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dimensional Causal Dynamical Triangulations (CDT). We find that the critical properties

of CDT with toroidal spatial topology are the same as earlier observed in spherical spa-

tial topology where the B − Cb transition was found to be higher-order. This may have
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perspective UV limit of quantum gravity, which potentially can be investigated in the
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1 Introduction

Numerical Monte Carlo simulations applied to lattice field theories became an important

tool of contemporary physics. The famous example is Lattice Quantum Chromodynam-

ics (QCD) which has grown up from its childhood and now goes hand-by-hand with ex-

periments and beyond, e.g. by investigating the very non-trivial QCD phase diagram in

the regime of coupling constants non-tractable by perturbative calculus. Despite many

open questions, QCD has a well defined ultraviolet limit, where it becomes non-interacting

asymptotically free theory and thus the high energy behaviour can be investigated pertur-

batively. The opposite thing happens when one tries to formulate a quantum theory of

gravity (QG) by applying standard quantum field theory techniques to Einstein’s General

Relativity (GR). In that case the perturbative expansion around any fixed classical metric

field fails at high energies due to the perturbative non-renormalizability of such a formula-

tion [1, 2]. However, as conjectured by Steven Weinberg in his seminal paper [3], QG can

be asymptotically safe, i.e. it can admit a well behaved non-perturbative high energy limit

defined in the vicinity of a non-trivial fixed point of the renormalization group flow, where

quantum gravity becomes scale-invariant and thus can be extrapolated to arbitrarily large

energy scale. If the asymptotic safety scenario is valid1 then (in the ultraviolet regime)

QG must be formulated in a background-independent non-perturbative way making lattice

approaches well suited to tackle this problem. In such formulations one discretizes geo-

metric degrees of freedom on the lattice with (4-dimensional) lattice ‘volume’ N4 and with

a minimal (cut-off) spacing a, and in the ultraviolet regime one would like to get rid of

the discretization by taking a continuum limit of a → 0 and N4 → ∞ such that N
1/4
4 · a

is related to some physical length. In order to obtain non-trivial physical observables in

the continuum limit, where a→ 0 and N4 →∞, one would also like to have appropriately

divergent correlation lengths `c ∼ N
1/4
4 . Thus in a lattice approach the continuum limit

1There is growing evidence for the existence of a fixed point suitable for asymptotic safety coming from

functional renormalization group studies [4–9], however a rigorous proof of its existence is still lacking.
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should be associated with a higher order (continuous) phase transition. Therefore studies

of the phase structure and orders of phase transitions are important steps towards defining

an ultraviolet limit in a lattice formulation and thus testing the asymptotic safety scenario

for gravity.

One of the most successful attempts of the lattice formulation of quantum gravity is

that of Causal Dynamical Triangulations (CDT) (for reviews see [10, 11]), in the sense

that it has a rich phase structure, where some of the transitions are higher order, which

potentially can be used to define continuum limit and that it additionally has a well behaved

low energy limit consistent with GR. CDT is based on the path integral formalism and

makes only a few assumptions on the geometry of quantum space-time, namely it requires

that the geometry can be globally foliated into space-like hypersurfaces, each with the

same fixed topology Σ. The model is using the discretization of space-time following the

method proposed by Regge [12]. The three-dimensional spatial states are constructed by

gluing together in all possible ways regular tetrahedra with a common link length as to

form a triangulation of a three-dimensional space with a (closed) topology Σ. The topology

of states is fixed during the evolution of geometry in time, being the origin of the name

causality in the model. To join states at different times t we need two types of 4-dimensional

simplices. Tetrahedra become bases of 4-dimensional simplices {4, 1} (and {1, 4}) with four

vertices at a time layer t and one at t+ 1 (resp. t− 1). In our notation the simplex {i, j}
has i vertices at a time t and j vertices at a time t + 1. The time links are assumed to

have a common link length at which may be different than as. To complete the manifold

structure two additional simplex structures are necessary. These are {3, 2} and {2, 3}
simplices. Pairs of simplices share a common three-dimensional face (tetrahedron). The

construction works both for systems with Lorentzian signature and, after Wick rotation,

for systems with Euclidean signature. Each space-time configuration can be interpreted

as Lorentzian or Euclidean. The possibility of performing Wick rotation is crucial if we

want to use numerical methods to analyze the properties of the model. In the following, we

assume the Euclidean formulation is used. The discretization described above means that

the four-dimensional volume of all {i, j} simplices depends only on the type of a simplex.

