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Abstract: Composted sewage sludge (CSS) gained attention as a potential fertilizer in agriculture.
Application of CSS increases soil microbial activity and microbial biomass, however, it can also lead
to increased chemical and microbiological risks. In this study, we performed microcosm experiments
to assess how CSS reshapes the microbial community of diluvial sand (DS) soil. Further, we assessed
the potential of CSS to increase the persistence of human pathogens in DS soil and the colonization of
Chinese cabbage (Brassica rapa L. subsp. pekinensis (Lour.) Hanelt). The results revealed that CSS
substantially altered the prokaryotic community composition. Moreover, addition of CSS increased
the persistence of Salmonella enterica serovar Typhimurium strain 14028s and S. enterica serovar
Senftenberg in DS soil. However, the enhanced persistence in soil had no impact on the colonization
rate of B. rapa grown on soil inoculated with Salmonella. We detected Salmonella in leaves of 1.9% to
3.6% of plants. Addition of CSS had no impact on the plant colonization rate. The use of sewage
sludge composts is an interesting option. However, safety measures should be applied in order to
avoid contamination of crop plants by human pathogens.

Keywords: soil microbiome; sewage sludge compost; Salmonella enterica; internalization; Brassica rapa

1. Introduction

Many processes in the soil ecosystem are governed by microorganisms. Prominent examples
include promotion of plant growth, nutrient cycling and degradation of pollutants [1]. These processes
are threatened by climate change, changed precipitation patterns and soil degradation due to
inappropriate land management practices [2]. Even though taxonomic and functional diversity
of the plant microbiome are progressively characterized [3], up to now, not many soil microorganisms
have been cultivated in a laboratory environment and therefore their functions are largely unknown [2,4].
There is a close interaction between the microbial community and the plant host. This interaction
is important for plant health and also for the final structure of the microbial community associated
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with the host plant [5]. Previous studies revealed that soil is the main microbiological reservoir
shaping the community structure in the rhizosphere, and root exudates are the main drivers for the
occurring change [6]. Furthermore, by altering the rhizobiome the plant can promote a suppressive soil
environment in which the proliferation of a pathogen is inhibited [5]. This may be of great importance
since both plant and human pathogenic bacteria can contaminate crop plants and cause yield losses or
disease outbreaks [7–9].

The use of sewage sludge as fertilizer may contribute to sustainable agriculture and nutrient
recycling. The application of sewage sludge increases soil microbial activity and microbial biomass [10]
but could also lead to increased chemical and microbiological risks [11]. Human pathogens potentially
preset in sludge might contaminate soil-grown fresh produce, which might pose a risk for the
consumer [12]. European legislation concerning the use of sewage sludge in agriculture demands
specific treatments before its application [13]. Sewage sludge, in addition to pathogenic microorganisms,
may contain other organic and inorganic pollutants [14]. Therefore, a sludge stabilization procedure is
used in order to remove its adverse characteristics such as odor and putrescence, as well as pathogenic
bacteria. There are several methods for sewage sludge stabilization which includes lime stabilization
and anaerobic or aerobic digestion. Sludge composting as an aerobic stabilization method has been
proven a reliable and low-cost strategy for sludge treatment prior to agricultural use [15,16].

Brassicaceae are consumed traditionally in all parts of the world, especially in Asia, Europe and
North America [17–19]. They are rich in vitamins, phenolic compounds and glucosinolates and
have many health benefits including anticancerogenic, antimicrobial and antidiabetic effects [20–22].
Growing in the field, plants are constantly challenged by environmental factors including
pathogens [12,23]. Irrigation water, manure, livestock and wildlife are the usual sources of
pathogens [24]. In addition, diverse post-harvest, handling and distribution-related procedures
to which produce are exposed pose a high risk of contamination by microorganisms [25].

An important aspect of food contamination is the internalization of pathogens in plant tissues.
Internalized pathogens are protected from surface washing and may withstand the usual cleaning
procedures. The biology and ecology of pathogen-produce interactions gained particular interest
after several disease outbreaks connected to fresh produce [26]. The major routes for pathogen
internalization include natural plant openings like stomata, lenticels, lateral root emergence sites, etc.,
or sites with physical or biological damage. Moreover, irrigation or washing water is often involved in
internalization of microorganisms in plant tissues [27].

Unfortunately, the soil environment harbors human pathogens. They may be either part of the
indigenous microbial community, for example Listeria monocytogenes, or can persist in soil for long
periods, for example Salmonella enterica. The ability to persist in soils seems to be governed by the
diversity of the native soil microbial community. In the case of S. enterica, our previous study revealed a
significantly lower persistence in soil with a natural diversity compared to soil with an experimentally
reduced microbial diversity [28]. At the same time, it was shown that several biotic and abiotic factors,
such as soil type and fertilizer applied, potentially influence the internalization of human pathogens in
plant tissues [29].

