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Regulators of H3K4 methylation mutated in neurodevelopmental
disorders control axon guidance in Caenorhabditis elegans

Steffen Abay-Ngrgaard, Benedetta Attianese, Laura Boreggio and Anna Elisabetta Salcini*

ABSTRACT

Post-translational histone modifications regulate chromatin compaction
and gene expression to control many aspects of development.
Mutations in genes encoding regulators of H3K4 methylation are
causally associated with neurodevelopmental disorders characterized
by intellectual disability and deficits in motor functions. However, it
remains unclear how H3K4 methylation influences nervous system
development and contributes to the aetiology of disease. Here, we
show that the catalytic activity of set-2, the Caenorhabditis elegans
homologue of the H3K4 methyltransferase KMT2F/G (SETD1A/B)
genes, controls embryonic transcription of neuronal genes and is
required for establishing proper axon guidance, and for neuronal
functions related to locomotion and learming. Moreover, we uncover a
striking correlation between components of the H3K4 regulatory
machinery mutated in neurodevelopmental disorders and the
process of axon guidance in C. elegans. Thus, our study supports
an epigenetic-based model for the aetiology of neurodevelopmental
disorders, based on an aberrant axon guidance process originating
from deregulated H3K4 methylation.

KEY WORDS: Epigenetics, H3K4 methylation, Neuronal
development, Axon guidance, Neurodevelopmental disease,
C. elegans

INTRODUCTION
The development of the nervous system requires the coordination of
several events, including neuronal progenitor self-renewal, cell
migration and differentiation along different lineages, directional
neurite outgrowth, and synapse formation. During each step, tight
transcriptional control of neurodevelopmental genes is crucial, with
chromatin factors playing a major regulatory function by controlling
chromatin accessibility (Iwase and Martin, 2018). The contribution
of chromatin factors to synaptic plasticity, learning and memory
testifies to the broad role of epigenetic mechanisms in the
formation and functionality of the nervous system (Ma et al.,
2010; Guan et al., 2015; Yao et al., 2016; Kim and Kaang, 2017;
Gallegos et al., 2018).

The relevance of chromatin factors in nervous system development
is highlighted when considering neurodevelopmental disorders,
which are conditions characterized by intellectual disability in
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which social/motor and learning skills are variably affected (De
Rubeis et al., 2014; LaSalle et al., 2013; Pinto et al., 2014; Ronan
et al., 2013; Iwase et al., 2017; Gabriele et al., 2018). Advances in
next-generation sequencing have allowed a thorough analysis of
individuals affected by neurodevelopmental disorders, generating
valuable insights for inferring the molecular basis of these diseases.
Strikingly, chromatin regulators have emerged as the second most-
associated category, outside of genes directly involved in synaptic
function (De Rubeis et al., 2014; LaSalle et al., 2013; Pinto et al.,
2014; Ronan et al., 2013; Iwase et al., 2017; Gabriele et al., 2018). In
particular, regulators of histone 3 lysine 4 (H3K4) methylation are
well represented among mutated chromatin factors (Vallianatos and
Iwase, 2015; Shen et al., 2014). The levels of H3K4 methylation are
dynamically regulated by the action of lysine methyltransferases
(KMTs), the majority of which belong to the KMT2 family
(KMT2A-D or MLL1-4, and KMT2F/G or SETDI1A/B), and
lysine demethylases (KDMs) of the KDM1 and KDMS5 families
(Pedersen and Helin, 2010). KMT2 members are the catalytic
subunits of COMPASS-like complexes (complex of proteins
associated with Set-1) that include WDRS5, RBBP5, ASH2L and
DPY30 as core components, and are required for optimal catalytic
activity of each complex (Qu et al., 2018; Li et al., 2016).

Mutations in KMT2 members have been identified in cases of
Wiedemann—Steine syndrome (Sun et al., 2017; Jones et al., 2012),
Kleefstra syndrome (Kleefstra et al., 2012) and Kabuki syndrome (Ng
et al.,, 2010), and are associated with schizophrenia, autism and
neurodevelopmental disorders (O’Donnell-Luria et al., 2019; Takata
etal., 2016, 2014; Singh et al., 2016). KDM1 and KDM5 members
have been found to be mutated in autism spectrum disorders
(De Rubeis et al., 2014; Adegbola et al., 2008; lossifov et al., 2014),
X-linked mental retardation (Gongalves et al., 2014; Abidi et al.,
2008; Iwase et al., 2007), non-syndromic intellectual disability
(Tunovic etal., 2014; Athanasakis et al., 2014) and Kabuki syndrome
(Pilotto et al., 2016; Rauch et al., 2012). Finally, PHF8, a H3K4me3
binder (Tsukada et al., 2010; Kleine-Kohlbrecher et al., 2010; Qi
et al., 2010), is altered in cases of X-linked retardation (Redin et al.,
2014; Koivisto et al., 2007; Abidi et al., 2007; Laumonnier, 2005;
Siderius et al., 1999). Taken together, these results strongly suggest
that tight control of H3K4 methylation is crucial for brain
development and functionality, and that its deregulation 1is
implicated in the pathogenesis of neurodevelopmental disorders.
However, the roles of the H3K4 regulatory machinery in key aspects
of neuronal development remain poorly characterized. In particular,
how H3K4 methylation impacts axon guidance, a process required to
direct the axons to their targets and establish functional neuronal
circuits, is unknown. Investigation of this process is limited by the
complexity of the mammalian nervous system and by the inadequacy
of in vitro systems to reproduce physiological conditions. Thus,
in vivo studies in tractable model organisms could help to dissect the
role of histone methylation in this highly conserved biological
process (McCammon and Sive, 2015).
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Caenorhabditis elegans, in which the H3K4 methylation machinery
is well conserved, is an amenable model system for studying
neurodevelopmental mechanisms. Factors such as a well-defined
neuronal connectome and a simple body plan make this organism ideal
for unveiling the roles of chromatin factors, and to assess the functional
relevance of genetic variations observed in neurodevelopment diseases
(Norgaard et al., 2018; Pedersen et al., 2013; Zallen et al., 1998; Boulin
etal., 2006; Adler et al., 2006; Pocock and Hobert, 2008; Johnston and
Hobert, 2003). In C. elegans, the process of axon guidance can be
studied by following the trajectory of PVQ axons (PVQs), which run
along the entire animal body in a stereotyped manner. Owing to this
invariant pattern of development, the PVQs have been used to identify
genes and pathways implicated in axon guidance (Chisholm et al.,
2016; Mariani et al., 2016; Riveiro et al., 2017). In this study, we
directly tested the role of H3K4 methylation in regulating axon
guidance by analysing mutant animals lacking the majority of known
H3K4 regulators. The results show that H3K4 methylation regulation
is strictly required for the establishment of axon trajectories, and that
the deposition of methylation on H3K4 is crucial for neuronal
functions related to locomotion and learning.