Similarly other geometric properties, like the angles, are universal for all simplices of a

particular type.

The studied object is the Feynman amplitude Z, which is expressed as a weighted sum

over manifolds T joining the initial and final geometric states separated by time T . The

weight is assumed to be expressed as a discretized version of the Hilbert-Einstein action

SEH(T )

Z =
∑
T

1

C(T )
e−SEH , (1.1)

where C(T ) is the symmetry factor of a graph representing the manifold. In practice the

choice of the initial and final states is replaced by assuming the system to be periodic with

the period T . The discretized version of the Hilbert-Einstein action takes the form [13]

SEH = − (κ0 + 6∆)N0 + κ4 (N4,1 +N3,2) + ∆N4,1, (1.2)

– 2 –
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Figure 1. The phase structure of 4-dimensional CDT.

where Ni,j denotes the number of 4-dimensional simplicial building blocks with i vertices

on hypersurface t and j vertices on hypersurface t ± 1, and N0 is the number of vertices

in the triangulation. κ0, ∆ and κ4 are bare coupling constants. κ0 and κ4 are related to

Newton’s constant and the cosmological constant, respectively, and ∆ depends on the ratio

of the length of space-like and time-like links in the lattice. In the Monte Carlo simulations

of CDT the parameter κ4, which is proportional to the cosmological constant, is tuned

such that one can take infinite-volume limit. As will be explained later, in numerical

simulations we perform a series of measurements for systems with increasing (fixed) volume

N4,1 and try to determine the limiting behaviour for N4,1 → ∞. In the consequence the

phase diagram presented in figure 1 depends only on two bare couplings κ0 and ∆. It

is remarkable that such a simple model has a rich phase structure with four phases with

very different physical properties. The analysis of the phase structure and, in particular,

the order of phase transitions is fundamental to relate the model to a possible theory of

quantum gravity.

2 Phase transitions in MC simulations of lattice field theories

According to Ehrenfest’s classification, the order of a phase transition depends on the

behaviour of the thermodynamic free energy. If all first n − 1 order derivatives of the

free energy are continuous functions of some thermodynamic variable, e.g. the coupling

constant of the lattice theory, and the n-th order derivative exhibits a discontinuity at

the transition point then the transition is the n-th order phase transition. Here we are

especially interested to distinguish between the first- and the higher-order phase transitions,

as the continuous limit of the lattice field theory should be associated with the latter type.

The derivatives of free energy are related to order parameters, which capture differ-

ences of thermodynamic properties of the system in two different phases separated by the

transition point. For a first-order transition one should observe a discontinuity of the

order parameter at the transition point and for the higher-order transition the order pa-

rameter should be continuous but its derivatives, e.g. its susceptibility, should diverge.

Unfortunately measuring the (dis-)continuity of the (derivatives) of an order parameter in

– 3 –
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numerical simulations is a tedious task. Actually, in numerical Monte Carlo simulations,

which are always performed for a finite lattice size N4, one does not even observe phase

transitions per se. The finite lattice size and the finite lattice spacing make all thermody-

namic functions and their derivatives finite, even though they can become arbitrarily large

for large lattice sizes. One should therefore carefully analyze finite (lattice) size effects and,

if possible, take the infinite (lattice) volume limit N4 →∞.

As phase transitions are usually related to breaking some symmetries of the studied

lattice field theory, one can define order parameter(s) OP which capture these symmetry

differences between various phases of the theory in question. One then usually performs

numerical Monte Carlo (MC) simulations for some fixed lattice volume N4 in many points

of the theory parameter space (see e.g. the CDT phase diagram in figure 1) to find regions

where the order parameter rapidly changes, see e.g. figure 4 where we show the mean value

〈OP〉 of the four order parameters (for their definitions see equation (4.2)) used in CDT

phase transition studies measured in the B −Cb transition region. The precise position of

the phase transition is signaled by a peak of the susceptibility of an order parameter

χOP ≡ 〈OP2〉 − 〈OP〉2 (2.1)

related to its first-order derivative with respect to some thermodynamic variable, see e.g.