The aim of this work is to assess the impact of sewage sludge compost amendment on the structure
of microbial community and the persistence of human pathogens in soil environment. To the best
knowledge of the authors, the interaction between the soil microbial communities, composted sewage
sludge (CSS) application and internalization of human pathogenic bacteria into plant tissues has
not been investigated before. We therefore assessed the impact of CSS on (a) the soil microbiome,
(b) the persistence of S. enterica in soil and (c) the colonization rate of Brassica rapa (Chinese cabbage)
phyllosphere by two S. enterica strains.
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2. Materials and Methods

2.1. Bacterial Strains

Salmonella enterica serovar Typhimurium strain 14028s was obtained from Dr. Isabelle
Virlogeux-Payant (INRA Tours, France). S. enterica serovar Senftenberg, was provided by Professor
John Coia (Scottish Reference Centre for Salmonella, Glasgow, Scotland, UK) and Dr. Nicola Holden
(James Hutton Institute, Dundee Scotland, UK). Spontaneously rifampicin-resistant mutants were
isolated by inoculation of an overnight culture on LB agar plates containing rifampicin (50 mg/L).
Resistant colonies were plated onto LB agar with rifampicin to confirm resistance.

2.2. Sewage Sludge Composting

Domestic dewatered aerobically-stabilized sewage sludge obtained in larger quantities from a
local wastewater treatment plant (WWTP), (Istria, Croatia) was used to produce compost. The study
was designed within the experimental farm of the Institute of Agriculture and Tourism, Croatia.
The composting experiment started on 1. June 2017 in a sheltered concrete enclosure (77 × 77 × 77 cm).
Composting biomass was prepared by mixing of raw sewage sludge and wheat straw at a dose of 40 kg
of straw per one m3 of sludge. Temperature in the center of the compost pile was monitored daily
using temperature smart sensors (HOBO, ONSET, Bourne, MA, USA) connected to USB micro station
data logger (HOBO, ONSET, Bourne, MA, USA). The aeration was enabled according to standard
measures for compost production [30]. The moisture level of the compost was maintained within 55%
to 60% and controlled according to EPA [31]. After 3 months of composting, the compost’s maturity
was evaluated according to Canet et al. [30].

2.3. Microcosm Experiment

For the microcosm experiments, a sandy soil from Großbeeren (52◦ 21′ N, 13◦ 18′ E, Germany)
was used. It was characterized as Arenic-Luvisol [32], with less silty sand and 5.5% clay [diluvial
sand (DS)] which was sieved (2 mm) and adjusted to 50% of its water holding capacity resulting in
a final water content of 112 mL per one kg of soil [33]. The soil was amended with CSS at a final
concentration of 25.71 g per kg dry soil according to the Nitrates Directive [34]. S. Typhimurium 14028s
and S. Senftenberg were grown at 37 ◦C overnight in LB supplemented with rifampicin (50 mg/L).
Bacterial cells were pelleted (1500 × g, 10 min) and washed twice with 10 mM MgCl2. Soil was mixed
with bacterial solution to obtain a final concentration of 106 colony forming units (CFU) per g dry
soil. Soil was filled into polystyrene flowerpots (11 cm diameter, 9 cm height) with approximately
400 g soil per pot, and in each pot two Chinese cabbage plants (Brassica rapa L. subsp. pekinensis (Lour.)
Hanelt, PREDURO F1, Takii Europe B.V., De Kwakel, The Netherlands) at the three- to four-leaf stage
were transplanted.

The experiment was designed with two possible scenarios of S. enterica soil contamination: (a) via
fertilizer where S. enterica was introduced into soil together with the CSS (“stored” treatment) 28 days
prior to B. rapa transplanting (mixing day), and (b) via irrigation water where S. enterica was introduced
in soil with water (“fresh” treatment) on the day B. rapa plants were transplanted (day 0, planting
day). For mock-inoculation (control) 10 mM MgCl2 was used. Pots were placed individually on plates
with fleece and incubated for 56 days at 20 ◦C in the greenhouse. Plants were watered as needed.
Additional mineral fertilizer was added with the irrigation water from day 37 on. Soil was sampled at
seven timepoints including mixing day (day –28), planting day (day 0), days 7, 14, 21, 35 and 56 after
transplanting. Before sampling, soil in each pot was mixed thoroughly. Plant leaves were sampled
prior to soil sampling on the same day.

2.4. DNA Extraction, 16S rRNA Gene Amplification and Amplicon Sequencing

Total DNA was extracted from four independent biological replicates (four independent pots) of
0.5 g soil using the FastDNA SPIN Kit for Soil (MP Biomedicals, Heidelberg, Germany) and purified
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with GENECLEAN SPIN Kit (MP Biomedicals, Heidelberg, Germany) according to the manufacturer’s
instructions. The approximately 460 bp fragment covered hypervariable regions V3–V4 and was
originally published by Yu et al. [35] and modified as described in Sundberg et al. [36]. In a second
PCR reaction step, the primers additionally included Illumina specific sequencing adapters and a
unique dual index combination for each sample. Small PCR products (<100 bp) were removed using
HighPrep PCR paramagnetic beads (MagBio Genomics, Gaithersburg, MD, USA) according to the
manufacturer’s instructions, using a 0.65:1 of beads:PCR reaction volume ratio. Samples were pooled
and adjusted to equimolar concentrations using SequalPrep Normalization Plate (96) Kit (Invitrogen,
Carlbad, CA, USA) and pooled using a 5 µL volume for each sample. The pooled samples library was
concentrated using DNA Clean and Concentrator™-5 kit (Zymo Research, USA) and sequenced using
2× 250 bp paired-end high-throughput sequencing using Illumina MiSeq Reagent Kits version 2 on an
Illumina MiSeq platform (Illumina, USA). Sequencing was performed both on “stored” and “fresh”
treatments with S. Typhimurium 14028s on planting day (day 0) and day 35 post planting, as well as
on soil before inoculation (mixing day, day –28) and control (MgCl2-inoculated) soil.

