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Abstract 

Objectives: To assess the feasibility of detecting and monitoring early erosive tooth wear using a 3D 

intraoral scanner (IOS) aided by specific software. 

Methods: Extracted sound permanent teeth were assembled in two shortened artificial dental arches 

and scanned at different intervals with an IOS (3Shape TRIOS® 3) before and after an 

erosion/abrasion protocol (i.e. 1 h up to 24 h immersion in citric acid solution and subsequent 

brushing). The 3D models obtained at consecutive time points were superimposed with the baseline 

model using dedicated software (3Shape TRIOS® Patient Monitoring, version 2.1.1.0) and reference 

surface alignment. Surface profile differences between the baseline 3D model and the respective 

models from different time points were expressed as tooth substance loss.  

Non-parametric tests were used to assess the significance of tooth substance loss at different time 

points. Spearman’s correlation was applied between the tooth substance loss at the end of each 

erosion/abrasion cycle and the immersion time in acid. 

Results: Significant tooth substance loss (0.08 mm, IQR=0.05) was detected by the software after 3 h 

of erosive-abrasive challenge (p=0.045). The overall median loss increased gradually from baseline to 

24 h showing a strong correlation with the immersion time in acid (rs=0.971, p<0.01). 

Conclusions: The use of an IOS aided by specific software showed good performance for early 

detection and monitoring of tooth wear in vitro and has promising potential for in vivo application. 

Clinical significance: Detection and monitoring of early erosive tooth wear can be reliably aided by 

intraoral scanning supported by specific software. The measurement error and uncertainty involved in 

this method should be taken into consideration when interpreting the tooth substance loss 

measurements. Furthermore, presuming the difficulty in defining reference surfaces in vivo, clinical 

validation is needed to determine the system’s in vivo performance. 

1. Introduction 

Tooth wear is a multifactorial condition with increasing incidence globally, particularly in Western 

societies [1]. Early detection and monitoring of tooth wear remains extremely challenging using 

traditional clinical examination methods [2,3]. 

Clinical detection and diagnosis of tooth wear is usually based on visual examination of lesion 

characteristics, sometimes also supported by the acquisition of clinical photographs and study models 

[3–5]. However, visual examination is subjective even when specific criteria such as the Basic Erosive 

Wear Examination (BEWE) [6] are adopted, as these have previously shown only moderate 

reproducibility when employed by general practitioners [7]. Furthermore, visual assessment shows low 
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sensitivity; tooth mineral loss is usually only visually perceptible when a significant amount of hard 

dental tissue is already lost. Another disadvantage of the visual examination is inability to quantify 

tooth substance loss over time, a significant limitation when the activity and progression rate of the 

disease needs to be defined in order to decide the patient's treatment plan [3].  

A number of methods other than visual examination have been assessed to aid detection and/or 

quantification of tooth substance loss [2,5]. Numerous in vitro studies have employed techniques 

including quantitative light-induced fluorescence (QLF) [8–10], profilometry [11–15], and optical 

coherence tomography (OCT) [8,16]. Applying these methods in vivo is difficult; for example, the use 

of profilometry is time-consuming as it requires obtaining physical models of the dentition. QLF and 

OCT, although they can potentially be applied directly in the mouth [17], show suboptimal 

reproducibility in longitudinal studies involving patients [2,3,5,18,19].  

The use of IOS has been recently suggested for early detection, quantification, and monitoring of tooth 

wear based on in vitro [20–22] as well as in vivo studies examining 3D data obtained directly from 

patients [23] or cast models [24]. Studies focusing on visual detection of early erosive tooth wear 

demonstrated detection with higher sensitivity using meticulous visual examination (BEWE index) on 

full-arch digital 3D models compared to traditional visual examination on patients [23,24]. This 

finding was attributed to the larger magnification and clearer image of the dentition allowed by the 

digital 3D model compared to the traditional visual examination directly on the patient. Other studies 

went further by using specific software to align multiple 3D models, from which measurements of 

profile or volumetric differences were obtained [20–22,25,26]. 

In order to develop an objective, automated, and reliable in vivo method for early detection and 

monitoring of tooth wear, the use of an accurate IOS is essential [27,28], in addition to a reliable 

method for 3D model alignment with minimal error [20,21,25]. This study builds upon the existing 

knowledge derived from in vitro models with single-tooth set-ups [20,24,25], in which the 

accumulation of errors related to scanning and tooth alignment is relatively small, and approaches the 

clinical scenario by investigating erosive tooth wear on a set-up designed to simulate the in vivo 

dentition. Thus, this study aimed to assess the feasibility of an IOS aided by specific software to detect, 

quantify and monitor erosive tooth wear on study models comprising of multiple and different types of 

teeth and on multiple tooth surfaces.