RESULTS

Multiple regulators of H3K4 methylation are required for
axon guidance

The PVQs are a pair of interneurons located at the posterior region
of the animal, with axons projecting anteriorly during mid-

embryogenesis along the ventral nerve cord in two distinct and
parallel bundles, which are separated by the ventral midline (Fig. 1A).
To test the hypothesis that the regulation of H3K4 methylation is
relevant in the establishment of proper axon guidance, transgenic
animals expressing a GFP reporter in PVQ neuronal cell bodies and
axons were crossed with deletion mutants of components of the
H3K4 regulatory machinery. Based on H3K4-related functions
(Table 1), we included in our analysis alleles for set-2, set-16, set-17
and set-30, which were previously reported to act as H3K4
methyltransferases (Fisher et al., 2010; Greer et al., 2014, 2010).
We also tested mutant alleles for an H3K4 demethylase, spr-5
(Nottke et al., 2011), and for genes encoding components of the
COMPASS-like complexes (Beurton et al., 2019; Li and Kelly, 2011,
Vandamme et al., 2012), such as wdr-5. 1, rbbp-5 and ash-2. Mutants
for the H3K4 demethylase rbr-2 and for the H3K4 binder jmjd-1.2
were used as positive controls for phenotypic changes (Mariani et al.,
2016; Riveiro et al., 2017). Deletion mutants for set-2, set-16, spr-3,
wdr-5.1, ash-2 and rbbp-5 displayed defects in PVQ axon guidance
(Fig. 1B), resulting in aberrant midline crossover of the axons often
occurring in the posterior part of the body (Fig. 1A). The axonal
defects observed in all mutants were noticeably similar in terms of
pattern and penetrance. In contrast, we found that deletions of set-17
and ser-30 did not compromise the PVQ patterning (Fig. 1B).
Interestingly, although human homologues of set-2 (KMT2F/G), set-
16 (KMT2A-D), spr-5 (KDM1A), rbr-2 (KDMS5A-D), jmjd-1.2
(PHFB), ash-2 (ASH2L), wdr-5.1 (WDRS) and rbbp-5 (RBBPS) are

Fig. 1. Loss of H3K4me regulators causes axon guidance
defects. (A) Top: schematic of PVQ neurons in wild type at L4
stage. Bottom: representative image of the posterior section
of wild-type and set-2(tm1630) L4 worms expressing GFP in
PVQ neurons (transgene oy/s14). White arrowheads indicate
the most common defect observed in mutant animals, in
which the left PVQ neuron defasciculates and erroneously
migrates to the contralateral side of the ventral nerve cord and
back again. (B) Quantification of PVQ defects at L4 stage in
wild type and in mutants of genes involved in H3K4me
regulation. Mutants for rbr-2, a H3K4 demethylase, and jmjd-
1.2, a H3K4me3 binder, previously reported to exhibit axon
guidance defects (Mariani et al., 2016; Riveiro et al., 2017),
were used as positive controls. All the alleles used carry large
deletions and are most likely null mutants. The set-16(n4526)
mutant was scored at L1 stage due to larval lethality. n>150
for all strains, except for set-16(n4526), n=56. Statistical
significance testing used one-way ANOVA (Tukey’s multiple
comparison test). **P<0.005, ***P<0.0005, ****P<0.0001,
n.s., not significant compared with wild type. Black dots
represent independent scorings. Data are meants.e.m.
Scale bar: 50 pm.
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Table 1. C. elegans H3K4me regulators analysed

C. elegans PVQ axon-guidance Human Mutations in
gene defects H3K4-related activity homologues neuronal disorders
set-2 Yes Methyltransferase KMT2FIG Yes*

set-16 Yes Methyltransferase KMT2A-D Yes*

set-17 No Methyltransferase PRDM7/9 No*

set-30 No Methyltransferase KMT3C No*

rbr-2 Yes Demethylase KDM5A-D Yes*

spr-5 Yes Demethylase KDM1A Yes*
Jjmjd-1.2 Yes Binder KDM7A Yes*
wdr-5.1 Yes COMPASS complex WDR5 Yes*

rbbp-5 Yes COMPASS complex RBBP5 Yes$

ash-2 Yes COMPASS complex ASH2L Yes'
dpy-30 ND COMPASS complex DPY30 Yes*

The association of human homologues to neuronal disorders is based on the human disease database MalaCards and literature, as indicated. *According to

MalaCards (http:/www.malacards.org).
*Eising et al. (2019)

SCoe et al. (2019)

Karaca et al. (2015).

mutated in neurodevelopmental diseases (Table 1), no alterations
have been reported for the homologues of set-17 and set-30
(corresponding to PRDM7/9 and KMT3C, respectively), which
were previously reported to methylate H3K4 and H3K36 (Hayashi
etal., 2005; Eram et al., 2014; Blazer et al., 2016; Brown et al., 2006;
Abu-Farha et al., 2008). Thus, our analysis reveals that the majority of
H3K4 methylation regulators in C. elegans contribute to the
establishment of correct axon guidance, indicating that the
regulation of H3K4 methylation is crucial in this process. More
importantly, these results highlight a striking and previously
unknown correlation between genes regulating H3K4 methylation
mutated in neurodevelopmental diseases and genes involved in axon
guidance in C. elegans.