2.5. Sequence Analysis

Raw sequences were trimmed of primer sequences using cutadapt [37]. After merging,
the sequences were clustered with 97% pairwise sequence similarity using UPRASE [38] and chimeras
were removed using UCHIME [39]. Taxonomic annotation was performed using mothur “classify.seqs”
and “method = wang” with a minimum bootstrap probability of 0.8 [40] against RDP database trainset
16 [41]. After sequencing a total of 1,412,486 reads, a total of 13,799 OTUs were obtained with an
average number of 32,848 reads per sample. A single sample with less than 1,000 reads was removed.
After removing OTUs with low abundance (less than four counts) and low variance (less than 10%)
1,844 OTUs remained for downstream analysis. Alpha-diversity was calculated at the OTU level using
the Shannon Index. Significant differences between treatments were calculated using one-way analysis
of variance (ANOVA) or t-test. Beta-diversity at the OTU level, indicating similarities of the microbial
community composition between different treatments, was analyzed using the Jensen–Shannon
divergence method with non-metric multidimensional scaling (NMDS) prior to testing significant
differences with analysis of similarities (ANOSIM). Differences in abundance between treatments at
the phylum level were calculated using Student’s t-test with Benjamini–Hochberg adjusted p values.
The microbial community differential abundance between treatments was statistically analyzed with a
generalized linear model fit and a likelihood ratio test post-hoc false discovery rate multiple correction
test using the “edgeR” package in R 3.6.3 [42]. Univariate statistical analyses were performed using the
Statistica software package version 13.4 (Tibco Software, Inc.). Species richness, NMDS and ANOSIM
were calculated with the MicrobiomeAnalystR package [43]. Sequences were uploaded to NCBI with
the ID number PRJNA630375.

2.6. Detection of Salmonella enterica in Soil and Plant Tissues

In order to determine the colony forming units (CFU) of Salmonella enterica in soil, from each
of the four biological replicates two technical replicates of serial dilutions for each soil sample were
dropped twice on XLD agar (Merck KGaA, Darmstadt, Germany), supplemented with rifampicin
(50 mg/L). CFU counts were enumerated after incubation at 37 ◦C for 20 h. In order to quantify the
colonization rate of Chinese cabbage phyllosphere, samples were taken 7, 14, 21, 35 and 56 days
after transplantation into diluvial sand (DS) soil. Only leaves without contact to soil were harvested.
Leaves were chopped with sterile scissors and incubated in 10 mL Buffered Peptone Water (BPW)
for 20 h at 37 ◦C. Subsequently, 10 µL of enrichments were dropped on XLD agar (Merck KGaA,
Darmstadt, Germany) supplemented with rifampicin (50 mg/L). After incubation at 37 ◦C for 20 h,
the presence of S. enterica was indicated by black color of bacterial colonies. Additionally, 190 µL of the
Salmonella-selective Rappaport-Vassiliadis Broth was inoculated with 10 µL of the BPW enrichment.
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After incubation at 42 ◦C for 20 h, samples were dropped on XLD agar supplemented with rifampicin
(50 mg/L). After incubation at 37 ◦C for 20 h, samples positive for Salmonella were enumerated.

The decrease rates of Salmonella CFU counts between soil treatments were compared by linear
modeling using the aov function conducted in R [42], where a significant interaction between the
factors time (day) and treatment (“fresh” or “stored”) indicated different Salmonella persistence. Due to
the imbalanced design (day –28 only for the “stored” treatment), only days 0 to 56 were included in
the analysis.

3. Results

3.1. Composition of Prokaryotic Community Changes upon Time, Sludge Compost Amendment and
S. enterica Presence

The composition of the soil prokaryotic community was analyzed on three different timepoints
(day –28, 0 and 35) using the 16S rRNA gene fragment amplicon sequencing. Taxonomic analysis of
the prokaryotic community revealed that the soil communities were composed mostly of 12 bacterial
phyla. In all tested experimental variants, regardless of the time, presence of composted sewage sludge
(CSS) or Salmonella, the most abundant were: Proteobacteria, Actinobacteria, Firmicutes, Acidobacteria,
Crenarchaeota, Bacteroidetes, Gemmatimonadetes, Chloroflexi, Nitrospirae, TM7 and Verrucomicrobia
(Figure 1A).

The analysis of relative abundance between the phyla indicated that the three major factors
assessed here (time, CSS and Salmonella enterica) had different impact on the microbial composition.
Proteobacteria, Actinobacteria, Bacteriodetes, Chloroflexi and Verrucomicrobia significantly increased
in relative abundance, while Firmicutes, Acidobacteria, Crenarchaeota and Nitrospirae decreased
(Table 1) 35 days after transplanting the Brassica rapa (Chinese cabbage) plants. The addition of the CSS
to the soil significantly decreased the relative abundance of Acidobacteria while the relative abundance
of Chloroflexi increased (Table 1). The presence of S. enterica had no impact on the composition
of the soil prokaryotic community on phylum level (Table 1). Furthermore, two proteobacteria,
an unclassified genus of order Rhizobiales and an unclassified order of the class Betaproteobacteria,
were more abundant in samples without CSS as well as the genus GP6 of Acidobacteria. In contrast,
only one genus, Paenibacillus, which belongs to the phylum Firmicutes, was more abundant in samples
with CSS (Figure 1B).