Fig. 1. Experiment workflow followed in the study. Scanning with IOS (a), obtaining the 3D model (b), 

immersion in the acid solution for simulated erosion (c), tooth brushing for simulated abrasion (d). 

2. Materials and methods 

2.1. Specimen preparation 

Twelve (N=12) sound human teeth (anterior and posterior) without visual surface defects were 

selected from a pool of extracted teeth from the Department of Odontology of the University of 
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Copenhagen. All teeth were extracted for therapeutic reasons by dental practitioners from anonymous 

donors and collected as leftover biological material; therefore, no notification to the National Ethical 

Committee was required. The teeth were stored in chloramine T trihydrate aqueous solution (0.5 % 

w/v) until use. 

After selection, the teeth were mounted on a dimensionally stable silicone impression material in an 

artificial semi-arch set-up to simulate an in vivo model. Two dental semi-arches of 6 teeth were 

fabricated. Each semi-arch included a sequence of teeth from central incisor to second molar. 

Composite restorations (Filtek Z250 3M ESPE, 3M Deutschland GmbH) covering two or more dental 

surfaces were made on some teeth using selective enamel etching and bonding (3M™ Scotchbond™ 

Universal Etchant and Adhesive 3M ESPE, 3M Deutschland GmbH). Composite restorations in the 

first semi-arch were placed on the central (class III, distal) and lateral incisors (class IV, mesial), 

premolar (class II, occluso-distal), and second molar (class II, mesio-occluso-palatal). In the second 

semi-arch, composite restorations were placed on the central (class IV, mesial) and lateral incisors 

(class IV, mesial), canine (class III, distal), first (class II, distal) and second molars (class II, mesio-

occluso-palatal). The restorations were used to establish reference surfaces for the 3D model 

alignments, as the resin composite is relatively resistant to erosive-abrasive challenge [29].  

The teeth were stored for 1–7 days in phosphate-buffered saline solution (NaCl 137 mmol/L, KCl 2.7 

mmol/L, Na2HPO4 10 mmol/L, KH2PO4 1.8 mmol/L), pH 7, at 37 °C until the experiment started.  

2.2. Erosive tooth wear challenge & 3D Scanning 

All teeth were scanned twice at baseline (baseline 3D models 1 and 2) with the IOS (TRIOS 3®, 

3Shape TRIOS A/S, Denmark) according to the manufacturer’s suggested scan strategy.  

Afterwards, the teeth were immersed in 1% citric acid solution (pH 2.7) under continuous agitation 

(100 rpm) and for each designated time point (1, 2, 3, 4, 5, and 6 h) the teeth were removed from the 

solution, rinsed with deionized water (20 s), dried with oil-free compressed air (5 s) and scanned to 

evaluate erosion. The teeth were subsequently brushed (2 min) with an electrical toothbrush (Oral B 

Vitality Cross Action, Braun) without toothpaste and then scanned again to evaluate abrasion (Fig. 1). 

Thus, 3D models were obtained at baseline, immediately after removal from the acid solution (erosion) 

and finally immediately after toothbrushing (abrasion). 

Subsequently, only the first semi-arch was further assessed every 6 h up to 24 h. In summary, 3D 

models of the first semi-arch were obtained at baseline and 9 subsequent time points (1, 2, 3, 4, 5, 6, 

12, 18 and 24 h); for the second semi-arch, at baseline and 6 subsequent time points (1, 2, 3, 4, 5 and 6 

h). If storage for some hours between the different experimental cycles was needed, the models were 

stored in deionized water.  

2.3. 3D model assessment 

The 3D models obtained at the different time points were superimposed with the baseline model no. 1 

using specific software (3Shape TRIOS® Patient Monitoring, version 2.1.1.0, 3Shape A/S, Denmark), 

not commercially available when the study was conducted. Reference alignment was used for 

superimposition of the models as this method has been shown to result in lower alignment errors and 

truer measurements [25] compared to other types of alignment. For the reference alignment, the 

surfaces of the composite restorations were marked manually on each individual 3D model as regions 

of interest using a brush tool (Fig. 2). The marked surfaces were then used by the software as stable 

references to align the consecutive 3D models. Thus, the unrestored tooth surfaces, subject to changes 

due to the tooth wear challenge, were not considered for alignment.  

https://doi.org/10.1016/j.jdent.2020.103445
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Fig. 2. Illustration of the reference 

surfaces used for 3D model 

alignment. The surfaces of 

composite restorations (green 

areas) are marked on the model 

using a brush tool for subsequent 

reference model alignment. 

