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ARTICLE OPEN

Quantum interference device for controlled two-qubit
operations
Niels Jakob Søe Loft1✉, Morten Kjaergaard 2, Lasse Bjørn Kristensen1, Christian Kraglund Andersen 3, Thorvald W. Larsen4,
Simon Gustavsson2, William D. Oliver 2,5,6,7 and Nikolaj T. Zinner 1,8

Universal quantum computing relies on high-fidelity entangling operations. Here, we demonstrate that four coupled qubits can
operate as a quantum gate, where two qubits control the operation on two target qubits (a four-qubit gate). This configuration can
implement four different controlled two-qubit gates: two different entangling swap and phase operations, a phase operation
distinguishing states of different parity, and the identity operation (idle quantum gate), where the choice of gate is set by the state
of the control qubits. The device exploits quantum interference to control the operation on the target qubits by coupling them to
each other via the control qubits. By connecting several four-qubit devices in a two-dimensional lattice, one can achieve a highly
connected quantum computer. We consider an implementation of the four-qubit gate with superconducting qubits, using
capacitively coupled qubits arranged in a diamond-shaped architecture.

npj Quantum Information            (2020) 6:47 ; https://doi.org/10.1038/s41534-020-0275-3

INTRODUCTION
The goal of quantum computing is to implement a programmable
quantum information processor. Such a processor requires access
to a universal gate set from which any quantum algorithm can be
constructed. Universal gate sets can be formed from single-qubit
gates supplemented by a two-qubit entangling gate1. Further-
more, fault-tolerance is necessary in order to perform arbitrarily
long and precise computations, which, for the most lenient error-
correcting surface codes, puts a lower bound of around 0.99 on
the required gate fidelities2–5. Extensible high-fidelity entangling
two-qubit gates are thus key elements in any multi-purpose
quantum information processor.
Single-qubit gate operations are routinely performed with

fidelities above 0.996–16, but pushing two-qubit gate fidelities above
0.99 still proves a daunting task. Despite the challenges in realizing a
low loss environment while at the same time having high control of
two-qubit operations, several two-qubit gates have been reported to
do so. The first group to accomplish this was Benhelm et al., who in
2008 demonstrated a Mølmer–Sørensen-type entangling gate17,18

with a fidelity of 0.993 using laser-controlled trapped calcium ions19.
Since then, similar ion trap experiments have realized high-fidelity
two-qubit gates20–24. Another promising qubit architecture is silicon-
based quantum dots15,16,25,26, where controlled-rotation gates were
recently benchmarked with a fidelity of 0.9827.
In superconducting qubits the controlled-phase (CZ) gate12,28–31

and the cross-resonance (CR) gate32 have been shown to exceed a
fidelity of 0.99. Other two-qubit gates, like the iSWAP and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gates8,33–36, bSWAP gate37, the resonator-induced phase (RIP)
gate38, and a parametric CZ gate8,36, have been demonstrated
with fidelities in the 0.9’s. These quantum gates are typically
performed with transmons29,39–41, coupled directly to each other
or via a separate coupling element, e.g. a transmission line
resonator or a tunable coupler.

In this work, we propose the implementation of controlled two-
qubit operations utilizing quantum interference patterns in a
network of four qubits. As a specific architecture, where this four-
qubit gate can be implemented natively, we consider super-
conducting transmon qubits placed in a diamond-shaped
geometry. The qubits are coupled only through simple capacitive
couplings. A similar 2D array of transmons was considered in
refs. 42,43, but with different couplings and purpose. The realization
of quantum gates on spin networks with exchange interactions
has also been studied in refs. 44,45, although they consider a
different qubit encoding. The system comprises a four-qubit
quantum gate (‘the diamond gate’), where the state of two qubits
control a two-qubit gate operation on the remaining two qubits.
Since the diamond gate natively implements multiple unitaries, it
is a useful addition to the gate set used for quantum simulation
and quantum compilation. Due to its ability to perform
(controlled) two-qubit entangling operations, supplementing the
diamond gate with single-qubit operations allows for universal
quantum computing on the target qubits.
The “Results” section is divided into four subsections. First, we

discuss the operation of the diamond gate, and secondly, how it
can constitute a building block in an extensible quantum
computer. Thirdly, we simulate the transmon implementation of
the gate, using parameters from state-of-the-art superconducting
qubits, in a Lindblad master equation simulation. We find that the
gate generally operates with fidelity around 0.99 in <100 ns.
Finally, we consider the effects of couplings to higher-energy
states in the transmon spectrum, leading to undesired leakage
across the control. We show how this behavior can be counter-
acted by engineering a cross-coupling to cancel the effects. This is
a passive scheme, in contrast to the microwave pulse-based
scheme recently shown to reduce leakage in the CZ gate30.
Throughout this paper, we use units where �h= 1.
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RESULTS
Four-qubit diamond gate
Consider the four-qubit Hamiltonian being a sum of the non-
interacting part

H0 ¼ � 1
2
ðΩþ ΔÞðσT1

z þ σT2
z Þ � 1

2
ΩðσC1

z þ σC2
z Þ; (1)

where Ω+ Δ (Ω) is the fixed frequency of the target (control)
qubits, and the interaction terms

Hint ¼ JC σC1
y σC2

y þ JðσT1
y þ σT2

y ÞðσC1
y þ σC2

y Þ: (2)