Table 1. The soil microbial community on phylum level is influenced by time and addition of sludge
compost. However, it is not influenced by the presence of Salmonella. Relative abundance of phyla is
expressed as a percentage of the total bacterial population. Results were evaluated using Student’s
t-test with Benjamini–Hochberg adjusted p values, with p ≤ 0.05 considered significant (bold). The
results are expressed as mean ± SD from four biological replicates (n = 43).

Time Sludge Salmonella

Planting Day
n = 16

35 dpi
n = 23 p-Value Control

n = 23
Sludge
n = 20 p-Value Control

n = 19
14028s
n = 24 p-Value

Proteobacteria 20.1 ± 1.5 30.5 ± 3.8 <0.001 26.3 ± 6.2 25.0 ± 5.9 0.946 24.1 ± 6.0 26.9 ± 5.9 0.731

Actinobacteria 18.8 ± 1.3 20.3 ± 1.8 0.003 19.6 ± 2.1 19.7 ± 1.2 0.918 19.6 ± 2.0 19.7 ± 1.5 0.606

Firmicutes 20.7 ± 2.7 13.2 ± 3.3 <0.001 15.6 ± 4.0 17.9 ± 5.4 <0.001 17.9 ± 5.4 15.8 ± 4.2 0.924

Acidobacteria 16.3 ± 4.0 14.8 ± 1.0 <0.001 16.1 ± 1.5 14.8 ± 1.0 <0.001 15.6 ± 1.3 15.4 ± 1.6 0.909

Crenarchaeota 10.9 ± 1.2 6.2 ± 1.4 <0.001 8.6 ± 2.9 8.2 ± 2.5 0.869 8.9 ± 2.8 8.0 ± 2.6 0.452

Bacteroidetes 5.8 ± 0.7 7.6 ± 1.3 <0.001 6.7 ± 1.1 6.9 ± 1.7 0.848 6.5 ± 1.0 7.0 ± 1.7 0.919

Gemmatimonadetes 2.3 ± 0.3 2.3 ± 0.2 0.507 2.3 ± 0.2 2.3 ± 0.3 1.000 2.3 ± 0.3 2.4 ± 0.2 0.522

Chloroflexi 1.6 ± 0.3 1.8 ± 0.3 0.035 1.6 ± 0.2 1.9 ± 0.3 <0.001 1.7 ± 0.3 1.7 ± 0.3 0.517

Nitrospirae 1.3 ± 0.1 0.9 ± 0.2 <0.001 1.1 ± 0.3 1.1 ± 0.2 0.961 1.2 ± 0.2 1.1 ± 0.3 0.566

TM7 1.0 ± 0.2 0.9 ± 0.3 0.729 1.0 ± 0.2 0.9 ± 0.3 1.000 1.0 ± 0.2 0.9 ± 0.2 0.481

Verrucomicrobia 0.8 ± 0.1 1.1 ± 0.1 <0.001 0.9 ± 0.2 1.0 ± 0.2 0.888 0.9 ± 0.2 1.0 ± 0.1 0.616
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Figure 1. Taxonomic distribution of microbial phyla and treatment responding groups. Diluvial sand
soil was treated with composted sewage sludge (CSS) and inoculated with Salmonella enterica serovar
Typhimurium strain 14028s (Salmonella). Total DNA was sampled after mixing the soil with CSS, directly
after planting B. rapa and 35 days after planting. The relative abundance was calculated as percentage of
16S rRNA gene sequences belonging to a particular phylum in each sample and the mean is displayed
for each group in a stacked bar plot (A). Taxonomic groups, which differ in their relative abundance
between treatments, were identified using negative binomial regression, generalized linear model fit
and a likelihood ratio test post-hoc false discovery rate multiple correction test (p < 0.05). These groups
are represented using a color code (center-scaled mean of read counts out of four replicates) (B). For a
complete list see Supplementary Table S2. Each experimental variant was represented by at least
three replicates.

The influence of time and the presence of the CSS and Salmonella on the prokaryotic alpha
diversity in the soil samples was analyzed in the following steps. The Shannon index of the soil
prokaryotic community, representative of alpha diversity, increased 35 days after the planting of B. rapa
(Figure 2A,D). The addition of CSS did not change the alpha diversity of the soil communities neither
did the presence of S. enterica (Figure 2B,C).