SET-2 controls axon guidance of a subset of neurons

To gain insight into the molecular mechanisms underlying the axonal
defects observed in H3K4 regulator mutants, we characterized the role
of set-2 in detail. set-2 is homologous to KMT2F/G (also called
SETDla/b), which has essential roles during early mouse
embryogenesis (Bledau et al., 2014). In humans, a role for KMT2F/
G mutations in neurodevelopmental disorders has been recently
suggested by the identification of variants in KMT2F and KMT2G in
individuals with intellectual disability, autism, epilepsy and
schizophrenia (O’Donnell-Luria et al., 2019; Singh et al., 2016;
Hiraide et al., 2018). SET-2 is considered the major methyltransferase
for H3K4 in C. elegans (Xiao et al., 2011), but its role in neuronal
development has not been investigated. The set-2(tm1630) and set-
2(n4589) alleles carry large deletions at the 5’ end of the gene,
including the start codon (Fig. 2A), and show similar defective axon
guidance phenotypes (Fig. 2B). Furthermore, transgenic expression of
a fosmid containing the set-2 gene in the set-2(tm1630) allele rescued
the axon guidance phenotype (Fig. 2B). These results strongly suggest
that the axonal defect observed is linked to aberrations of set-2.

We investigated the focus of action of set-2 by testing the ability
of set-2 expression in different tissues to rescue the defects observed
in set-2(tm1630) mutants. Our results showed that SET-2 acts
specifically in the nervous system to control PVQ development
(Fig. 2C, Fig. S1). However, re-expression of set-2 in PVQ neurons
was not sufficient to rescue the phenotype (Fig. 2B). This result is
consistent with a non-cell-autonomous function of set-2; however, it
should be noted that several technical issues (inappropriate time
and/or level of expression) might also account for this negative
outcome. To determine whether SET-2 is required in embryos to

establish correct axon guidance, or during larval development to
maintain PVQ axonal position, we analysed the defect of PVQ
axons in freshly hatched larvae. The percentage of axon defects
identified in L1 was similar to the one observed in mutant adult
animals (16%+2) (Fig. S2), suggesting that SET-2 is required
during embryogenesis to ensure proper PVQ axon guidance. In
agreement with this, transgenic animals carrying an mCherry-
tagged transcriptional reporter showed set-2 expression in the early
embryo (Fig. S3). Loss of set-2 also impacted the projection of HSN
neurons, which extend during larval development, and the axon
trajectory of VD and DD neurons in the dorsal nerve cord (Table 2).
In contrast, other neurons, such as the mechanosensory neurons
(AVM, ALM, PVM and PLM) and the AVK interneuron, displayed
normal axon guidance pattern in ser-2 mutant animals (Table 2).
Notably, abrogation of ser-2 did not impact the migration of AVM,
PVM and HSN neurons (Table 2). These results indicate that SET-2
regulates the projection of several neurons but is not required to
organize the overall architecture of the C. elegans nervous system.

The catalytic activity of SET-2 is required to control axon
guidance

SET-2 mainly catalyzes the tri-methylation of H3K4 (Li and Kelly,
2011; Xiao et al., 2011). In agreement with this, we observed
strongly reduced levels of H3K4me3 in the set-2(tm1630) mutant
embryos, indicating that SET-2 is the main enzyme catalyzing
H3K4me3 in embryos (Fig. 3A, Fig. S4). Several point mutations in
the SET domain have been shown to perturb the activity of the
protein without compromising its stability (Rickels et al., 2017,
Dorighi et al., 2017). To directly assess the relevance of the
enzymatic activity of SET-2, and therefore of H3K4me3, in the
context of axonal guidance, we introduced mutations in the set-2
gene giving rise to two mutated alleles set-2(zr1504) and set-
2(zr2012), in which conserved amino acids located in the SET
domain were mutated (H1447K and R1426W, respectively,
Fig. 3A). In the set-2(zr2012) allele, we introduced a mutation
leading to the same amino acid substitution found in SETD1B/
KMT2G in a case of intellectual disability linked to epilepsy and
autism (Hiraide et al., 2018). Therefore, the set-2(zr2012) allele
provided a simple model with which to test the effects of a disease-
associated mutation of set-2 in an in vivo context. In both mutant
animals, we observed a strong reduction of H3K4me3 levels, similar
to the one detected in the ser-2(tm1630) deletion allele, both by
western blot and immunofluorescence in embryos (Fig. 3A, Fig. S4).
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Importantly, these mutant alleles showed axonal defects with similar
penetrance to the sez-2(tm1630) deletion mutant (Fig. 3B). Therefore,
our result, together with the evidence (Fig. S5) that no axon
abnormalities are observed in the set-2(0k952) allele, an in-frame
deletion in which the levels of H3K4me3 in embryos were not
affected (Xiao et al., 2011), suggests the catalytic activity of SET-2 is
crucial for proper axon guidance.