Here σj
z ¼ 0j i 0h jj � 1j i 1h jj and σj

y ¼ i 1j i 0h jj � i 1j i 0h jj are Pauli
operators on qubit j, and the qubit frequencies are assumed
positive such that 0j ij is the non-interacting qubit ground state.
For simplicity we have assumed that the two target (control)
qubits are on resonance, which can be achieved with sufficient
accuracy with flux tunable superconducting qubits. Here we also
assume that all the couplings between the target and control
qubits have the same strength J, although, as we will show later,
this contraint is not needed for high performance of the gate. The
four-qubit system is sketched in Fig. 1a. As we will discuss in the
following, the system implements a four-qubit gate, which we will
refer to as ‘the diamond gate’ due to the geometry of the system.
Superconducting circuits offer a natural platform for imple-

menting this type of Hamiltonian46. Specifically, by truncating the
Hilbert space for each degree of freedom to qubits, the circuit of
four capacitively coupled transmon qubits in Fig. 1b implements
the Hamiltonian. Later, we analyze the model including the
second excited state of the transmon qubits.
We now consider the interaction Hamiltonian, Hint, in the frame

rotating with H0 and simplify the expression by assuming
∣2Ω∣ ≫ ∣J∣ (rotating wave approximation), which allows us to
ignore the most rapidly oscillating terms. The system Hamiltonian
is then

H ¼ JC σC1
þ σC2

� þ J eiΔtðσT1
þ þ σT2

þ ÞðσC1
� þ σC2

� Þ þ H:c:; (3)

with σj
þ ¼ 1j i 0h jj and σj� ¼ 0j i 1h jj on qubit j. This Hamiltonian

governs the dynamics resulting from the interactions in the
model. The effective unitary time-evolution of H gives rise to a
four-qubit gate (the diamond gate) operating by means of
controlled quantum interference (see “Methods”). The analysis in
“Methods” is based on a Magnus expansion of H within Floquet
theory, which assumes ∣Δ∣ ≫ ∣J∣, ∣JC∣, i.e. a qubit detuning much
larger than the coupling strengths.
The diamond gate is a four-way controlled two-qubit gate

operation on the target qubits T1 and T2. Consider the following
gates in the target qubit computational basis,
f 00j iT; 01j iT; 10j iT; 11j iTg, where the superscripts refer to the

control setting (discussed below):

U00
T ¼

1 0 0 0

0 0 �1 0

0 �1 0 0

0 0 0 �1

0
BBB@

1
CCCA ¼ ZZ � CZ � SWAP; (4)

U11
T ¼

�1 0 0 0

0 0 �1 0

0 �1 0 0

0 0 0 1

0
BBB@

1
CCCA ¼ �CZ � SWAP; (5)

UΨþ
T ¼

�1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 �1

0
BBB@

1
CCCAe�itgJC ¼ �ZZ e�itgJC ; (6)

UΨ�
T ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0
BBB@

1
CCCAeþitgJC ¼ II eþitgJC : (7)

Here tg is the gate time given by

tg ¼ πjΔj
4J2

: (8)

Equations (4)–(7) show the two-qubit operations in terms of well-
known gates from the literature, see e.g. ref. 47. Here ZZ is
understood as a Z gate on each target qubit. Thus we see that U00

T
and U11

T are two different combined swap and phase operations.
Access to just one of these entangling gates will facilitate universal
quantum computing. The third gate, UΨ�

T , is a phase operation
distinguishing target states with different parity (addition of T1
and T2’s bit value modulo 2) by application of a relative sign. The
final gate, UΨ�

T , which just adds a global phase, is the identity gate.
We can therefore regard the preceding three gates as actual
computational gates, while UΨ�

T is the idle position of the device.
The above two-qubit gates are controlled by the state of the

control qubits, which we describe in the following orthonormal
basis: f 00j iC; 11j iC; Ψþj iC; Ψ�j iCg. We refer to this basis, which
mixes computational basis states and the Bell states
Ψ±j iC ¼ ð 01j iC ± 10j iCÞ=

ffiffiffi
2

p
, as the control basis. The full four-

qubit unitary operation of the diamond gate is

U ¼ 00j i 00h jCU00
T þ 11j i 11h jCU11

T þ Ψþj i Ψþh jCUΨþ
T þ Ψ�j i Ψ�h jCUΨ�

T :

(9)

Fig. 1 The diamond gate. a Four-qubit system consisting of two target qubits (T1 and T2) and control qubits (C1 and C2) coupled through
exchange interactions (dashed lines) with the indicated strengths. b Lumped element superconducting circuit diagram of four capacitively
coupled transmons, where each colored subcircuit corresponds to the same-colored qubit in a. c and d Example transformations
implemented by the diamond gate, U, of Eq. (9).
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Cast this way, it is evident that U describes a four-way controlled
operation on the target qubits. If the control qubits are initialized
in one of the control basis states, only the corresponding gate
among (4)–(7) is performed. The control state is unchanged after
the gate operation. Figure 1c and d illustrate the gate operation
on the target state 01j iT in the cases where the control is 00j iC
and Ψþj iC, respectively. However, these gate diagrams only show
the gate operation for these two control states, and in general the
diamond gate performs a unitary operation on any initial four-
qubit state. A more sophisticated decomposition of the full unitary
U is given in Supplementary Fig. 1 in the Supplementary
Information, where we note that the complexity in terms of
number of CNOT gates is 42. Having access to four controlled two-
qubit operations natively is useful for quantum simulation and
may ease quantum gate compilation significantly.
The unitary time-evolution under the Hamiltonian of Eq. (3)