figure 5. For a finite lattice volume N4 one can only determine a position of the (volume

dependent) pseudo-critical point. Positions of such points may in general depend on the

order parameter or the method used. Only in N4 → ∞ limit they must coincide. Let

∆c(N4) be the pseudo-critical value of the thermodynamic variable ∆, e.g. the coupling

constant, measured for a given phase transition for the lattice volume N4. The typical

(large) volume dependence is

∆c(N4) = ∆c(∞)− C

N
1/ν
4

, (2.2)

where the critical exponent ν is one for a first-order transition and larger than one for a

higher-order transition. Thus by making a series of measurements of ∆c(N4) for differ-

ent lattice volumes N4 one can establish a value of the critical exponent ν and in effect

determine the order of the phase transition.

Another way of distinguishing between the first- and the higher-order phase transitions

in numerical Monte Carlo studies is to analyze the behaviour of the order parameter(s)

measured precisely at (or in practice as close as possible to) the transition point. For a

first-order transition the discontinuity of an order parameter can appear in its MC history

as jumps between two different states. In such a case, the histogram of the order parameter

measured at the pseudo-critical point should show two separate peaks centered around the

values generic for the two different phases. Here one should also carefully analyze finite

size effects related to the finite lattice volume N4 fixed in the numerical studies. The

separation of the peaks in the MC history histogram can either increase or decrease with

the lattice volume which can imply the first- or the higher-order transition, respectively.

If the separation of the states, generic for the first-order transition, is large enough one

– 4 –
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Figure 2. Thermalization check of Monte Carlo data series. The plot shows the OP1 order

parameter (for definition see equation (4.2)) measured in two independent MC simulations of CDT

with toroidal spatial topology with exactly the same parameters, i.e. N4,1 = 300k, T = 4, κ0 = 2.2,

∆ = 0.048. One simulation was initiated with a configuration from phase B (blue line) and the

other one started from a configuration from phase Cb (orange line). Both data series statistically

agree from ca 40000 sweeps (1 sweep = 107 attempted MC moves). Data from earlier MC time

history, called the thermalization period, are excluded from final measurements.

typically observes a hysteresis at the transition region. In order to check that, one can run

two separate series of Monte Carlo simulations, one initiated with configurations generic

for one phase and the other one initiated with configurations generic for the other phase.

If hysteresis is present then one can observe a (statistically) different behaviour of the two

series in the transition region, e.g. the pseudo-critical points measured in the two different

series could be shifted versus each other. If hysteresis is absent the results of the two series

should (statistically) agree. Running two independent series initiated with different staring

configurations is also a good way of checking thermalization of the Monte Carlo data, i.e.

checking if the MC simulation has run for long enough to reach the proper statistical

equilibrium and thus if measurement data can be collected, see e.g. figure 2.

Another quantity of interest is the Binder cumulant2

BOP ≡
1

3

(
1− 〈OP4〉
〈OP2〉2

)
= −1

3

〈(OP2)2〉 − 〈OP2〉2

〈OP2〉2
, (2.3)

which is always non-positive because 〈(OP2)2〉 − 〈OP2〉2 ≥ 0, and it reaches a minimum

at the pseudo-critical point ∆c(N4), because there fluctuations are maximal. In the nu-

merical MC simulations one can measure the (volume dependent) value of the Binder

2Note that here we use a definition of the Binder cumulant which is shifted (by a −2/3 constant) versus

the original Binder’s formulation [14–16]: Bx = 1− 1
3

〈x4〉
〈x2〉2 . The definition (2.3) was used in previous CDT

phase transition studies [17–19] and thus we keep it in order to ease comparison with these results. The

virtue of using our definition is that, as explained in the text, the deviation of (critical) BOP from zero with

rising lattice volume may signal a first order transition, while the convergence to zero is characteristic of

a higher order transition. One could as well use the original Binder’s definition and look at the deviation

from 2/3.