SET-2 genetic interactions with pathways regulating axon
guidance

Multiple conserved redundant pathways control axon guidance. The
role of several signalling pathways like Netrin, Slit, Ephrins and
Semaphorin in this context is well characterised in C. elegans.
Similarly, the relevance of transmembrane proteins such as
Syndecan and other proteoglycans is well established (Chisholm
etal., 2016). Genetic interaction assays have been used to determine
the components of these pathways and to establish functional
relationships among the genes involved (Zallen et al., 1998; Biilow
et al., 2008). In order to assess whether set-2 acts within known
pathways, we generated animals carrying the set-2(tm1630) allele
together with mutations of genes belonging to the major axon
guidance pathways, and analysed the trajectories of the PVQ
neurons. Concomitant abrogation of set-2 and components of the
Ephrin (vab-1) or Semaphorin (plx-2) pathways resulted in a
phenotype that had a penetrance similar to the one observed in the
single mutants (Table 3). Analogous results were obtained in sdn-1;
set-2. On the contrary, when the Netrin (unc-5) and sax-3/ROBO
pathways (sax-3) were ablated in the set-2 genetic background, we
observed an exacerbation of the phenotype (Table 3). Therefore,
set-2 appears to act in parallel with the Netrin and SAX-3/ROBO

expression were as follows: neuronal, rgef-1;

hypodermal, dpy-7; and PVQ, sra-6. n>150. Statistical

significance testing used one-way ANOVA (Tukey’s
Q\" multiple comparison test). *P<0.05; **P<0.005;

»\6“3 ***P<0.0005; ****P<0.0001; n.s., not significant. In C,

comparisons are with set-2. Black dots represent

independent scorings. Data are meants.e.m.

pathways, and in concert with Ephrins and Semaphorin, the main
antero-posterior signalling pathways involved in axon guidance.

A similar experimental approach was performed to analyse the
crosstalk among the H3K4 methylation regulators we found
involved in axon guidance. To investigate the relationship of set-2
with rbr-2, spr-5 and jmjd-1.2, we analysed the PVQ defects of
animals lacking a combination of these genes. None of the double
mutants showed an additive effect (Fig. 4A), suggesting that the
regulators act jointly to ensure the correct levels of H3K4
methylation and normal axon guidance. However, the abrogation
of rbr-2 in the set-2(tm1630) background led to an amelioration of
the axon phenotype, suggesting that rbr-2, likely through its H3K4
demethylase activity, can counteract the effect of set-2 in axon
guidance. A similar neutralizing effect of 7br-2 mutations has been
observed previously for the lifespan phenotype of set-2 (Greer et al.,
2010). Finally, we analysed the penetrance of the defects in
compound mutants of set-2 with rbbp-5 or ash-2, components of the
COMPASS complexes. Double mutants showed levels of defects
similar to those observed in single mutants (Fig. 4B), suggesting
that set-2 controls the axon guidance process in the context of the
COMPASS complex.

set-2 controls axon guidance by regulating actin remodelling
through wsp-1

Actin remodelling at the growth cone is ultimately the key process
directing axon guidance. We therefore tested whether the defect
observed in set-2 mutant animals could be related to aberrant
regulation of actin dynamics. We generated double mutants
eliminating ser-2 in concomitance with wsp-1/WASP, wve-1/WAVE
and unc-34/Ena/VASP, which are known actin-regulator genes (Higgs
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Table 2. Neuroanatomical analysis of set-2(tm1630) mutants

Neurons (marker used) Wild type set-2(tm1630)
Interneurons

PVQ (oyls14)* 5% 21% (P<0.001)

AVK (bwis2)* 1% 1% n.s.
Motoneurons

HSN (zdls13)

Axon guidance* 4% 21% (P<0.005)

Cell migration* 7% 9% n.s.
VD/DD (oxIs12)

Midline L/R choice$ 27% 61% (P<0.005)

GuidanceT 1%
Mechanosensory neurons
AVM (zdIs5)

17% (P<0.005)

Axon guidance** 0% 1% n.s.

Cell migrationS$ 0% 0% n.s.
ALM (zdIs5)* 0% 0% n.s.
PVM (zdls5)

Axon guidance** 1% 1% n.s.

Cell migration™ 0% 0% n.s.

PLM (zdlIs5)* 3% 5% n.s.

Different morphological classes of neurons examined in wild-type and set-
2(tm1630) mutant animals, carrying specific transgenic markers, as indicated.
n>150. Student’s t-test was used to assess for statistical significance; n.s.,
compared with wild type.

*Axons crossing the midline of the animal.

*Cell body not reaching the correct position at the mid body.

SAxons extending to the left side instead of the right side.

fIAxons extending anterior or posterior during circumferential growth to the
dorsal nerve cord.

**Axons extending anterior before extending into the ventral nerve cord.
*Axons extending towards the ventral or dorsal nerve cord.

S$8Cell body positioned lateral right side of the anterior part of the animal
between vulva and head.

TMCell body positioned lateral left side of posterior part of the animal between
vulva and tail.

and Pollard, 2001). Although we observed no effect with unc-34 or
wve-1, ablation of wsp-1 fully rescued the ser-2 axon guidance
phenotype (Fig. 4C). This result suggests that set-2 controls axon
guidance by regulating actin remodelling specifically through wsp-1.
We also tested the effect of cdc-42 and nck-1 ablation, the
mammalian homologues of which are known activators of
N-WASP (Alekhina et al., 2017). As only loss of cdc-42 rescued
the set-2 phenotype (Fig. 4C), we conclude that an aberrant CDC-42-
dependent activation of WSP-1 is likely fundamental to the axonal
defect observed in ser-2 mutant animals.