approximately gives rise to U (see “Methods” and the Supple-
mentary Information). Within the first-order Magnus expansion,
the approximation is exact when JC= 0, however a non-zero
coupling between the control qubits is needed in order to initialze
the control Bell states. Such a coupling allows the triplet states
f 00j iC; 11j iC; Ψþj iCg to mix slightly during the gate operation, in
which case the separation of control states in Eq. (9) is no longer
exact. This leads to small gate infidelities of the order (2J/Δ)2= π/
(tgΔ) when then control qubits are initialized in 00j iC or 11j iC, and
twice as large when the control is in Ψþj iC. For typical
superconducting circuit parameter values, like the ones used in
the following section, these infidelities are on the order 10−3 to
10−2. Notice that the infidelity scales inversely with the gate time,
leading to a trade-off between a fast gate and high-fidelity
coherent operations. Since the singlet state Ψ�j iC does not mix
with the triplet states, the idle gate operation is not affected by
the coupling JC, and the gate fidelity is only limited by other
factors, e.g. qubit decoherence.
As mentioned above, the performance of the gate is increased if

JC= 0, however a non-zero direct coupling between the control
qubits is necessary if we wish to prepare the entangled Bell states.
In the following, we will assume a fixed value of JC, although
ideally a tunable coupler48 can be used to turn on the coupling
only during control state preparation. If the control qubits are
detuned from the target qubits, ∣Δ∣ ≫ ∣J∣, we can initialize the
control state without affecting the target qubits. This detuning can
be achieved by flux tunable devices, or by fabricating single-
junction qubits with different frequencies. Thus, ignoring the
oscillating terms of Eq. (3), we have effectively decoupled the
control and target qubits. We note that the effective Hamiltonian
of the control qubits in the rotating frame, JCðσC1

þ σC2
� þ σC1

� σC2þ Þ,
has a zero-energy subspace spanned by 00j iC and 11j iC, and
eigenstates Ψ±j iC of energy ±JC. An energy separation of JC/2π ~
20MHz allows us to initialize the control in Ψ±j iC by driving
energy transitions32,37. To initialize the control in 00j iC or 11j iC, we
can induce Rabi oscillations between these two states by driving
the control qubits similarly to the procedure analyzed in ref. 49.

Extensible quantum computer
The four-qubit quantum interference device can constitute a
building block in an extensible quantum computer by connecting
several copies. One possible architecture is illustrated in Fig. 2a,
where a 16-qubit quantum computer is constructed by connect-
ing four copies of the four-qubit device, for instance through
capacitive couplings. On the plaquettes labeled A the control
qubits are oriented vertically (1, 2, 13, and 14) and the target
qubits horizontally (3, 4, 15, and 16), while the diamond gate
devices on the plaquettes B are rotated by 90°, such that control
and target qubits from different plaquettes are connected. This
design of alternating A and B plaquettes can be extended in a
straight-forward manner in one or two dimensions.

Single-qubit rotations can be implemented via microwave
control lines to each qubit on the chip. In order to address each
qubit individually, we decouple the qubits by detuning them from
each other. Only when we wish to run the diamond gate or
perform two-qubit operations do we tune the appropriate qubits
into resonance.
The quantum algorithm shown in Fig. 2b is a generic algorithm

spreading entanglement in the computer. Supplemented with
single-qubit rotations, it may serve as a variational quantum
eigensolver50. The algorithim can be implemented in the
following way. Initially, the plaquette A qubits are far detuned
from the plaquette B qubits, allowing each four-qubit diamond
gate device to run the unitary gate U of Eq. (9) independently.
After the completion of the gates, we can prevent further
dynamics within each plaquette by switching the controls to the
idle state. Then, by tuning pairs of connected qubits from different
plaquettes into resonance, for instance 4 and 5, we can perform
swap gates or use a suitable microwave driving to perform other
desired two-qubit operations. Finally, by tuning the qubits out of
resonance, and potentially switching certain controls, we are ready
to run the diamond gate again.

Numerical simulations
Although the analytic results suggest a functioning four-qubit
diamond gate, we use numerical simulations to quantify the
performance of the gates for state-of-the-art superconducting
qubit parameters51–53. Decoherence is included via the Lindblad
master equation,

_ρ ¼ �i½H; ρ� þ
X
n

CnρC
y
n �

1
2
ðρCy

nCn þ Cy
nCnρÞ

� �
: (10)

Here ρ is the density matrix, H is the Hamiltonian of Eq. (3), and
the sum is taken over the following eight collapse operators, Cn:ffiffiffi
γ

p
σi
z inducing pure dephasing and

ffiffiffi
γ

p
σi
� inducing qubit

relaxation (photon loss), with i running over all four qubits,
denoting by γ the decoherence rate. We solve the master
equation numerically using the Python toolbox QuTiP54.
As a quality measure of the gate, we consider the average

fidelity55 (or simply ‘fidelity’ in the following),

FðtÞ �
Z

dψ ψh jUy
targetEtð ψj i ψh jÞUtarget ψj i; (11)