– 5 –
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OBSERVABLE First-order transition Higher-order transition

Critical exponent ν in ν ν

scaling of ∆c(N4), eq. (2.2) = 1 > 1

OP histograms measured at double peaks single peak or

pseudo-critical points ∆c(N4) peak separation ↑ with N4 →∞ peak separation ↓ with N4 →∞
Hysteresis of MC data near YES NO

pseudo-critical points ∆c(N4) hysteresis ↑ with N4 →∞ or hysteresis ↓ with N4 →∞
Binder cumulant (2.3) Bmin

OP (N4 →∞) Bmin
OP (N4 →∞)

minima for N4 →∞ < 0 = 0

Table 1. Characteristics of the first- and the higher-order phase transitions in MC studies.

cumulant minimum

Bmin
OP (N4) = BOP(∆c(N4)) (2.4)

for different (fixed) lattice sizes N4 and then analyze its behaviour in the large volume limit

N4 →∞. In the case of a higher-order phase transition the probability distribution of the

order parameter OP approaches a Dirac delta around 〈OP〉 in the infinite volume limit. And

then Bmin
OP (∞) should equal 0. In the case of the first-order transition the distribution of the

parameter OP is a sum of two distributions centered at expectation values characteristic

for the two different phases. In the infinite volume limit, when these distributions approach

Dirac delta functions, the minimum of the Binder cumulant becomes:

Bmin
OP (∞) = −〈OPB〉2 + 〈OPCb

〉2

12〈OPB〉2〈OPCb
〉2

(2.5)

where 〈OPB〉 and 〈OPCb
〉 are expectation values of the observable OP at two different

phases, say “B” and “Cb”, and the relative strength of Dirac delta functions is assumed to

be 〈OPB〉2
〈OPB〉2+〈OPCb

〉2 and
〈OPCb

〉2

〈OPB〉2+〈OPCb
〉2 , respectively.

In table 1 we summarize methods used in numerical MC simulations of lattice field

theories to distinguish between the first- and the higher-order phase transitions. We will

then apply these methods in section 4 to analyze the B − Cb transition in CDT with the

toroidal topology of spatial slices.

3 The properties of the bifurcation phase Cb

The existence of the bifurcation phase in the CDT model with a spherical spatial topology

was discovered relatively late [20–22]. The reason why in the early studies only three phases

were discussed was that the basic observable used in these approaches was the (average)

spatial volume profile of configurations. A typical setup for numerical experiments was to

use systems periodic in time, with a period T usually in the range 40–80. Using the spatial

volume observable, the three phases, A, B and C, were characterized by completely different

qualitative behavior. The phase A was characterized by large fluctuations of the spatial

volume in the neighboring time slices. The observed average volume distribution in time

corresponded to the unbroken symmetry of the time translations. In the phase B almost all

– 6 –
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spatial volume (except for the stalk, necessary to satisfy the periodic boundary conditions)

was concentrated at a single time slice. This meant that for typical states in this phase the

symmetry of the time translations was fully broken. The physically most interesting was

the phase C, where the volume profile contained the blob and the stalk, again meaning

that for a typical configuration the symmetry of the time translations was broken. Average

volume distribution in the blob and its fluctuations could be very accurately explained using

the effective mini-superspace model for the isotropic four-dimensional Euclidean space-

time [23–25]. Most results were obtained for a particular point in the coupling constant

space with κ0 = 2.2 and ∆ = 0.6, where it was shown that volume distribution scaled with

the total N4,1 lattice volume in a way consistent with the Hausdorff dimension dH = 4.

Similar measurements performed for decreasing values of ∆ showed that, although

qualitatively the volume profile still contained a blob and the stalk, the scaling properties

did not follow those determined in the de Sitter phase C. It was observed that the scaling

was consistent with that predicted for systems with the Hausdorff dimension dH =∞. The

name bifurcation phase Cb appeared to describe the additional property observed in the

volume profile: a different behavior in the even and odd time slices when the time period

T was sufficiently small [20]. It was soon realized that the reason for the observed behavior

came from the breaking of the isotropy of the spatial volume distribution in the new phase.

For the time slices separated by two units in time, vertices with very high coordination

numbers appeared, leading to a formation of highly nontrivial geometric objects, forming

a chain in the time direction. A physical interpretation of these objects was conjectured to

be a result of a local signature change from Euclidean to Lorentzian [21], producing objects

with some qualitative similarity to a black hole or rather a series of black points. A detailed

description of the microscopic mechanism producing such effects will be the subject of a

separate paper.