In the next step we analyzed the beta-diversity between the samples. The non-metric
multidimensional scaling (NMDS) analysis paired with ANOSIM revealed significant differences in
samples after 35 days of B. rapa growth and to a lesser extent after sludge compost addition to the
soil (Figure 3). The presence of S. enterica in soil had no impact on the prokaryotic beta-diversity if
CSS was not added. Moreover, significant differences between the “stored” and “fresh” treatments
were observed when the soil was amended with CSS. The NMDS plot indicated that there was no
difference in the community profile of control DS soil during the first 28 days of incubation prior to
planting (mixing day vs planting day without sludge), while there was a noticeable change in the
prokaryotic community after the addition of CSS during the same period (mixing day vs planting
day with sludge). After 35 days of the plants growing, the soil prokaryotic community changed
noticeably in both the control and sludge amended samples (Figure 3). Different taxa of the phyla
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Firmicutes, Crenarchaeota, Actinobacteria, Acidobacteria, Proteobacteria, Bacteriodetes and Nitrospirae
were significantly influenced by time (Figure 1 and Table 1.). The correlation analysis revealed a
positive correlation between Firmicutes, Crenarchaeota, Nitrospirae and Acidobacteria (Supplementary
Table S1). Additionally, Acidobacteria correlated positively with Gemmatimonadetes. On the other
hand, a positive correlation was observed between Proteobacteria, Bacteroidetes and Verrucomicrobia.
The two groups were negatively correlated (Supplementary Table S1). Time seems to play the key
function, while the presence of CSS plays only a minor role and inoculation with a Salmonella strain
seems to have no impact on the number of most abundant groups.Microorganisms 2020, 8, x FOR PEER REVIEW 7 of 15 
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B. rapa growth (A), amendment with sewage sludge compost (B), absence or presence of Salmonella (C),
and time after planting (D) were calculated. The significance was tested using one-way ANOVA.
The boxes represent the interquartile range between the first and the third quartile and the lines mark
the median. In total, 43 samples were analyzed.

3.2. Amendment with Composted Sewage Sludge Increased the Persistence of Salmonella in Soil

In the next step, we wondered if the amendment with sludge would influence the persistence
of human pathogens in soil. To this end, DS soil either with or without CSS was inoculated with
Salmonella enterica serovar Typhimurium strain 14028s (S. Typhimurium 14028s) or Salmonella enterica
serovar Senftenberg (S. Senftenberg) and their persistence was monitored throughout the experiment.
When introduced to DS soil together with CSS 28 days prior to transplanting, a better persistence
(lower decrease rates) of both S. Typhimurium 14028s and S. Senftenberg was observed compared
to the persistence of Salmonella applied on planting day to already fertilized soil (Figure 4). On the
other hand, no differences were observed between decrease rates of Salmonella applied a month prior
to planting and Salmonella applied on planting day to unfertilized soil (Figure 4).
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Figure 3. Beta diversity between the prokaryotic communities in diluvial sand (DS) soil. The non-metric
multidimensional scaling (NMDS) analysis of the microbial community and analysis of similarities
(ANOSIM) were performed according to the sampling timepoint (green: mixing day, blue: planting
day, red: 35 days after planting). [ANOSIM] R: 0.85035; p-value < 0.001, [NMDS] stress = 0.096213,
sludge amendment (empty: without sludge, solid color: sludge amended) [ANOSIM]. R: 0.36323;
p-value < 0.001, [NMDS] stress = 0.096213 and Salmonella enterica presence (circles: no Salmonella
enterica, diamonds: Salmonella enterica introduced via fertilizer, squares: Salmonella enterica introduced
via irrigation) [ANOSIM]. R: 0.095536; p-value < 0.036, [NMDS] stress = 0.096213. p-values ≤ 0.05 were
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Figure 4. Colony forming unit (CFU) counts and persistence dynamics of Salmonella enterica in DS
soil. A decrease in CFU counts of S. Typhimurium 14028s and S. Senftenberg per g dry soil with or
without sewage sludge compost amendment are shown. All experimental variants were performed in
quadruplicates and CFU counts were assessed by dropping duplicates of duplicate serial dilutions on
XLD plates supplemented with rifampicin (50 mg/L). The dynamics of Salmonella persistence in DS soil
according to entry route, soil treatment and serovar are expressed as linear regressions. Salmonella was
applied either 28 days before planting (“stored”) together with the sludge (DS + sludge) or without
sludge (DS) or immediately before planting on day 0 (“fresh”). The decrease rates between fresh and
stored treatments were compared for soil amended with and without sludge by linear modeling and
p values below 0.05 indicate a significant difference. Due to the imbalanced design (day –28 only for
the “stored” treatment) only days 0 until 56 were included in the modeling.
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3.3. Amendment with Composted Sewage Sludge Has No Impact on Colonization of B. rapa by Salmonella

The sludge’s impact on Salmonella persistence in soil motivated us to assess if this would have an
impact on the plant colonization rate if crop plants grow on contaminated soil(s). The relocation of
S. Senftenberg and S. Typhimurium 14028s from soil to the upper plant tissues (phyllosphere) was
therefore compared between B. rapa plants grown on soil with or without the sewage sludge compost
amendment. Leaf samples were taken over 56 days after planting, which corresponds to the usual
vegetation period for Chinese cabbage. From a total of 678 B. rapa plants that grew on soils inoculated
with S. enterica, 1.9% to 3.8% tested positive for the presence of Salmonella in their phyllosphere (Table 2).
ANOVA revealed that the presence of CSS or the S. enterica serovar had no detectable impact on the
colonization rate (Table 2). However, a three-fold increase (p = 0.066) in the colonization rate was
observed when S. enterica was introduced to the soil together with the plant (simulating contamination
via irrigation water) if compared to the scenario in which Salmonella was introduced together with the
CSS amendment (Table 2). The number of positive S. enterica detections in the B. rapa phyllosphere
increased with time and at day 21 we observed the highest number of colonized plants. In subsequent
timepoints, no positive tests for S. enterica were observed (Table 2).