Transcriptional regulation mediated by SET-2

H3K4me3 is a post-translational modification identified at promoter
regions of transcriptionally active genes and, in agreement with this,
loss of set-2 has been reported to deregulate transcriptional activity
(Beurton et al., 2019; Robert et al., 2014). To gain insight into the
mechanisms of action of SET-2 in axon guidance, we analysed the
transcriptome of set-2(tm1630) mutants at the mid-embryonic stage
in which PVQ axon development occurs. Principal component
analysis (PCA) of RNA-sequencing datasets from wild-type and
set-2(tm1630) animals indicated that the gene expression patterns in
set-2 mutant embryos were significantly different from wild-type
embryos (Fig. 5A), with 6444 genes (FDR<0.05) differentially
expressed (DE) (Fig. 5B, Table S1). A similar number of genes were
downregulated and upregulated in comparison with wild-type
animals (Table S1). The median log2 fold changes of gene
expression were 2.27+0.018 (mean+s.e.m.) for upregulated genes
and 1.78+0.01 (mean#s.e.m.) for downregulated genes. Strikingly,
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Fig. 3. The catalytic activity of SET-2 is paramount for correct axon
guidance. (A) Top: alignment of a region of the SET domain of SET-2 with
homologues in different species. The grey shading denotes conserved amino
acids. The red residues denote the conserved amino acids substituted in set-2
alleles zr2012 and zr1504. Corresponding amino acid substitutions in human
are shown. In the zr2012 allele, Arg1426 is changed to Trp, thus reproducing a
disease-associated mutation (R1842W). Bottom: representative western blot
showing embryonic H3K4me3 levels in the indicated strains. H3 was used as
loading control. The numbers indicate the average of H3K4me3 relative to wild
type, from three independent experiments +s.e.m. (B) Quantification of PVQ
defects at L4 stage in wild type and indicated set-2 mutant alleles. Statistical
significance testing used one-way ANOVA (Tukey’s multiple comparison test).
n>150, ****P<0.0001 compared with wild type. Black dots represent
independent scorings. Data are meants.e.m.

among the downregulated genes, gene ontology (GO) analysis
identified genes associated with neuronal function categories,
including neuronal development, locomotion, chemotaxis, neuronal
cell projection, axon guidance and synaptic transmission (Fig. 5C,
Table S1). And, with the exception of sax-3, all the other genes
involved in axon guidance pathways tested for genetic interactions
are listed as downregulated genes in the RNA-sequencing dataset.
Among the upregulated genes, categories related to germ cell
biology and DNA replication/repair were significantly enriched
(Fig. 5D), corroborating previous studies that implicated set-2 in
fertility and genome stability (Xiao et al., 2011; Herbette et al.,
2017). We also analysed the transcriptome of the ser-2(zr2012)
allele that expresses a mutant SET-2 protein with an amino acid
substitution found in SETDIB in a case of intellectual disability
(Hiraide et al., 2018). Despite a smaller number of DE genes
identified in animals carrying this allele (3053 DE genes,
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Table 3. Genetic interaction of set-2 with classical axon guidance
pathways

Genotype PVQ defects
wild type 6%
set-2(tm1630) 22%
unc-5(e53) 22%
set-2(tm1630); unc-5(e53) 46%****
vab-1(dx31) 22%
vab-1(dx31); set-2(tm1630) 28% n.s.
plx-2(ev773) 20%
plx-2(ev773); set-2(tm1630) 27% n.s.
sax-3(ky123) 53%
sax-3(ky123); set-2(tm1630) 78%****
sdn-1(zh20) 48%
sdn-1(zh20); set-2(tm1630) 47% n.s.

PVQ defects at L4 stage in wild type and single and compound mutants of
classical axon guidance genes. n>150. Unpaired two-tailed Student's t-test
was used to assess for statistical significance ****P<0.0001; n.s, not significant
compared with the single mutant with the highest penetrance.

FDR<0.05) (Table S1, Fig. S6), the intersection of DE genes and
consistently downregulated genes in the two ser-2 alleles was
significant (P<0.001 and P<0.0001, respectively). Importantly, GO
analysis of downregulated genes in set-2(zr2012) and consistently
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downregulated genes in set-2(tm1630) and set-2(zr2012) identified
neuronal categories as enriched, confirming the relevance of sez-2 in
positively regulating the transcription of neuronal genes (Fig. S6,
Table S1). These results suggest that, in agreement with its catalytic
activity, SET-2 contributes substantially to the regulation of gene
expression in embryos. Furthermore, the identification of several
downregulated genes belonging to the cell projection/axon
guidance class corroborates our finding that the regulation of
H3K4 methylation is required for the establishment of proper axon
trajectory.

Loss of set-2 impairs nervous system functionality

Besides the genes required for the establishment of proper axon
guidance, the transcriptome analysis of ses-2 mutant alleles revealed
that numerous neuronal genes were differentially expressed,
suggesting a broad role for ser-2 in the nervous system. Therefore,
we tested whether the loss of set-2 would result in abnormal
neuronal functionality. Despite set-2(tm1630) and set-2(zr2012)
mutant animals appearing superficially wild type, we detected
differences when compared with control animals in specific
functional tests. Locomotion in C. elegans is controlled by
excitatory cholinergic and inhibitory GABAergic motor neurons,
the functionality of which can be determined by observing animals

Fig. 4. set-2 genetic interactions with other
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Fig. 5. Transcriptional regulation mediated by SET-2. (A) PCA plot of wild-type and set-2(tm1630) mid-embryos. Each dot represents one sample and each
colour a genotype. (B) MA plot showing gene expression changes in set-2(tm1630). The x-axis represents the mean of counts, the y-axis represents log2 fold
change. DE genes with FDR<0.05 are shown in red. (C,D) GO analysis of the biological processes of downregulated (C) and upregulated (D) genes

in the set-2(tm1630) allele using g:Profiler and adjusted P-values (Bonferroni correction). Selected top scoring categories are presented together with the number

of genes identified in each category.