As can be seen in figure 1, for decreasing values of ∆ and a fixed value of κ0, one

observes a phase transition between the Cb and B phases. The properties of this phase

transition were very accurately measured in the case of a spherical spatial topology [17,

18, 22], although originally the phase Cb was interpreted as being a part of the de Sitter

phase C. Results indicated that the phase transition was higher order, a very important

property from a theoretical point of view, as explained earlier. The purpose of the present

analysis is to check if the position and properties of the phase transition remain the same

for systems with the spatial topology Σ of a sphere S3 and of a three-torus T 3.

The first question to be asked is: are the qualitative properties in the Cb phase similar

or different when we consider systems with a different spatial topology. Again we may look

at the simplest object, a volume profile for systems with the periodicity T of the same

order as the one used in the spherical case. This is the observable which was found to

behave differently in the C phase. The observed volume profile, in this case, was found

to be flat rather than containing a blob [26, 27]. The reason of such a behavior could be

explained using a mini-superspace spatially isotropic model for a system with the spatial

topology of a three-torus. The averaged volume profile is flat since in the toroidal case the

time translation symmetry remains unbroken [26, 27].

Investigations show that this is not the case in the bifurcation phase Cb. The volume

– 7 –
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Figure 3. The (rescaled) average spatial volume profiles 〈V3(t)〉 observed in the bifurcation phase

Cb in the spherical (left plot) and the toroidal (right plot) CDT. In both plots the spatial volume

profiles were presented with respect to the centre of volume, set at t = 0, and shifted by a (constant

V 0
3 ) volume measured in the stalk range (|t| >∼ 10), V 0

3 being different for each volume profile (in

general V 0
3 is bigger in the toroidal CDT where discretization effects are larger). Data measured

for various total N4,1 lattice volumes and different T were rescaled by V4 =
∑

t(〈V3(t)〉 − V 0
3 ), i.e.

in agreement with the Hausdorff dimension dH =∞.

profile observed for the point in the coupling constant space, typical for the bifurcation

phase (κ0 = 2.0 and ∆ = 0.2) shows the appearance of a blob and the stalk, see figure 3,

the same way as it was observed in the spherical case. Also the scaling of the volume profile

with the total N4,1 lattice volume is consistent with the Hausdorff dimension dH =∞, the

same as in the spherical CDT. The analysis of the geometric properties of configurations

in the bifurcation phase Cb shows that also from a microscopic point of view the toroidal

and spherical cases are very similar. In both topologies, we observe the high-order vertices,

separated in time by two steps. The shape of the blob observed for periodicity T large

enough (T ≥ 20) again scales consistently with the infinite Hausdorff dimension. The

difference is observed in the stalk, which has a much larger volume for a torus than that

for a sphere. This is well understood and results from the fact that a minimal 3D spatial

configuration depends strongly on the topology (see [26]).

As a conclusion, one may expect the critical properties of the phase transition between

the Cb and B phases to be very similar in both topologically different realizations of the

model. Below we show that this is indeed the case. The measurement of the critical

behavior on the boundary between Cb and C phases may, on the other hand, be different,

or at least difficult to be determined numerically.

4 The B − Cb phase transition in the toroidal CDT

Below, we present the results of the B − Cb phase transition study in CDT with the

toroidal spatial topology. The B−Cb transition was earlier studied in the spherical spatial

topology [17, 18, 22] where it was classified to be the higher order transition. As explained

in section 2 in order to investigate the phase transition one has to make a series of Monte

– 8 –
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Carlo simulations for various points in the CDT (κ0,∆) parameter space,3 around the

phase transition point. In this study all measurements were taken for one fixed value of

κ0 = 2.2 and for a sequence of ∆ values.4 In each simulation the N4,1 lattice volume of the

system (i.e. the total number of {4, 1} and {1, 4} simplices) is fixed or, more precisely, it

fluctuates around the target value N̄4,1. The lattice volume is controlled by a volume-fixing

potential

δV = ε(N4,1 − N̄4,1)
2 (4.1)

added to the bare Einstein-Hilbert-Regge action of CDT (1.2) such that the volume is

sharply peaked around a chosen value of N̄4,1, with a well-defined amplitude of fluctuations

∝ 1/ε. In the CDT Monte Carlo simulations one also has to set the length of the (periodic)

time axis, i.e. the number of (integer) time slices T . In our case the number of time slices was

equal T = 4, the numerical constant governing the magnitude of volume fluctuations was

fixed at ε = 0.00002 and measurements were performed every 107 attempted Monte Carlo

moves (such that the measured N4,1 volume could differ from the target N̄4,1 volume).5