Table 2. Salmonella enterica colonized plants expressed as a percentage of the tested population.
Phyllosphere of B. rapa plants was tested for the presence of Salmonella using the Buffered Peptone
Water enrichment technique followed by Salmonella-specific cultivation in the Rappaport–Vassiliadis
broth. Both enrichments were plated on XLD plates supplemented with rifampicin to verify Salmonella’s
presence. We tested n = 678 plants. Two plants were pooled together in order to reduce the number of
samples. This results in the min. (%) and max. (%) number of colonized plants. Significant differences
were calculated using one-way ANOVA and are highlighted in bold (p ≤ 0.05).

Soil Serovar Scenario Days after Planting Total

DS soil DS soil + CSS 14028s Senftenberg Fresh Stored 7 21 35 56

Min (%) 1.9 1.9 1.9 1.9 2.8 0.9 1.9 5.6 0.0 0.0 1.9

Max (%) 3.8 3.8 3.8 3.8 5.6 1.9 3.8 11.3 0.0 0.0 3.8

p-value 1.000 1.000 0.066 0.001

4. Discussion

When nutrients are limited, in order to survive the plant may attract beneficial bacteria to the
rhizosphere by sharing sugars and other secondary metabolites and, consequently, increase the selective
pressure on the soil microbiome [44]. On the other hand, the plant is less prone to divert sugars and
metabolites if enough nutrients are available [45].

In this study, we investigated how the prokaryotic community changes during cultivation of
Chinese cabbage in soil with or without CSS. During 35 days of the plants’ growth, Proteobacteria,
Actinobacteria, Acidobacteria, Bacteroidetes, Chloroflexi and Verrucomicrobia increased in their relative
abundance while a significant decrease was observed for Firmicutes, Acidobacteria, Crenarchaeota
and Nitrospirae. The addition of CSS significantly boosted the relative abundance of Firmicutes
and Chloroflexi and lowered the relative abundance of Acidobacteria. Proteobacteria displayed the
biggest increase, rising from 20.1% to 30.5%, on average. Proteobacteria are important in carbon,
nitrogen and sulfur cycling [46]. Different taxa which were enriched in CSS-treated soil declined in
abundance over time (Figure 1). Some, such as Nitrospirae and Sporosarcina, are known to play a role
in the biogeochemical nitrogen cycle (i.e., ammonia oxidation and denitrification). Interestingly the
genus Pseudomonas, a known denitrifier, was enriched in abundance at later timepoints. These results
indicate a shift in the taxonomic distribution after CSS treatment while the biological functions are
maintained. Actinobacteria are mainly studied as sources of bioactive compounds and their role in
their natural soil habitat is still greatly unexplored [47]. It is known that Actinobacteria may employ
both direct and indirect mechanisms to influence plant growth and protection. Direct mechanisms
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involve the production of vital factors for plant growth such as growth hormones and the assistive
action on nitrogen fixation, phosphate solubilization or iron acquisition [48]. Bacteroidetes were
reported to decrease in abundance with the intensification of agricultural use [49] while Chloroflexi
increased in relative abundance after organic fertilization [50], possibly due to an increase in C
sinking function [51]. Firmicutes encompass known plant pathogenic bacteria [52] and although the
introduction of the plant lowered their relative abundance, the addition of CSS significantly increased
the relative abundance of this phylum. Sewage sludge is rich in Firmicutes, especially Bacilli and
Clostridia, and the composting process further enriches their abundance [53]. Acidobacteria are
mainly present in soils and their influence on the ecosystem is not well understood [54]. The relative
abundance of this phylum decreased with the introduction of the plant, and their presence is further
decreased with the introduction of CSS. They are versatile heterotrophs and possess genetic traits
that suggest they are best suited to low-nutrient environments [55]. Although Nitrospirae benefits
plants by oxidizing nitrite to nitrate [56], we observed a decrease in relative abundance after 35 days of
Chinese cabbage growth.

The effect of organic amendments on Salmonella persistence in soils is still not clear. There are
several published studies on the persistence of various Salmonella enterica serovars in soils with organic
amendments with opposite outcomes. Jechalke et al. [29] reported a prolonged persistence of Salmonella
in soils amended with poultry and pig slurry based organic fertilizers. On the other hand, a study
on the influence of sewage sludge amendment on the persistence of S. Typhimurium LT2 in soil
reported decreased CFU numbers in soils amended with sewage sludge compared to control soils [57].
The investigated parameters in our study focused on the introduction of Salmonella together with the
organic amendment or directly before planting simulating contamination through irrigation water.
The obtained results indicate that the differences between Salmonella persistence in the two scenarios
could possibly arise from the incubation period. In the scenario where Salmonella was introduced at the
same timepoint as CSS, it had an equal incubation time as other competitive microbes and likely higher
concentrations of available nutrients. In this scenario, we observe better Salmonella survival rates
compared to control samples in which Salmonella was added to soil 28 days after fertilization. The results
obtained in this study could be explained by the recent report by Schierstaedt et al. [28], where it was
demonstrated that the abundance of Salmonella enterica decreased faster in soils with a highly diverse
prokaryotic community compared to soils with low diversity, underlying the importance of the native
soil microbiome in suppressing pathogenic bacteria. Shah et al. [58] investigated the persistence of S.
Newport in soils with or without heat-treated chicken manure pellet amendment. The authors reported
a significantly higher survival rate of Salmonella in soils with the organic amendment, reaching 91 dpi
versus 35 dpi for control soils. Our study showed that the presence of Salmonella had no impact on the
relative abundance of the soil microbiome on phylum level, which is in line with a previous study,
which showed that Salmonella influenced the soil microbiome only when the prokaryotic diversity was
very low [28].