 

 

 

Following alignment, a colour map tool enabled differences between the baseline model and 

subsequent models obtained at the different time points to be visualised (Fig. 3). The threshold above 

which surface changes were visible on the colour map was set in the software as 0.05 mm. The first 

visual changes above the predefined threshold were noted for each semi-arch.  

 

 
Fig. 3. Representative colour map images showing differences compared to the baseline 3D model at different 

time points according to the colour scale. Differences below 0.05mm (software threshold) are shown as green. 

 

Surface profile differences between baseline and the subsequent 3D models were measured on each 

tooth using a cross-section tool available in the software (Fig. 4). Using this tool, profile difference 

measurements as small as 0.01mm could be taken on the 3D models to quantify tooth substance loss. 

Eight measurements, 4 on the palatal and 4 on the buccal surfaces of each tooth, were obtained. 

Measurements on each tooth were taken on the same positions at all time points by maintaining the 

position of the cross-sections over time. 

2.4. Measurement error and uncertainty 

The accuracy of the IOS 3Shape TRIOS® 3 has been investigated previously. In a well-controlled 

study [28], based on a model with equivalent extension to the dental semi-arches investigated in the 

present study, this scanner’s trueness and precision were reported to be 0.025mm (standard deviation 

https://doi.org/10.1016/j.jdent.2020.103445
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(SD)=0.005) and 0.003mm (SD=0.002), respectively. Based on the reported trueness, we considered 

the method’s measurement error to be 0.025 mm.  

In this study, in order to assess the uncertainty associated with the reference 3D model alignment 

alone, or in combination with 3D scanning, ten repetitions of each of the following assessments were 

conducted: 

1. Alignment and surface profile difference measurements between two identical copies of the 

same baseline 3D model (i.e. baseline model 1 with itself); 

2. Alignment and surface profile difference measurements between two non-identical baseline 3D 

models, obtained from the same dental semi-arch (i.e. baseline models 1 and 2). 

The composite fillings were again used as reference for the model alignments and the surface 

profile differences were measured at cross sections of the 3D models as conducted in the main 

experiment, i.e. eight measurements per tooth. Mean surface profile differences and SDs were 

calculated for each assessment and used for measurement uncertainty calculations.  

Taking into account all the individual measurement uncertainties associated with the scanning, model 

alignment and surface profile measurements deriving both from the study of Mennito et al. [28] and 

the present study, a combined measurement uncertainty was calculated [30]. 

 

 
Fig. 4. Representative cross-sections of 3D models at different time points superimposed with the baseline 

model. Cross-sectioned, aligned 3D models (a.1, b.1, c.1), simple linear representation of cross-sections used 

for profile difference measurements (a.2, b.2, c.2) and their magnifications (a.3, b.3, c.3) are provided. The 

composite restoration used for reference model alignment is marked with an arrow. 
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2.5. Statistics 

Median surface profile difference and interquartile range (IQR) were calculated for each tooth, then for 

each model and subsequently for both models as a function of time. Data were analysed using SPSS 

software (IBM SPSS Statistics 26 for Windows, Version 26.0; IBM Corp, New York, US). Shapiro-

Wilk test was used to assess the normality of the data as well as normal Q–Q plots and histograms. Not 

all sub-groups were normally distributed, therefore Friedman test followed by Dunn's post-hoc were 

used to assess the significance of tooth substance loss between different time points. Spearman’s 

correlation coefficient (rs) was calculated between the median surface profile difference (mm) after 

toothbrushing and the hours of immersion in acid. Level of significance was set at a=0.05.  

3. Results 

3.1. Tooth substance loss 

Visual differences above 0.05mm (software threshold) on the colour map were observed from 1 h of 

immersion in acid (Fig. 3).  

 

Table 1. Median surface profile difference [mm] at different points in time [h] after removal from the acid 

solution (erosion) and after tooth brushing (abrasion). Interquartile range (IQR) is provided in parentheses. 