In our analysis we will focus on the behaviour of four order parameters which have

previously been successfully used in phase transition studies both in the spherical [18, 28, 29]

and the toroidal [19, 30, 31] CDT,6

OP1 = N0/N4,1, OP2 = N3,2/N4,1,

OP3 =
∑
t

(V3(t+ 1)− V3(t))2, OP4 = max
v
O(v),

(4.2)

where V3(t) is the spatial volume7 in the time slice t and O(v) is the vertex coordination

number, i.e. the number of simplices sharing a given vertex v. The behaviour of the order

parameters in all CDT phases has been summarized in table 2. Specifically when changing

from the phase B to the phase Cb the OP1, OP2 and OP4 increase in value while the

OP3 decreases, see figure 4. The MC simulations were performed for nine different (fixed)

lattice volumes, i.e. for N̄4,1 = 40k, 60k, 80k, 100k, 120k, 140k, 160k, 300k, 400k. For each

lattice volume N̄4,1 the approximate location of the B − Cb phase transition point was

found and then a series of precise measurement was performed for ∆ in the range around

the expected critical value ∆c with a resolution of 0.001. Each measurement series was

performed twice, each time for a different initial triangulation: one from phase B and one

from phase Cb, and the two data series were compared in order to check thermalization

3In each Monte Carlo simulations the κ4 is fine-tuned to the critical value, which depends on κ0 and ∆

and also on the lattice volume N4,1.
4The same κ0 value was earlier used in the B − Cb transition studies in the spherical CDT.
5In principle MC simulation results could depend on the set of parameters used, such as the volume

fixing method (one could e.g. fix the total N4 volume instead of the N4,1 volume) or the number of time

slices T but as advocated in [19] the order of CDT phase transitions does not depend on that.
6Here we use a slightly different definition of OP1 than in previous CDT phase transition studies, where

it was: OP1 ≡ N0/N4. Current definition is more natural when N4,1 volume is fixed (see equation (4.1))

which was the case in all MC simulations described herein.
7To ensure consistency with our earlier publications we define V3(t) as twice the number of spatial

tetrahedra with the integer time coordinate t.
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Phase A Phase B Phase C Phase Cb

OP1 large small medium medium

OP2 small small large large

OP3 medium large small medium

OP4 small large small large

Table 2. Order parameters used in CDT phase transition studies.

and possible hysteresis, see e.g. figure 2. For each lattice volume N̄4,1 and each of the two

measurement series (s = B,Cb) and each of the four order parameters OPi (i = 1, 2, 3, 4) the

precise position of the (volume dependent) pseudo-critical point ∆c
i,s(N4,1) was established

based on the peak of the OPi,s susceptibility χOPi,s , see figure 5 where we present the results

of measurements for the lattice volume N̄4,1 = 100k. The values of ∆c
i,s(N4,1) measured for

different OPi and in the two data series in general coincide up to the used ∆ resolution. If

the results for various OPi or for various data series are different, usually shifted not more

than by the ∆ difference of 0.001, we simply take the arithmetic mean

∆c(N4,1) =
1

8

∑
s∈{B,Cb}

4∑
i=1

∆c
i,s(N4,1) (4.3)

and assign a correspondingly larger measurement error, e.g. for the lattice volume N̄4,1 =

100k one has ∆c(N4,1 = 100k) = 0.0376± 0.0016.

Then we fit the finite size scaling relation (2.2) to the measured ∆c(N4,1) values. The

best fit of the true (infinite volume) critical point is ∆c(∞) = 0.073± 0.004, and the best

fit of the critical scaling exponent is ν = 2.7± 0.4 which supports the higher-order nature

of the B−Cb phase transition, see also figure 6 where we plot the measured data together

with the best fit of the scaling relation (2.2) and compare it to the fit with a forced value

of ν = 1 (typical for a first-order transition) showing that the quality of the latter fit

is much worse. The measured values of the true critical point and the critical exponent

also agree with ∆c(∞) = 0.077 ± 0.004 and ν = 2.51 ± 0.03 measured in CDT with the

spherical spatial topology [18], giving strong evidence that the results are independent of

the topology chosen (at least for the toroidal and the spherical one).