swimming in liquid. set-2(tm1630) and set-2(zr2012) mutant
animals displayed a reduced rate of body bends in liquid
compared with wild-type animals (Fig. 6A). Furthermore, when
left moving on a plate for 1 h at 20°C, set-2(tm1630) and set-
2(zr2012) mutants appeared to explore fewer regions of the plate
(Fig. 6B) and to move in a tighter circular pattern compared with
control animals (Fig. S7). A closer analysis of the crawling tracks
revealed differences in wave amplitude between control animals and
mutants, but no significant differences were observed when
comparing wave lengths (Fig. 6C). Overall, these results suggest
abnormal locomotion behaviour in set-2(tm1630) and set-2(zr2012)
mutant animals. Defecation in C. elegans is the result of a
stereotyped and tightly regulated motor programme involving the
subsequent contraction of three distinct sets of enteric muscles
(Schuske et al., 2004). Monitoring this relatively simple process is a
powerful method for determining neuronal system functionality and
synaptic transmission. We found that the rate of defecation in both
set-2 mutants was significantly reduced compared with wild-type
animals (Fig. 6D). Last, we assessed chemotaxis responses towards
attractive stimuli (Mori, 1999) by testing the response of ser-2
mutant animals to sodium chloride. No differences were observed in

the set-2(tm1630) and set-2(zr2012) mutant animals compared with
control animals, suggesting that se-2 mutants have an intact
chemotactic response (Fig. 6E). In C. elegans, the chemotactic
response changes according to previous experiences (Tomioka
et al., 2006; Saeki et al., 2001). When animals are grown in the
presence of food and sodium chloride, they are attracted to the salt.
In contrast, when worms are starved in the presence of salt, they
learn to avoid it as they associate the salt with an unfavourable
condition. We tested whether this associative learning process was
affected in ser-2(tm1630) and set-2(zr2012) mutant animals by
conditioning animals in unseeded plates containing sodium chloride
and subsequently testing their reaction to the salt. In contrast to
wild-type animals, conditioned se#-2 mutants were still attracted to
sodium chloride, suggesting a defect in the associative learning
process (Fig. 6E). Overall, these results indicate that mutations in
the set-2 gene, in correlation with aberrant expression of neuronal
genes, result in compromised neuronal functions.

DISCUSSION
Despite the recognition of H3K4 methylation as a crucial epigenetic
modification in neuronal development, its biological role in this
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tissue is only marginally understood (Mariani et al., 2016; Riveiro
et al., 2017). In this study, we specifically addressed the role of the
main H3K4 methyltransferase SET-2 in neuronal development
using C. elegans as a model system. Our results demonstrate the
requirement of the catalytic activity of SET-2, and therefore for
H3K4 methylation, in the process of axon guidance. Moreover, we
showed that several proteins involved in the regulation of H3K4
methylation are also required for the establishment of axon
trajectories, including set-16, another H3K4 methyltrasferase. We
do not know whether se#-2 and set-16 have a redundant role in axon
guidance and share common targets. Nevertheless, the requirement
of multiple H3K4 regulators likely reflects the notion that axon
guidance is a complex process regulated by a multitude of
extracellular cues and signalling pathways that need to be
integrated, and temporally and spatially coordinated. We propose
that such orchestration is, at least in part, epigenetically controlled
and occurs by fine-tuning the transcription of the implicated genes
through H3K4 methylation regulation.

Our analysis showed that the catalytic activity of SET-2 is required
for the correct axon guidance through a mechanism that involves the
regulation of cytoskeleton dynamics. Remarkably, the axon guidance
defects observed in the H3K4 methylation regulators investigated in
detail so far (rbr-2, jmjd-1.2 and set-2) are all suppressed by wsp-1
ablation (this study and Mariani et al., 2016; Riveiro et al., 2017),
suggesting that, in line with the genetic interaction observed among
set-2, rbr-2 and jmjd-1.2, wsp-1 is a shared target (Fig. 7). Our results,
showing that only wsp-1, and not other known actin regulators like
unc-34 or wve-1, suppresses the axonal defects, suggests that the
H3K4 regulatory machinery controls a specific branch of actin
remodelling. It should also be noted that the modalities by which
H3K4 regulators control WSP-1 functionality are likely different, as
rbr-2 controls wsp-1 expression (Mariani et al., 2016), whereas jmjd-
1.2 appears to regulate its activation through nck-1 and cdc-42
(Riveiro et al., 2017). The effect of set-2 on wsp-1 activation seems to
strictly depend on cdc-42, as ablation of cdc-42, but not nck-1,
ameliorates the axonal phenotype. Puzzlingly, in set-2(tm1630), the
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Fig. 7. C. elegans homologues of H3K4 regulators mutated in disease all
contribute to axon guidance. Schematic model depicting the role of rbr-2,
set-2 and jmjd-1.2 in regulating wsp-71-mediated actin remodelling and axon
guidance. rbr-2 directly influences wsp-1 transcription (Mariani et al., 2016),
whereas set-2 and jmjd-1.2 control wsp-1 activity through cdc-42 and nck-1
(this study and Riveiro et al., 2017). The action of set-16, COMPASS complex
components and spr-5 on wsp-1 remain to be elucidated. Mammal
homologues found mutated in neurodevelopmental diseases are shown in red.

levels of wsp-1 expression appeared reduced (Table S1). As loss of
wsp-1 did not result in axon defects, the wsp-/ downregulation
observed is likely due to a compensatory mechanism that reduces the
effects of'its aberrant activation. The identification of direct targets of
SET-2 will help to clarify the specific mechanism underlying the
genetic interactions observed.