The total ratio of Salmonella-colonized plants (phyllosphere) was between 1.9% and 3.6%. Although
we have observed different S. enterica persistence after the addition of CSS, this had no detectable impact
on plant colonization. The same outcome was observed for both tested S. enterica serovars. However,
plant colonization seemed higher (p = 0.066) when S. enterica was introduced together with the plant,
via the irrigation water. Additionally, the highest colonization rate was observed 21 days after planting.
Coincidentally, in subsequent sampling points no S. enterica was detected in the B. rapa phyllosphere,
despite the presence of Salmonella in the soil. Confocal laser scanning microscope (CLSM) analysis did
not reveal potential mechanisms of Salmonella root colonization and transport to upper plant tissue
(data not shown). Previously, Jechalke et al. [29] investigated the colonization rate of S. enterica on corn
salad and lettuce leaves through root internalization. Similar to this report, the authors reported 0.5%
to 0.9% of plants colonized with Salmonella. The internalization of human pathogenic bacteria into
edible parts poses a significant risk for consumers. Koukkidis et al. [59] reported that traces of juices
released from salad leaves after being damaged could enhance S. enterica proliferation even under
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refrigerated conditions. Moreover, the endogenous leaf microbiota was largely unresponsive to such
leaf juice, suggesting that Salmonella could gain an advantage, using fluids released by damaged salad
leaves as a source of nutrients.

Furthermore, human pathogens belonging to the genus Clostridium are able to survive the waste
water treatment process [60]. In our experiments, the taxon Clostridium (sensu stricto) was enriched
in samples containing sludge at later timepoints and was less abundant at early timepoints. It was
low abundant in samples without CSS. This underlines the potential risk of contamination in soil
caused by CSS. Besides pathogenic bacteria, sewage sludge and other organic fertilizers are abundant
in antibiotic resistance genes [53,61,62]. Sewage sludge, as a by-product in WWTPs, is extensively
used worldwide as an organic soil amendment and could pose a viable strategy for nutrient recovery
from municipal waste [14]. Although some mandatory limits for heavy metals in sewage sludge
(Cd: 20–40 mg/kg; Cu: 1,000–1,750 mg/kg; Hg: 16–25 mg/kg; Ni: 300–400 mg/kg; Pb: 750–1,200 mg/kg
and Zn: 2,500–4,000 mg/kg) have been proposed by the European Commission for sewage sludge soil
application [13], this could escalate the antibiotic resistance crisis [63].

5. Conclusions

Our results revealed that within the soil prokaryotic community, Proteobacteria, Actinobacteria,
Acidobacteria, Bacteroidetes, Chloroflexi and Verrucomicrobia increased in relative abundance during
plant growth, while a decrease was observed for Firmicutes, Acidobacteria, Crenarchaeota and
Nitrospirae. The addition of CSS boosted the relative abundances of Firmicutes and Chloroflexi and
decreased the abundance of Acidobacteria. Importantly, our results suggest that if Salmonella is applied
to the soil together with CSS, its persistence is longer, compared to soil without composted sewage
sludge, or compared to when it was introduced with water to fertilized soil at the time of planting.
Finally, when assessing the colonization rate of the B. rapa phyllosphere on soil inoculated with
Salmonella, our results revealed that between 1.9% and 3.6% of plants were colonized with Salmonella.
Although we have seen different persistence dynamics for both Salmonella strains in composted sewage
sludge amended soil, this had no impact on the plant colonization pattern. The plant colonization
rate however, seemed higher when Salmonella was introduced on planting day. Taking together,
even though the use of CSS is an interesting option, safety measures should be applied in order to
avoid crop contamination.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/8/7/1020/s1,
Table S1: Pearson’s correlations between phyla. Table S2: Taxonomic groups with relative abundance different
between treatments.
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49. Wolińska, A.; Kuźniar, A.; Zielenkiewicz, U.; Izak, D.; Szafranek-Nakonieczna, A.; Banach, A.; Błaszczyk, M.
Bacteroidetes as a sensitive biological indicator of agricultural soil usage revealed by a culture-independent
approach. Appl. Soil Ecol. 2017, 119, 128–137. [CrossRef]

50. Yao, L.; Wang, D.; Kang, L.; Wang, D.; Zhang, Y.; Hou, X.; Guo, Y. Effects of fertilizations on soil bacteria and
fungi communities in a degraded arid steppe revealed by high through-put sequencing. PeerJ 2018, 6, e4623.
[CrossRef]

51. Zhang, X.; Chen, Q.; Han, X. Soil Bacterial Communities Respond to Mowing and Nutrient Addition in a
Steppe Ecosystem. PLoS ONE 2013, 8, e84210. [CrossRef]

52. Hogenhout, S.A.; Loria, R. Virulence mechanisms of Gram-Positive plant pathogenic bacteria. Curr. Opin.
Plant Biol. 2008, 11, 449–456. [CrossRef]

53. Su, J.-Q.; Wei, B.; Ou-Yang, W.-Y.; Huang, F.-Y.; Zhao, Y.; Xu, H.-J.; Zhu, Y.-G. Antibiotic Resistome and Its
Association with Bacterial Communities during Sewage Sludge Composting. Environ. Sci. Technol. 2015, 49,
7356–7363. [CrossRef]