In order to corroborate this result, we have performed the detailed Monte Carlo history

analysis of all order parameters at (and in the vicinity) of the measured pseudo-critical

points, see figure 7 where we plot the MC history histograms of the OP1 measured for

the example N4,1 = 100k volume and for ∆ = 0.037 (peak of χOP1,B
) and ∆ = 0.038

(peak of χOP1,Cb
). In none of the cases have we observed the double peaks in the measured

histograms nor the hysteresis of the measured data series. These results support the higher-

order B − Cb transition.

Finally, we have analyzed the behaviour of the Binder cumulants (2.3) in search of

minima, see figure 8 where we plot data measured for N4,1 = 100k. The value of pseudo-

critical ∆̃c
i,s(N4,1) defined by the minimum of the Binder cumulants BOPi,s in general

coincides with the ∆c
i,s(N4,1) value defined by the maximum of susceptibility χOPi,s , the
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Figure 4. Mean values of the four order parameters (4.2) 〈OP1〉, . . . , 〈OP4〉 as a function of ∆ in

the B−Cb phase transition region in CDT with toroidal spatial topology for fixed κ0 = 2.2 and the

lattice volume N4,1 = 100k. Blue data points are for the MC series started from a triangulation in

phase B while orange data points were started from a triangulation in phase Cb. Error bars were

estimated using a single-elimination (binned) jackknife procedure, where the bin sizes were selected

in such a way that the statistical errors are maximized.
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Figure 5. Susceptibilities (2.1) of the four order parameters (4.2) χOP1 , . . . , χOP4 as a function of

∆ in the B−Cb phase transition region in CDT with toroidal spatial topology for fixed κ0 = 2.2 and

the lattice volume N4,1 = 100k. Blue data points are for the MC series started from a triangulation

in phase B while orange data points were started from a triangulation in phase Cb. Error bars were

estimated using a single-elimination (binned) jackknife procedure, where the bin sizes were selected

in such a way that the statistical errors are maximized.
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spatial topology and for fixed κ0 = 2.2 together with the fit of the finite size scaling relation (2.2)

with critical exponent ν = 2.7 (orange solid line) and the same fit with a forced value of ν = 1 (blue

dashed line).

Figure 7. Histograms of the MC history of the OP1 order parameter (4.2) measured in CDT with

toroidal spatial topology for fixed κ0 = 2.2 and the lattice volume N4,1 = 100k. The left plot is

for data series started from configuration in phase B and ∆ = 0.037 (i.e. the peak of susceptibility

χOP1
measured for this data series, see figure 5) while the right plot is for data series initiated in

phase Cb and ∆ = 0.038 (peak of χOP1 for this data series).

possible shift is usually up to ∆ difference of 0.001. In figure 9 we plot the measured values

of Bmin
OPi,s

(N4,1) ≡ BOPi,s(∆̃
c
i,s(N4,1)) as the function of the lattice volume N4,1.

8 All Binder

cumulants measured for OP1,. . . , OP4 visibly grow towards zero when N4,1 is increased,

which again favours the higher-order nature of the B − Cb transition.

5 Summary and conclusions

Applying phase transition analysis methods described in section 2 to the B−CB transition

in CDT with the toroidal spatial topology we have shown that the transition is most likely

the higher-order phase transition. This result is supported both by the finite size scaling

analysis of equation (2.2) showing the best fit scaling exponent ν = 2.7 > 1, by the large

8In the plot we skip data measured for N4,1 = 400k which can be not accurate enough as these systems

did not thermalize completely resulting in large measurements errors.
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Figure 8. Binder cumulants (2.3) of the four order parameters (4.2) BOP1 , . . . , BOP4 as a function

of ∆ in the B − Cb phase transition region in CDT with toroidal spatial topology for fixed κ0 =

2.2 and the lattice volume N4,1 = 100k. Blue data points are for the MC series started from a

triangulation in phase B while orange data points were started from a triangulation in phase Cb.

Error bars were estimated using a single-elimination (binned) jackknife procedure, where the bin

sizes were selected in such a way that the statistical errors are maximized.
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1, . . . , 4) in CDT with toroidal spatial topology and for fixed κ0 = 2.2. Blue data points are for the

MC series started from a triangulation in phase B while orange data points were started from a

triangulation in phase Cb. Error bars were estimated using a single-elimination (binned) jackknife

procedure, where the bin sizes were selected in such a way that the statistical errors are maximized.