It is intriguing that only a subset of neurons is invariantly
disturbed by the loss of H3K4 regulator genes (this study and
Mariani et al., 2016; Riveiro et al., 2017), suggesting that in these
neurons the process of axon guidance is particularly vulnerable and
under epigenetic control. This possibility is also suggested by a
study showing that defects in axon guidance of the same subset of
neurons are observed in animals experiencing oxygen deprivation
during embryonic development (Pocock and Hobert, 2008). Further
analyses testing other adverse environmental conditions, and cell-
specific studies related to expression patterns and lineage, will help
us to understand the origin of this susceptibility.

set-2 mutant alleles show phenotypes related to locomotion and
learning. It is likely that these phenotypes might only partially depend
on axon-guidance defects. Indeed, transcriptional profiles and GO
analyses of set-2 alleles identified several neuronal categories among
DE genes, which suggest a novel and broad role for set-2 in the
C. elegans nervous system. The role of set-2 mammalian homologues
in neurons has not been investigated owing to the essential nature of
these genes during mouse embryogenesis. However, considering our
results and the frequency of mutations in these genes in cases of
intellectual ~ disability, autism, epilepsy and schizophrenia
(O’Donnell-Luria et al., 2019; Singh et al., 2016; Hiraide et al.,
2018), it is tempting to hypothesise an evolutionarily conserved role
for KMT2F and KMT2G in nervous system development, which
deserves further investigation.

In the context of disease, the recent identification by genome-wide
association studies of a H3K4 regulation domain affected in neuronal
disorders has emphasised the potential impact of epigenetic regulation
in the developing nervous system and in illness. By demonstrating that

C. elegans homologues of H3K4 regulators mutated in disease are all
required for proper axon guidance (Fig. 7), and that a disease-
associated mutation of SETD1B reproduces the axonal phenotype in
the nematode, our studies provide evidence for a common
denominator among these genes. Altogether, our results suggest that
aberrant axon guidance is a shared trait in neurodevelopmental
diseases and offer experimental support to a recently suggested
hypothesis proposing that dysregulated axonal guidance underlines
neurological disorders (Van Battum et al., 2015; Niftullayev and
Lamarche-Vane, 2019; McFadden and Minshew, 2013).

MATERIALS AND METHODS

Genetics and strains

C. elegans strains were cultured using standard growth conditions at 20°C
with Escherichia coli OP50 (Brenner, 1974). Double mutant animals were
generated by using a standard crossing procedure. set-2(tml630) was
backcrossed six times and set-2(zr2012) was backcrossed two times.
Neuronal marker strains were backcrossed three times. The strains used are
listed in Table S2. set-16(n4526) is a balanced strain. Heterozygotes
segregate Dpy sterile animals (+/+), larval lethal animals (—/-) and wild-
type animals (+/—).

Generation of constructs

The set-2 transcriptional reporter includes a ~400 bp region located at the
5’ end of the ser-2 gene amplified using the following primers: 5'-ccgatgca-
cagtagaaatctg-3’ and 5’-gcaaacttcatatccagaccata-3’. The PCR product was
cloned into pD95.75mCherry. Tissue-specific rescue constructs were made
using a MultiSite Gateway Three-Fragment Vector Construction Kit (Life
Technologies) as described previously (Mariani et al., 2016). The set-2 cDNA
was a kind gift from Francesca Palladino (Ecole normale supérieure de Lyon,
France).

Generation of transgenic lines

Transgenic lines were created by microinjection (Mello et al., 1991). The
set-2 transcriptional reporter line was obtained by injecting 50 ng/ul of
reporter construct into the N2 strain. Tissue-specific rescue constructs
(10 ng/ul) were injected along with myo-2::mCherry (5 ng/ul) as a co-
injection marker into set-2(tm1630). The fosmid (5 ng/ul) was injected
along with co-injection marker myo-2:mCherry (5 ng/ul). The fosmid
(WRMO0638aG05) was a kind gift from Roger Pocock (Monash University,
Melbourne, Australia). The transgenic lines used in this study are listed in
Table S2.

CRISPR lines

CRISPR lines were created by injecting ssDNA repair templates for sez-2
with desired substitutions cloned into pJIR50 (zr/504 sgRNA
sequence CCTTCGCGTAGCAATTAGGT and zr2012 sgRNA sequence
TCACATGATGCAGATCAATT). The mix contained a pha-I repair
template and pJW1285 (driving the expression of Cas9) was injected into
pha-1(e2123) mutants. All constructs were injected at a concentration of
50 ng/pl. Selection for pha-1 wild-type clones was performed at 25°C.
Mutations were confirmed by sequencing. The mutation in the zr1504 allele
was selected based on the following criteria: (1) conserved from yeast to
human; (2) outside of the interaction surface with other components of the
mixed lineage leukaemia-complex based on Shinsky et al. (2014); and (3) a
conservative substitution (H to K). The mutation in the zr2012 allele
reproduces an alteration identified in SETDIB/KMT2G in a case of
intellectual disability linked to epilepsy and autism (Hiraide et al., 2018).

Western blot and immunostaining

Protein extracts were prepared from embryos obtained after hypochlorite
treatment of animals grown at 20°C. Samples were boiled in SDS-PAGE
buffer for 5 min and sonicated for 10 min using a Diagenode Bioruptor
(UCD-300). The following antibodies were used: anti-H3K4me3 (Cell
Signaling Technology, C42D8; 1:750); polyclonal anti-H3 (Abcam, ab1791;
1:10.000); and peroxidase-labelled anti-rabbit secondary antibody (Vector
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Laboratories; 1:10.000). Western blots were quantified using Imagel
[National Institutes of Health (NIH)].

Embryo staining was performed as described by Chin-Sang et al. (1999).
The primary antibody for H3K4me3 (Cell Signaling Technology, C42DS;
1:500) was incubated overnight at 4°C and the secondary antibody [goat
anti-rabbit 1gG (Alexa Fluor 488, Invitrogen, A11008; 1:500)] was
incubated for 2 h at room temperature. Embryos were stained with DAPI
and slides were mounted using mounting media.

