In Table III we list all the numerators,
which are defined irrespective of whether or not any of the
leg ranges A, B, C are empty; in Table IV, we give
expressions for the numerators of the pentabox and double
pentagon A integrands, which require contact terms
depending on whether the leg ranges A and/or B are empty.
These numerators are expressed in the notation

⟦a1; a2;…; c1; c2⟧ ≔ ½ða1 · a2Þαβ � � � ðc1 · c2Þγα�; ð3Þ

where ða1 · a2Þαβ ≔ aα _α1 ϵ _α _γa
_γγ
2 ϵγβ and aα _α ¼ aμσα _αμ are

“2 × 2” four-momenta, defined via the Pauli matrices.
(Our ⟦ � � � ⟧ may be more familiar if written as trþ½� � ��.)
Cancellation of Calabi-Yau cut components.—As

explained in Ref. [34], local integrand representations of
MHV amplitudes require terms that individually have
support on elliptic and K3 (Calabi-Yau) subtopologies
[61–64]. This is despite the fact that these amplitudes
are unquestionably polylogarithmic. The easiest way to see
this is to note that after cutting the six propagators of the
“tardigrade” integral [63]

ð4Þ

there is no helicity flow consistent with MHV. The same
argument applies when any one of A, B, C becomes
massless—the case first relevant to seven particles, where

TABLE II. Basis integrands normalized at infinite loop mo-
mentum. In SYM, all these integrands have vanishing coeffi-
cients; nevertheless, all other integrands must be diagonalized
with respect to these, accounting for the “contact terms” in the
definition of integrands appearing in Table IV. (Integrands in
Table III are automatically diagonal with respect to these.)

“contact terms” (normalized at ∞)

n ≔ 1
2
⟦α; b; c; d; e; β⟧

TABLE III. Integrand topologies with numerators that are smooth under all degenerations to empty leg-ranges.

Kissing boxes Hexabox A Hexabox B Double pentagon B

Ikb½α; β; γ; δ; A; B; C� IhbA½α; β; γ; δ; A; B; C� IhbB½α; β; A; B; C� IdpB½α; β; γ; A; B; C�
n ≔ ⟦α; b; c; β⟧⟦γ; f; g; δ⟧ n ≔ ⟦α; b; c; β⟧⟦γ; f; g; δ⟧ n ≔ −⟦α; b; c; β⟧ð⟦a; g; h; d⟧

−a2h2 − d2g2Þ
n ≔ 1

2
ð⟦α; b; c; d; e; β; g; h⟧

−⟦α; b; c; d; e; β; h; g⟧Þ
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the integral becomes elliptic. Thus, we must ensure that our
integrand representation vanishes identically on the two-
dimensional surface defined by cutting the six propagators
a;…; f of Eq. (4).
There are nine integrals in Eq. (1) that have the K3

[Eq. (4)] as a subtopology: six distributions of legs
corresponding to double pentagon A, and three correspond-
ing to hexabox B. It turns out that the Calabi-Yau hexacut
cancels nontrivially via three sets of three-term identities.
To illustrate this cancellation in more detail, consider the
three integrands participating in one of the identities:

ð5Þ

These integrands have the following leading-singularity
coefficients:

ð6Þ

which share seven propagators, six of which are isomorphic
to those in Eq. (4), and differ only by the propagator
highlighted in green. The fact that the leading singularities
add to zero is a consequence of the Jacobi relation (the
color-dressed merge-and-expand relation for on-shell func-
tions [24,65]). This relation alone does not ensure the
cancellation of theK3 cut; however, it turns out that all nine
integrands evaluate to the same function (up to a sign) of the
two remaining degrees of freedom on the six cut Eq. (4):

⟦α;a;b;β⟧ð⟦a−α;e;f;bþβ⟧−ða−αÞ2f2−ðbþβÞ2e2Þ
ða−αÞ2ðbþβÞ2

����
cut

¼−⟦α;a;b;f;e;d;c;β⟧
ða−αÞ2ðc−βÞ2

����
cut

¼−⟦α;a;b;c;d;e;f;β⟧
ða−αÞ2ðf−βÞ2

����
cut
;