– 13 –



J
H
E
P
0
5
(
2
0
2
0
)
0
3
0

0.1 0.2 0.3 0.4
Δ

0.2

0.4

0.6

0.8

1.0

〈OP〉

OP1

OP2

OP3

OP4

Figure 10. Rescaled order parameters 〈OP1〉, . . . , 〈OP4〉 in CDT with the toroidal spatial topology

measured for the (target) lattice volume N̄4,1 = 120k and T = 4 time slices. Data were measured

for many different starting triangulations for each ∆ (κ0 = 2.0 is kept fixed), the number of starting

configurations being different for various ∆. Each data point denotes 〈OPi〉 (i = 1, 2, 3, 4) measured

from last 100k sweeps (1 sweep = 107 attempted MC moves), data from initial thermalization

period were skipped. Shaded regions between the dashed lines denote the range of the measured

data. Hysteresis is clearly visible for ∆ ≥ 0.38, especially for the OP4 parameter which is the

most sensitive to the C −Cb transition. This is not the case for the higher-order B −Cb transition

(described herein) observed around ∆ ≈ 0.05.

volume behaviour of the Binder cumulant minima (2.4): Bmin
OPi

(N4,1 → ∞) → 0 and by

the lack of hysteresis/two-state jumping of the order parameters measured at the (pseudo)

critical points.

The above result and also numerical values of the critical scaling exponent ν = 2.7±0.4

and the true critical point ∆c(∞) = 0.073 ± 0.004 are also consistent with the B − Cb
transition measured in CDT with the spherical spatial topology for the same fixed value of

the κ0 = 2.2 parameter, where ∆c(∞) = 0.077±0.004 and ν = 2.51±0.03, respectively [18].

Thus the B−Cb transition properties are the same in both spatial topologies. This is also

the case for the A − C transition which was found to be the first-order phase transition

in both topologies — the detailed analysis of the A − C transition in the spherical and

the toroidal CDT for various Monte Carlo simulations’ parameters (lattice volume fixing

methods and lengths of the (integer) time period T ) can be found in [19]. One can therefore

formulate a conjecture that CDT results including the phase structure and the order of

phase transitions are independent of the spatial topology choice, which is a parameter put

in “by hand”.

The question mark remains for the C−Cb transition which was found to be the higher-

order phase transition in the spherical CDT [28, 29]9 and has not been yet investigated in

detail in the toroidal CDT. The reason is that in the toroidal CDT case one observes a

very strong hysteresis in the C −Cb transition region10 (see figure 10) and therefore one is

9Recent studies based on spectral properties of three-dimensional time slices in the spherical CDT [32, 33]

also indicate that the C − Cb transition is most likely the higher-order phase transition.
10The hysteresis is observed for sufficiently large (target) lattice volumes N̄4,1 such that the the three-

volume of each (integer) time slice ∼ N̄4,1/T is big enough to allow for creation of high-order vertices, for

small N̄4,1 the bifurcation phase is not observed which is a finite-volume/discretization artifact.

– 14 –



J
H
E
P
0
5
(
2
0
2
0
)
0
3
0

not able to perform precise MC measurements which would enable one to make finite size

scaling analysis as it was explained in section 2. The very strong hysteresis would suggest

that the C − Cb transition is most likely the first-order transition in the toroidal CDT,

i.e. the order of the transition would change due to the different spatial topology. But

this can be as well an algorithmic issue of the MC code used in the CDT simulations and

more advanced methods should be used in order to resolve this problem.11 In the toroidal

CDT one was also able to make MC simulations in the most interesting region of the CDT

parameter space, namely in the vicinity of the two “triple” points where the A − B − C
and the B − C − Cb phases meet (see the CDT phase diagram in figure 1), which was not

possible in the spherical CDT where MC simulations got effectively “frozen” in this region

of the phase diagram. As a result in the toroidal CDT one observes the direct B − C

transition which was classified to be the first-order transition, albeit with some atypical

properties suggesting a possible higher-order transition [31]. Summing up, we have shown

that the B − Cb transition is the higher order transition which most likely makes the

B − C − Cb “triple” point the higher order transition point even though the B − C and

the C − Cb transitions are possibly the first-order transitions. The above “triple” point is

thus a natural candidate for an UV fixed point for QG [34, 35].
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