Axon guidance analyses

The axon guidance phenotype was scored at 20°C at the L4 stage, unless
otherwise stated. Worms were immobilized in NaN; and placed on
microscope slides with a 5% agarose pad. Results from at least three
biological independent experiments were used for statistical analyses. Images
were obtained using a Zeiss AXIO Imager M2 fluorescence microscope.
Owing to the larval lethality of the strain, the scoring of the sez-1 6 mutant was
conducted at the early larval stage. Arrested larvae were considered set-16
null. Investigators were not blinded during the experiments.

Statistical analyses

Statistical analysis for all neuronal scoring was performed using GraphPad
Prism 8 using Student’s f-test or one-way ANOVA (Tukey’s multiple
comparison). All values are presented as mean percentages.

RNA-sequencing

RNA was isolated from three independent experiments per genotype.
Hermaphrodites were bleached twice to achieve better synchronization. Eggs
recovered from the second hypochlorite treatment of highly synchronized
young adult animals were kept at 20°C for 4 h in M9 media to reach mid-
embryogenesis (the majority of the eggs were at comma stage) and freeze
cracked in liquid nitrogen. Wild-type and set-2 samples were prepared and
analysed in parallel, to minimise, as much as possible, synchronisation and
batch issues. RNA was extracted using an Arctutus PicoPure RNA Isolation
Kit (Thermo Fisher Scientific, KIT0204). Sequencing libraries was
constructed using a TruSeq RNA Library Prep Kit v2 (Illumina, RS-122-
2001). Libraries were sequenced using a NextSeq 500 system and a NextSeq
500/550 High Output Kit v2 (Illumina, FC-404-2005).

RNA-sequencing analysis

RNA-sequencing results were analysed using Galaxy (v19.05). Reads were
mapped to the C. elegans genome (WS220) using a criterion of two
mismatches. Number of reads aligned for each replica was between 14.6 to
53.1 million. DESeq2 (v2.1.8.3) was used to determine DE genes and to
generate principal component and scatter plots. DE genes with FDR<0.05
were analysed using g:Profiler (biit.cs.ut.ee/gprofiler/gost) with Bonferroni
correction. The P value for overlapping gene lists was calculated using the
statistical significance of the overlap between two groups of genes tool
(www.nemates.org/MA/progs/overlap_stats.html).

Neuronal function analyses

Thrashing assay in liquid

A 96-well microtitre plate, with each well containing 400 pl of M9 media, was
used. Three young adult-stage worms of the same strain were placed in each well
and left for 10 min at 20°C to adapt. Body bends were counted for 30 s. One
bend was counted every time the mid-body of the animal returned to the same
position. The experiment was carried out using at least 60 worms per strain.

Tracking and exploration assay

Nematode Growth Media (NGM) plates (6 cm) were seeded with 600 ul of
OP50 grown overnight in lysogeny broth at 37°C and stored at 25°C for one
night. One young adult stage worm was placed in the centre of the bacteria
lawn and left to crawl for 1 h at 20°C. For the tracking assay, animals were
removed after 1h of crawling and the body length was measured for
normalization. The tracks that the animals left on the plates were visualized
using a dissecting microscope and a digital camera using the same
magnification settings (20x). The amplitude and wavelength of the tracks
were measured using Imagel. For the exploration assay, animals were

removed after 1 h of crawling and plates were superimposed on a grid
containing 3x3 mm wide squares, and the number of squares entered by the
worm were manually counted as described previously (Juozaityte et al.,
2017). Both assays were performed using at least 30 worms per strain.

Defecation assay
Defecation was assessed as described previously (Mahoney et al., 2008).
Each defecation motor program (DMP) cycle was counted as the interval
between two posterior body-wall muscle contractions. Five full cycles for
each animal were counted. This assay was carried out using at least 30
worms per strain.

Chemotaxis and chemotaxis plasticity assay

The chemotactic response to NaCl was conducted as described previously
(Tomioka et al., 2006). Briefly, 20 ml of buffered agar was poured into 10 cm
diameter Petri dishes. To set up a salt gradient, 10 ul of 2.5 M NaCl solution
was applied to the attractant spot, and 10 pl of ddH20 was applied to the control
spot 16 h before the assay. Another 10 ul of 2.5 M NaCl solution or water was
applied 4 h before the assay onto the same spots. NaN3 (1 pl) was applied to
both spots 1 min before the assay. Synchronized young adult animals were
washed three times with chemotaxis (CTX) solution [5 mM KH,PO,/K,HPO,
(pH 6), 1 mM CaCl, and 1 mM MgSQ,], and 40 to 50 worms were placed in
the centre of the assay plate in a minimal volume buffer. Animals were left to
crawl for 45 min at 20°C, after which the plates were placed at 4°C overnight
and the chemotactic index was calculated. The chemotaxis index was defined as
the number of animals in the NaCl area (within 1.5 cm of the solution spot)
minus the number of animals in the control area, divided by the total number of
animals on the plate. Worms unable to leave the centre of the assay plate were
censored. The chemotaxis was assessed with assay plates prepared in the same
way as above. Synchronized young adult animals were washed three times with
CTX solution, and 40 to 50 worms were placed onto conditioning plates
prepared with NGM media (containing NaCl) and without E. coli OP50.
Animals were conditioned for 1 h, washed again once with CTX solution and
placed in the centre of the assay plates. Worms were left to crawl for 45 min at
20°C, after which the plates were placed at 4°C overnight. The chemotactic
index was calculated as before. Several independent biological replicates were
analysed. Investigators were not blinded during the experiments.
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