Fig. 2 Proposed architecture for an extensible quantum compu-
ter. a Four connected copies of the four-qubit diamond gate device.
Detuning the qubits on the plaquettes A from the qubits on the
plaquettes B allows each four-qubit device to run the diamond gate
independently, while tuning the connecting qubits into resonance
allows swap operations between plaquettes A and B. b A sequence
of diamond gates U of Eq. (9) in each plaquette and two-qubit swaps
between the plaquettes running on the 16-qubit quantum
computer.
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which quantifies how well the quantum map Et approximates the
target unitary gate Utarget over a uniform distribution of input
quantum states. If the diamond gate is run with an arbitrary initial
state, the integral is taken over all possible four-qubit states, and
can be reduced to a sum over a density matrix basis, as shown in
ref. 55. Putting Utarget= U from Eq. (9) and Etðρð0ÞÞ ¼ ρðtÞ found
from solving Eq. (10), the computed fidelity quantifies the overall
performance of the diamond gate with arbitrary initial states. We
denote this fidelity by F. Its maximum value (the gate fidelity)
defines the gate time, which generally matches the predicted
value of Eq. (8) within a few percent. The sources of gate infidelity
are qubit decoherence and state mixing accommodated by a non-
zero JC.
In order to study the performance of the four individual gates of

Eqs. (4)–(7), we initialize the control qubits in
ϕj iC 2 f 00j iC; 11j iC; Ψþj iC; Ψ�j iCg. In this case the target opera-
tion is a single term in Eq. (9), Utarget ¼ ϕj i ϕh jCUϕ

T , and the integral
is taken over all states on the form ϕj iC ψj iT, i.e. only varying the
target qubits’ state, ψj iT. These states span a subspace of the
entire four-qubit Hilbert space characterized by the fixed control
state, however couplings to other control states leads to leakage
out of the subspace, which we take into account with the
appropriate modification of the sum formula in ref. 55. The
resulting fidelity is denoted Fϕ, and the value at the gate time is
denoted the gate fidelity for the associated gate.
Two example parameter sets relevant for superconducting

qubits are shown in Table 1, which also includes the correspond-
ing gates times and gate fidelities (at the simulated gate time). We
use the state-of-the art decoherence rate γ= 0.01 MHz, leading to
coherent qubits on the time-scale of γ−1= 100 μs51. Figure 3
shows the simulated fidelities as functions of time. As expected,
there is a trade-off between a fast gate and high-fidelity
operations. Parameter set 1 operates in 59.3 ns with gate fidelities
~0.99, which decreases to ~0.96 for the very fast 31.5 ns gate of
parameter set 2. The gate infidelities for each controlled gate
follow the expectations discussed in the previous section. In
particular, the idle gate fidelity, FΨ�ðtÞ, is only limited by qubit
decoherence, reducing its value from 1 to 0.9983 and 0.9968,
respectively, during the operation time in the two cases. For the
remaining three controlled gates, a longer gate time can improve
the gate fidelity, with the drawback of increased susceptibility to
qubit decoherence. Ultimately this limits the number of computa-
tions the diamond gate device can run successfully. For the
purpose of demonstrating the model, we will use parameter set 1
in the following, unless otherwise stated.
To probe the sensitivity to the model parameters, we vary each

of Δ, J, and JC. As is evident from Fig. 4a–c, the simulated gate
times follow closely the prediction of Eq. (8). Specifically, the gate
time is tunable through Δ and J. The gate fidelities for the

individually controlled gates and the total diamond gate are
shown in Fig. 4a–f. Except for the phase gate controlled by Ψþj iC,
which is affected most strongly by couplings to other control
states, the fidelities are above 0.99 over a wide range of
parameters. Due to the mathematical equivalence between the
two swapping gates controlled by 00j iC and 11j iC, the gate
fidelities for these operations are very similar. We attribute the
difference to qubit relaxation, which only affects 11j iC and
becomes more pronounced as the gate time increases. The
identity gate controlled by Ψ�j iC is only limited by decoherence,
and its gate fidelity decreases linearly with the gate time.
With a superconducting circuit implementation in mind, we

consider a variety of system infidelites and their impact on the
gate fidelities (see Fig. 5). Most harmful is a direct capacitive
coupling between the target qubits (Fig. 5a), which allows the
target qubits to bypass the control qubits, thereby circumventing
the interference condition set by the control qubits. The gate
fidelities roughly decrease with the square of the cross-coupling
strength JT, leading to noticable gate infidelities even for a
relatively weak coupling. However, as we will show in the next
section, crosstalk should not be suppressed, but rather utilized to
combat another effect appearing in superconducting qubits:
couplings to higher-energy states in the qubits’ spectrum. Figure
5b shows simulation results with random noise on the couplings
between the target and control qubits emulating asymmetries
present in an actual circuit due to fabrication limits. Each data
point in the plot corresponds to a simulation with random
deviations from the noiseless value, J, denoting by δJ the
maximum deviation over the four couplings. The gate perfor-
mance is very robust towards this type of noise.
Bell state generation, which is required for the control states

Ψ±j iC, has been shown with a state infidelity of ~0.00512. We
introduce control state infidelity in the following way. For each
data point in Fig. 5c we contruct a random four-by-four Hermitian
matrix M, from which we construct a unitary matrix V= eiϵM,
where ϵ is a small real parameter. In the simulations, we apply V to
the initial state of the control qubits in order to model imperfect
state preparation. The resulting gate fidelity is shown as a function
of the maximum infidelity among the four control states. The
diamond gate suffers a linear decrease in gate fidelity, but remains
high-performing for realistic control state infidelity.
Qubit decoherence in the form of relaxation and dephasing is

included in the master Eq. (10) with rate γ. In Fig. 5d we see that
the gate fidelity decreases linearly with γ. Even for qubits with γ=
0.05 MHz, i.e. coherent on the time-scale of γ−1= 20 μs, the gate
fidelity is ~0.98. We attribute this robustness to the relatively short
gate time of 59.3 ns.