54. Kielak, A.M.; Barreto, C.C.; Kowalchuk, G.A.; van Veen, J.A.; Kuramae, E.E. The Ecology of Acidobacteria:
Moving beyond Genes and Genomes. Front. Microbiol. 2016, 7, 744. [CrossRef] [PubMed]

55. Ward, N.L.; Challacombe, J.F.; Janssen, P.H.; Henrissat, B.; Coutinho, P.M.; Wu, M.; Xie, G.; Haft, D.H.;
Sait, M.; Badger, J.; et al. Three genomes from the phylum Acidobacteria provide insight into the lifestyles of
these microorganisms in soils. Appl. Environ. Microbiol. 2009, 75, 2046–2056. [CrossRef] [PubMed]

56. Kant, S. Understanding nitrate uptake, signaling and remobilisation for improving plant nitrogen use
efficiency. Semin. Cell Dev. Biol. 2018, 74, 89–96. [CrossRef] [PubMed]

57. Fornefeld, E.; Baklawa, M.; Hallmann, J.; Schikora, A.; Smalla, K. Sewage sludge amendment and inoculation
with plant-parasitic nematodes do not facilitate the internalization of Salmonella Typhimurium LT2 in lettuce
plants. Food Microbiol. 2018, 71, 111–119. [CrossRef]

58. Shah, M.K.; Bradshaw, R.; Nyarko, E.; Handy, E.T.; East, C.; Millner, P.D.; Bergholz, T.M.; Sharma, M.
Salmonella enterica in soils amended with heat-treated poultry pellets survived longer than bacteria in
unamended soils and more readily transferred to and persisted on spinach. Appl. Environ. Microbiol. 2019, 85.
[CrossRef]

59. Koukkidis, G.; Haigh, R.; Allcock, N.; Jordan, S.; Freestone, P. Salad leaf juices enhance Salmonella growth,
colonization of fresh produce, and virulence. Appl. Environ. Microbiol. 2017, 83. [CrossRef]

60. Xu, C.; Weese, J.S.; Flemming, C.; Odumeru, J.; Warriner, K. Fate of Clostridium difficile during wastewater
treatment and incidence in Southern Ontario watersheds. J. Appl. Microbiol. 2014, 117, 891–904. [CrossRef]

61. Chen, Q.; An, X.; Li, H.; Su, J.; Ma, Y.; Zhu, Y.G. Long-term field application of sewage sludge increases the
abundance of antibiotic resistance genes in soil. Environ. Int. 2016, 92–93, 1–10. [CrossRef]

62. Zhang, J.; Sui, Q.; Tong, J.; Zhong, H.; Wang, Y.; Chen, M.; Wei, Y. Soil types influence the fate of
antibiotic-resistant bacteria and antibiotic resistance genes following the land application of sludge composts.
Environ. Int. 2018, 118, 34–43. [CrossRef]

63. Bondarczuk, K.; Markowicz, A.; Piotrowska-Seget, Z. The urgent need for risk assessment on the antibiotic
resistance spread via sewage sludge land application. Environ. Int. 2016, 87, 49–55. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/ismej.2009.43
http://www.ncbi.nlm.nih.gov/pubmed/19404326
http://dx.doi.org/10.1111/1574-6968.12147
http://www.ncbi.nlm.nih.gov/pubmed/23611473
http://dx.doi.org/10.1007/s13205-017-0736-3
http://dx.doi.org/10.1016/j.apsoil.2017.06.009
http://dx.doi.org/10.7717/peerj.4623
http://dx.doi.org/10.1371/journal.pone.0084210
http://dx.doi.org/10.1016/j.pbi.2008.05.007
http://dx.doi.org/10.1021/acs.est.5b01012
http://dx.doi.org/10.3389/fmicb.2016.00744
http://www.ncbi.nlm.nih.gov/pubmed/27303369
http://dx.doi.org/10.1128/AEM.02294-08
http://www.ncbi.nlm.nih.gov/pubmed/19201974
http://dx.doi.org/10.1016/j.semcdb.2017.08.034
http://www.ncbi.nlm.nih.gov/pubmed/28838687
http://dx.doi.org/10.1016/j.fm.2017.06.011
http://dx.doi.org/10.1128/AEM.00334-19
http://dx.doi.org/10.1128/AEM.02416-16
http://dx.doi.org/10.1111/jam.12575
http://dx.doi.org/10.1016/j.envint.2016.03.026
http://dx.doi.org/10.1016/j.envint.2018.05.029
http://dx.doi.org/10.1016/j.envint.2015.11.011
http://www.ncbi.nlm.nih.gov/pubmed/26646979
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Bacterial Strains 
	Sewage Sludge Composting 
	Microcosm Experiment 
	DNA Extraction, 16S rRNA Gene Amplification and Amplicon Sequencing 
	Sequence Analysis 
	Detection of Salmonella enterica in Soil and Plant Tissues 

	Results 
	Composition of Prokaryotic Community Changes upon Time, Sludge Compost Amendment and S. enterica Presence 
	Amendment with Composted Sewage Sludge Increased the Persistence of Salmonella in Soil 
	Amendment with Composted Sewage Sludge Has No Impact on Colonization of B. rapa by Salmonella 

	Discussion 
	Conclusions 
	References