ð7Þ

where the first line is minus the integrand for the hbA
contribution. To make better sense of Eq. (7), notice that we
have labeled the integrands (5) decorating the leading
singularities of Eq. (6) according to the cut specified in
Eq. (4) and evaluated the numerators defined in Tables III
and IV in terms of these loop-momentum labels.
Further consistency checks.—Besides the cancellation of

the Calabi-Yau hexacut, we have performed a number of
nontrivial consistency checks of our new result. In par-
ticular, we have explicitly compared the two-loop four-,
five-, and six-particle integrands to known results
[26,32,34]. Furthermore, in the planar sector we compared
our result to that obtained from loop-recursion relations [9].
We did not check all eight-particle unitarity cuts; however,
we made sure that our answer passes a large number of five-
and six-cut checks, which involve almost all integrand
topologies of our answer. (No new integrand topologies
appear beyond eight particles.) Matching these low cuts
correctly constitutes a highly nontrivial consistency check
on our result.
Infrared divergences and infrared finiteness.—The

structure of infrared divergences has played a major role
in understanding fundamental properties of gauge theories;
see, e.g., Refs. [66–73]. As with the representation found
for six particles in Ref. [34], the representation of MHV
amplitudes in Eq. (1) manifests as much of the infrared
structure of the theory as possible. Specifically, all of the
soft and collinear regions of loop-momentum space related
to infrared divergences of amplitudes are matched mani-
festly, with coefficients that directly suggest something like
exponentiation. By this, we refer to the fact that these
leading singularities directly connect to lower-loop inte-
grands (or trees) times products of factors that manifestly
encode one-loop divergences. The precise sense in which
this has something to say about how infrared divergences
are organized in this representation—as compared with
Ref. [67], for example—remains to be explored.

TABLE IV. Integrand topologies with numerators that have
contact terms that change when some leg ranges are empty.

Pentabox Double pentagon A

Ipb½α; β; γ; A; B; C� IdpA½α; β; A; B; C�
n ≔ −⟦α; b; c; β⟧⟦γ; f; g; a⟧
− 1

2
⟦α; b; c; β; γ; f; g; a⟧

þnc
pb

n ≔ −⟦α; b; c; h; g; f; e; β⟧
þnc

dpA

where

nc
pb≔

1

2

8<
:
0 if A≠∅;B≠∅
b2d2⟦γ;f;g;α⟧ if A≠∅;B≠∅
f2d2⟦α;b;c;γ⟧−f2c2⟦α;b;d;γ⟧ if B≠∅

nc
dpA ≔

1

2

8<
:

0 if A ≠ ∅; B ≠ ∅
b2ðg2 þ h2Þ⟦β; e; f; α⟧ if A ≠ ∅; B ≠ ∅
e2ðg2 þ h2Þ⟦α; b; c; β⟧ if B ≠ ∅
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One consequence of matching these infrared-divergent
leading singularities directly (and diagonalizing our basis
with respect to them) is that a large fraction of the
terms in our basis are infrared finite. In particular, only
about half of the integrals required for six particles are
infrared divergent, and this fraction gets smaller at
higher multiplicity. We strongly suspect that this feature
will prove helpful in eventually finding analytic expres-
sions for these amplitudes once regulated in some particular
scheme.
It is worth emphasizing that the integrand we have

constructed is strictly four dimensional, and therefore not
immediately suitable for dimensional regularization: in
4–2ϵ dimensions, the integrand coefficients would change
by terms of OðϵÞ, some of which survive as ϵ → 0. (It
would be interesting to know dimensionally regularized
integrands for these amplitudes, but constructing them
would go beyond the scope of our present work.) That
being said, the infrared structure of these four-dimensional
integrands can be studied without subtlety using a Higgs or
mass regulator [74,75], as any Oðm2Þ logðm2Þ terms would
vanish in the m2 → 0 limit.
Conclusions and discussion.—At tree level and one loop,

all amplitudes are (built from terms that are) planar with
respect to some ordering. In this Letter we have given the
first all-multiplicity formula for genuinely nonplanar scat-
tering amplitude integrands. Our strategy avoided any
reference to any particular gauge group, and required no
choice of loop-momentum labels or routing. As such, we
have demonstrated the power of prescriptive unitarity
beyond the planar limit, opening the door to many future
applications, including a better understanding of the struc-
ture of perturbative quantum field theory.
In the Supplemental Material [76] we have prepared a

Mathematica notebook making use of Eq. (1). Specifically,
we provide documented functions to decompose, evaluate,
and expand into color traces all leading singularities in
Table I, represent and evaluate each of the integrands in
Tables III and IV, and to generate permutation-class
representatives of each term appearing in Eq. (1) (together
with the entire permutation sums) for arbitrary multiplicity.
Useful tools for working with amplitudes in Mathematica
can be found in Refs. [77,78].
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