Table 1. Results from two different parameter sets.

Parameter set 1 Parameter set 2

JC/2π 20MHz 20MHz

J/2π 65MHz 45MHz

Δ/2π 2 GHz 0.5 GHz

γ 0.01MHz 0.01MHz

Predicted tg 59.2 ns 30.9 ns

Simulated tg 59.3 ns 31.5 ns

F00(tg) 0.9943 0.9662

F11(tg) 0.9931 0.9668

FΨþ ðtgÞ 0.9881 0.9348

FΨ� ðtgÞ 0.9968 0.9983

F(tg) 0.9923 0.9637
Fig. 3 Fidelities versus time. Fidelities for the individually
controlled gates are F00, F11, FΨþ , FΨ� ) and the total diamond gate
fidelity is F. Insets show zooms around the gate time. The
parameters used in a are set 1 from Table 1, and in b they are set 2.
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Higher-energy states
In the previous section, we treated a model for four coupled
qubits. In the superconducting circuit implementation of Fig. 1,
these qubits are comprised of the two lowest energy states of the
each transmon, 0j i and 1j i. However, in an actual superconduct-
ing circuit, the qubits may couple to higher-energy states in the
transmon spectrum, which is the spectrum of a slightly
anharmonic oscillator39. In this section, we analyze the effects
from including the second excited state, 2j i, in the spectrum,
thereby turning each qubit into a qutrit.
The full analysis of the circuit of Fig. 1b is given in the

Supplementary Information. The resulting four-qutrit Hamiltonian
is a sum of the non-interacting part

~H0 ¼ � 1
2
ΩTð~σT1z þ ~σT2

z Þ � 1
2
ΩCð~σC1

z þ ~σC2
z Þ; (12)

and the interaction terms

~Hint ¼ JT~σ
T1
y ~σT2

y þ JC~σ
C1
y ~σC2

y þ Jð~σT1
y þ ~σT2

y Þð~σC1
y þ ~σC2

y Þ; (13)

which are analogous to Eqs. (1) and (2). The ‘Pauli z-operator’ on
qutrit j, denoted ~σj , includes 2j ij in such a way that it has an
energy Ωj+ αj above 1j ij , with Ωj and αj the frequency and
anharmonicity, respectively. Typically αj/Ωj ~−0.05, yielding a

small detuning of the second excited state compared to an
equidistant spectrum (i.e. to vanishing anharmonicity). The
operator is given as

~σj
z ¼ 0j i 0h jj � 1j i 1h jj � 3þ 2αj

Ωj

� �
2j i 2h jj ; (14)

The ‘Pauli y-operator’ on qutrit j is

~σj
y ¼ iTj0 1j i 0h jj þ iT j

2 2j i 1h jj þ H:c:; (15)

where T j
0 � 1 and T j

2 �
ffiffiffi
2

p
can be expressed in terms of Ωj and αj

(see the Supplementary Information). Hence, the coupling
between the first and second excited state is as strong as the
coupling between the two lowest (qubit) levels. Due to the small
anharmonicity in transmons, i.e. that the energy separation
between the qubit levels almost equals the separation between
the first and second excited states, couplings that exchange a
single excitation like 11j i ! 02j i are not strongly energetically
suppressed. In fact, this transition is sometimes used for the CZ
gate46. Notice that this lack of suppression holds for transmons in
general, and is not a consequence of the specific model
considered here.
This has two undesired consequences. Firstly, unless

JC=αCj j � 1, it allows the control state 11j iC to mix with 02j iC

Fig. 4 Gate dependence of the model parameters. Simulations varying the model parameters JC, J and Δ, with qubit decoherence of rate γ=
0.01 MHz. While one parameter is varied, the remaining two are fixed at the values marked by the gray vertical lines (parameter set 1 of Table
1). a–c Gate times, also showing the prediction of Eq. (8) as the dashed line. d–f Gate fidelities, i.e. the fidelities at the simulated gate time.

F F F

(a)

(b) (c)

Fig. 5 Gate stability under system infidelities. The gate fidelity is computed under the following system infidelities: a Crosstalk coupling
between the target qubits. b Random asymmetric noise in the couplings between the target and control qubits. c Control state infidelity.
d Qubit decoherence with rate γ.
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and 20j iC, leading to a non-conserved control state during the
gate operation. This can be resolved by redefining the control
state as

~11
�� iC ¼ cos ~θ 11j iC þ sin ~θ

1ffiffiffi
2

p ð 02j iC þ 20j iCÞ; (16)

with the mixing angle ~θ ¼ � 1
2 arctan (2

ffiffiffi
2

p
JCTC

1T
C
2=αC) ~ 0.5, such

that it is an eigenstate of an effective control state Hamiltonian.
This introduces a significant component of ð 02j iC þ 20j iCÞ=

ffiffiffi
2

p
,

which is avoided if JC= 0. Details are found in the Supplementary
Information.
Secondly, excitations to the second excited states allow

unwanted processes which bypass the control. For instance, when
the diamond gate is desired to be idle, leakage across the control
can occur via:

Ψ�j iC 10j iT !
1ffiffiffi
2

p ð 02j iC � 20j iCÞ 00j iT ! Ψ�j iC 01j iT: (17)

Since this is a second-order process in the qutrit model
Hamiltonian, it would not pose a threat to the functionality of
the diamond gate if it only relied on (generally faster) first-order
processes. However, the swap operations of Eqs. (4) and (5) are
also second-order processes, leading to a failure of the idle
diamond gate on the same time-scale as the operation of the
swap gates. Similarly, the control state Ψþj i fails to prevent
excitation leakage across the control, corrupting the operation of
Eq. (6).
However, these undesired processes can be mitigated by taking

advantage of the effects of crosstalk. The circuit analysis in the
Supplementary Information reveals a weak unavoidable crosstalk
coupling of strength JT in the interaction Hamiltonian (13), which
by itself has a significant negative impact on the gate fidelities (cf.
Fig. 5a). This leads directly to leakage across the control through
processes of the type

Ψ�j iC 10j iT ! Ψ�j iC 01j iT: (18)

This process has the same unwanted outcome as the one of Eq.
(17). As we show below, we can therefore restore the gate
functionality by tuning the value of JT such that these two
unwanted leakage processes cancel each other. Analyzing the
problem with second-order perturbation theory in order to
calculate the amplitude of the leaked state (see the Supplemen-
tary Information), we find destructive interference between these
processes when the crosstalk strength takes the optimal value

JoptT ¼ ðJTC2 Þ
2

ΩCþΩTþαCþJCðTC1 Þ
2 þ ðJTC2 Þ

2

ΩC�ΩTþαCþJCðTC1 Þ
2 : (19)

Thus by tuning the crosstalk strength to JT ¼ JoptT , we expect the
fidelity for the target qubit swap 01j iT $ 10j iT to diminish, or
equivalently a vanishing swap rate, when the control state is
Ψ±j iC. Figure 6 shows the swap rate for varying JT, with control
qubits in each of the four control states. We find two distinct zero-
points, one for the data related to the control states 00j iC and
Ψ±j iC at the expected value JoptT (vertical line), and one for ~11

�� iC.
Thus, it is possible to prevent the unwanted swap operation for
the control states Ψ±j iC, but as a consequence also the swap
operation controlled by 00j iC is obstructed. On the other hand,
the swap operation controlled by ~11

�� iC is preserved at JT ¼ JoptT ,
although the gate time is prolonged to around 220 ns. Remark-
ably, for JT/2π ≈−2.5 MHz the situation is reversed. Here, putting
the control in ~11

�� iC prevents swapping, while the three remaining
control states permit it. At each zero-point, the gate time (inverse
swap rate) for the swapping gate(s) is prolonged compared to the
results in the previous section. To reduce the gate time, one
should pick parameters such that the zero-points are further apart,
or such that the inclination of the graphs are steeper. Figure 7
illustrates in more detail the cancellation of unwanted transfer by
crosstalk engineering. Each subfigure shows the swap fidelity for

different initial target qubit states. The control is initialized in the
state indicated above each column. Figure 7a–d (the top row)
show simulations for JT= 0, while the crosstalk has been put to its
optimal value, JT ¼ JoptT , in Fig. 7e–h (the bottom row). As
expected from Fig. 6, the swap 01j iT $ 10j iT (dark lines) occurs
for any control state when there is no crosstalk, but is controlled
uniquely by ~11

�� iC when the crosstalk is at the optimal value. In the
cases of 00j iT and 11j iT, we wish to maintain a unit fidelity across
all control states, i.e. the states should acquire at most a phase.
Tuning the crosstalk to JoptT also improves the gate operation in
this regard.
Engineering crosstalk to mitigate unwanted leakage through

higher-excited states is killing two birds with one stone: Each
process is harmful to the functionality of the diamond gate, but
letting them cancel each other preserves the ability to control the
swap operation. The price is the loss of swap functionality in the
gate controlled by 00j iC, and an increased gate time for the model
parameters considered here. Generally, the phases applied to each
target state will be modified for all four controlled gates, but we
do not pursue an analysis here, as other factors specific to the
implementation will contribute to this as well. Rather, our main
goal was to demonstrate a passive method for dealing with
undesired leakage processes.

DISCUSSION
We have proposed a quantum interference device by coupling
four qubits with exchange interactions. By analyzing the unitary
dynamics of the system, we have shown that it realizes the
diamond gate: a four-way controlled two-qubit gate, with the
ability to run two different entangling swap and phase operations,
a (parity) phase operation, an idling gate with no dynamics, or an
arbitrary superposition of these. We considered an implementa-
tion in superconducting qubits using transmon qubits, and found
that it generally operated fast and with high fidelity using state-of-
the-art model and noise parameters. When taking second excited
states into account, we had to prevent leakage across the control
by engineering crosstalk, demonstrating a general method to
avoid leakage in superconducting qubit systems. The cost of this
was a single redefined control state, one swap gate turning into a
phase gate, altered phases on the gates, and a slower gate for the

Fig. 6 Counteracting excitation swap with crosstalk. Swap rate,
found as the inverse of the smallest time t where the swap fidelity
(probability) j ϕh jC 01h jTe�ið~H0þ~HintÞt 10j iT ϕj iCj2 becomes close to unity,
versus crosstalk strength JT. Data points are shown with the control
state ϕj iC set to each of the displayed states. The parameters used in
the simulation are JC/2π= 20 MHz, J/2π= 65MHz, ΩC/2π= 7 GHz,
ΩT/2π= 9 GHz, αC=−270MHz and αT=−280MHz. The optimal
value of Eq. (19) is marked with a vertical line,
JoptT =2π ¼ �3:66 MHz .
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considered parameters. However, we only consider this analysis a
starting point for an actual implementation, which might also
include active microwave driving to optimize the operations or to
prevent certain transitions. It might also be worthwhile to consider
other types of superconducting qubits with larger anharmonicity,
or entirely different platforms such as lattices of ultracold atoms or
ions, where qubit encoded in hyperfine states or vibrational
modes are far detuned from the rest of the spectrum.
We illustrated how the four-qubit diamond gate device can

constitute an essential building block in an extensible quantum
computer, and proposed a simple scheme where quantum
algorithms are run on the computer by parallel processing on
each four-qubit module interspersed with two-qubit operations
spreading entanglement in the system, and single-qubit opera-
tions. Evidently, this scheme is adaptable to many different
algorithms, and future work will investigate which algorithms are
suitable to be implemented in the diamond-plaquette device.

METHODS
Unitary dynamics in the qubit model
In this section, we show that the Hamiltonian of Eq. (3) realizes the four-
qubit quantum gate of Eq. (9) by analyzing the dynamics within Floquet
theory. Typically in superconducting qubits ∣Δ∣ ≫ ∣J∣, ∣JC∣, so if we think of
the qubit detuning, Δ, as a driving frequency, the system is driven rapidly
compared to the time-scale set by the qubit interaction strengths.
Consequently, on the gate operation time-scale, it is appropriate to
consider the Magnus expansion for the Floquet Hamiltonian to first order
in J/Δ, which can be computed as56

HF ¼ JC ðσC1þ σC2� þ σC1� σC2þ Þ
þ J2

Δ ðσT1� þ σT2� ÞðσT1þ þ σT2þ ÞðσC1z þ σC2z Þ
� J2

Δ ðσC1� þ σC2� ÞðσC1þ þ σC2þ ÞðσT1z þ σT2z Þ
� JCJ

Δ ðσC1þ σC2z þ σC2þ σC1z ÞðσT1� þ σT2� Þ
� JCJ

Δ ðσC1� σC2z þ σC2� σC1z ÞðσT1þ þ σT2þ Þ:

(20)

Within the Floquet formalism e�iHFT takes the system from time zero
through one driving cycle of period T= 2π/∣Δ∣. Successive application n
times yields the time-evolution operator, UðnTÞ ¼ e�iHFnT . Since the gate
time is much larger than one period, we consider t= nT a continuous time
variable, and the continuous time-evolution operator, UðtÞ ¼ e�iHFt .
Suppose we initialized the control qubits in one of the control basis

states, f 00j iC; 11j iC; Ψþj iC; Ψ�j iCg. Typically, one thinks of control qubits,
or their state, as a catalyzer for a given gate operation performed on the
target qubits. The control qubits are allowed to partake in the gate

operation, for instance by facilitating state transfer between target qubits
not directly coupled, as long as the control qubits return to their initial
state after the completion of the gate operation. A priori we cannot
guarantee that this is the case. In fact, we see by application of the Floquet
Hamiltonian HF of Eq. (20) to each control state (producing operators
acting on the target qubits only) that they generally evolve in time:

HF 00j iC ¼ 00j iC 2J2
Δ ðσT1� þ σT2� ÞðσT1þ þ σT2þ Þ � σT1z � σT2z
� 	� Ψþj iC

ffiffi
2

p
JCJ
Δ ðσT1� þ σT2� Þ;

(21)

HF 11j iC ¼ � 11j iC 2J2
Δ ðσT1� þ σT2� ÞðσT1þ þ σT2þ Þ þ Ψþj iC

ffiffi
2

p
JCJ
Δ ðσT1þ þ σT2þ Þ;

(22)

HF Ψ
þj iC ¼ Ψþj iC JC � 2J2

Δ ðσT1z þ σT2z Þ
h i

þ 11j iC
ffiffi
2

p
JCJ
Δ ðσT1� þ σT2� Þ � 00j iC

ffiffi
2

p
JCJ
Δ ðσT1þ þ σT2þ Þ;

(23)

HF Ψ
�j iC ¼ Ψ�j iCð�JCÞ: (24)

We see that HF couples the triplet states 00j iC, 11j iC and Ψþj iC, but that
the singlet state Ψ�j iC is unchanged in time. Notice that all control states
decouples in the special case JC= 0, i.e. when there is no direct coupling
between the control qubits.
In this case, each control state is perfectly preserved under the time-

evolution, and we can simply determine the gate operation on the target
qubits associated with each control state. However, the absence of a direct
coupling between the control qubits makes it difficult to prepare the
entangled Bell states, Ψ±j iC. Ideally, the control–control coupling would be
tunable and only on during control state preparation. On the other hand,
since it does not couple to any of the target qubits, we do not expect the
value of JC to be of fundamental importance to the nature of the gate
operations, which is our main focus here. Assuming JC= 0, the Floquet
Hamiltonian can be cast as

HF ¼ 00j i 00h jCH00
T þ 11j i 11h jCH11

T þ Ψþj i Ψþh jCHΨþ
T þ Ψ�j i Ψ�h jCHΨ�

T ;

(25)

with the following Hamiltonians acting only on the target qubits:

H00
T ¼ 2J2

Δ
ðσT1� þ σT2� ÞðσT1þ þ σT2þ Þ � σT1z � σT2z
� 	

; (26)

H11
T ¼ � 2J2

Δ
ðσT1� þ σT2� ÞðσT1þ þ σT2þ Þ; (27)

HΨþ
T ¼ � 2J2

Δ
ðσT1z þ σT2z Þ; (28)

HΨ�
T ¼ 0: (29)

Fig. 7 Cancallation of unwanted transfer with engineered crosstalk. Fidelity for swapping ψj iT $ ψj i0T for the indicated processes,
computed as j ϕh jC ψh j0Te�ið~H0þ~HintÞt ψj iT ϕj iCj2, with the control state ϕj iC indicated above each column. The parameters used in the simulation
are JC/2π= 20MHz, J/2π= 65MHz, ΩC/2π= 7 GHz, ΩT/2π= 9 GHz, αC=−270 MHz, and αT=−280MHz. a–d No crosstalk, JT= 0. e–h Crosstalk
is set to its optimal value of Eq. (19), JoptT =2π ¼ �3:66 MHz .
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In order to compute the time-evolution operator, UðtÞ ¼ e�iHFt , we notice
that HF is on the form

HF ¼
XN
i¼1

PiHi ; (30)

where Pi ¼ ij i ih j is the projector onto the i’th orthonormal basis state of
the N-dimensional subsystem A, and Hi is a Hamiltonian on a disjoint
subsystem B, such that Hi commute with every Pj. Operators on this form
has the property that the product of any two terms is zero, (PiHi)(PjHj)= 0
for i ≠ j, enabling an algebraic property known as "freshman’s dream”:
ðHFÞn ¼

PN
i¼1 ðPiHiÞn for any integer n > 0. This has the consequence that

the operator exponential can be written as a sum:

e�iHFt ¼
X1
n¼0

ð�itÞn
n!

ðHFÞn ¼ 1� N þ
XN
i¼1

e�iPiHi t : (31)

Since ðPiÞn ¼ Pi for any integer n > 0, we can pull the projector out of each
exponential in the sum:

e�iPiHi t ¼
X1
n¼0

ð�itÞn
n!

ðPiHiÞn ¼ 1� Pi þ Pie�itHi (32)

Finally, utilizing
PN

i¼1 Pi ¼ 1, we find that the time-evolution operator can
be expressed as

UðtÞ ¼ e�iHFt ¼
XN
i¼1

Pie�itHi : (33)

The above decomposition of the time-evolution can used whenever one or
more control qubits (subsystem A) catalyze a unitary gate operation on a
set of target qubits (subsystem B) in the sense that the Hamiltonian does
not mix the chosen control states. In our case, we can easily express the
Hamiltonians (26)–(29) as matrices and find the unitary matrix exponen-
tials. In the computational basis of the target qubits, they are as follows:

U00
T ðtÞ ¼ e�iH00

T t ¼

1 0 0 0

0 1
2 e

�itζ þ 1
2

1
2 e

�itζ � 1
2 0

0 1
2 e

�itζ � 1
2

1
2 e

�itζ þ 1
2 0

0 0 0 e�itζ

0
BBB@

1
CCCA; (34)

U11
T ðtÞ ¼ e�iH11

T t ¼

eitζ 0 0 0

0 1
2 e

itζ þ 1
2

1
2 e

itζ � 1
2 0

0 1
2 e

itζ � 1
2

1
2 e

itζ þ 1
2 0

0 0 0 1

0
BBB@

1
CCCA; (35)

UΨþ
T ðtÞ ¼ e�iHΨþ

T t ¼

eitζ 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e�itζ

0
BBB@

1
CCCA; (36)

UΨ�
T ðtÞ ¼ e�iHΨ�

T t ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA; (37)

with ζ= 4J2/Δ. The time-evolution operator for the four-qubit system is
then

UðtÞ ¼ 00j i 00h jCU00
T ðtÞ þ 11j i 11h jCU11

T ðtÞ þ Ψþj i Ψþh jCUΨþ
T ðtÞ þ Ψ�j i Ψ�h jCUΨ�

T ðtÞ:
(38)

Thus, each of the four unitaries (34)–(37) above is a gate operation
performed on the target qubits, controlled entirely by the four control
states, which are unaltered by the operation. The control states 00j iC and
11j iC induce oscillations between the target qubit states combined with a
phase on either 00j iT or 11j iT, depending on the control state, and Ψþj iC
controls a pure phase operation that distinguishes between the number of
excitations in the target qubits. The singlet control state, Ψ�j iC, on the
other hand, does nothing to the target qubits, and this control state can
therefore be used to turn off the gate between the target qubits. The gate
is fully quantum mechanical, as superpositions of control states will run the
corresponding computations on the target qubits in parallel. The system

comprise a true four-qubit quantum interference device in the form of a
four-way controlled two-qubit gate (the diamond gate).
Of particular interest is the gate operation at the time t= tg≡ π/∣ζ∣,

which results in the operations discussed in the “Results” section. Setting
t= tg in Eq. (38) produces the four-qubit unitary gate U of Eq. (9).
The case of a non-zero JC is treated in the Supplementary Information.

Here we argue that, to a good approximation, the only modification to the
JC= 0 case is the inclusion of the phase factors, e± itgJC , in Eqs. (6) and (7).
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