Median values for each dental semi-arch and the overall median values are presented separately. The 

significant measurements, when compared to baseline values, are marked with *. 

 

Table 1 and Fig. 5 show the surface profile differences obtained using the software’s cross-section 

tool. The overall median surface profile difference between the baseline models and those obtained 

following erosive-abrasive challenge gradually increased from 0.01mm (IQR=0.02) to 0.18mm 

(IQR=0.03) after 6 h and, for the first dental semi-arch, up to 0.32mm (IQR=0.04) after 24 h.  

Dunn's test showed that the first significant surface profile difference considering the median from 

both models was 0.11mm (IQR=0.02, p=0.038), which was observed after 4 h immersion in the acid. 

When assessing each model independently, the first significant loss (0.10 mm, IQR=0.02, p=0.038) 

Median profile difference (IQR) [mm] 

 Erosion Abrasion 

Time [h] Semi-arch 1 Semi-arch 2 Median Semi-arch 1 Semi-arch 2 Median 

0 (Baseline) 0.00 (0.01) 0.01 (0.01) 0.01 (0.01)    

1 0.01 (0.02) 0.01 (0.04) 0.01 (0.02) 0.02 (0.01) 0.02 (0.03) 0.02 (0.01) 

2 0.05 (0.03) 0.02 (0.05) 0.04 (0.03) 0.06 (0.02) 0.04 (0.02) 0.05 (0.02) 

3 0.07 (0.01) 0.08 (0.05)* 0.07 (0.02) 0.08 (0.02) 0.08 (0.06)* 0.08 (0.02) 

4 0.10 (0.02)* 0.12 (0.02)* 0.11 (0.02)* 0.12 (0.02)* 0.10 (0.02)* 0.10 (0.02)* 

5 0.14 (0.03)* 0.14 (0.08)* 0.14 (0.04)* 0.14 (0.03)* 0.16 (0.06)* 0.15  (0.03)* 

6 0.16 (0.03)* 0.16 (0.08)* 0.16 (0.03)* 0.17 (0.02)* 0.18 (0.05)* 0.18 (0.03)* 

12 0.19 (0.03)*   0.23 (0.04)*   

18 0.24 (0.04)*   0.28 (0.04)*   

24 0.29 (0.05)*   0.32 (0.04)*   
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was observed for the first dental semi-arch after 4 h in the acid; for the second dental semi-arch, 

significant loss (0.08 mm, IQR=0.05, p=0.038) was noticed already after 3 h. 

A strong correlation was found between the time of immersion in acid and tooth substance loss at the 

end of each erosion-abrasion cycle (rs=0.971, p<0.01). 

 

 
Fig. 5. Clustered boxplot of tooth substance loss as a function of time. The boxplot shows the median surface 

profile difference [mm] at different time points (1 – 24 h) for each dental semi-arch separately. The 

measurements obtained immediately after removal from the acid solution are marked with E (erosion) and the 

measurements obtained after tooth brushing with A (abrasion). 

3.2. Measurement uncertainty 

Mean surface profile difference when assessing the alignment of identical 3D models is 0.00mm 

(SD=0.00); this value after alignment of non-identical 3D models of the same dental semi-arch was 

0.00mm (SD=0.01 mm).  

Taking into account all the individual measurement uncertainties associated with scanning, model 

alignment, and surface profile measurements, deriving both from Mennito et al. [28] and from the 

current study, a combined measurement uncertainty was calculated to be ± 0.01mm at a level of 

confidence of 95 %. 

4. Discussion 

This study shows promising results for the capability of IOS and dedicated software for early detection 

and monitoring of tooth wear. The relatively low measurement error (0.025mm [28]) and uncertainty 

https://doi.org/10.1016/j.jdent.2020.103445
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(±0.01 mm) combined with the strong correlation between the median tooth substance loss and the 

time of immersion in acid indicate that this IOS system can reliably detect and monitor progressive 

tooth substance loss. By combining measurement error and uncertainty, surface profile 

differences>0.035mm represent true tooth substance loss.  

Taking into account that the accuracy of a long span 3D model, as featured in this study, is lower 

compared to single tooth models, we can foresee even smaller measurement error and uncertainty if 

the same method is tested on single tooth models [20,21,25,28]. Accordingly, larger measurement 

error and uncertainty are expected in full-arch 3D models [28]. Furthermore, it is worth mentioning 

that no powder was needed for scanning with the IOS system used, a notable point as a previous study 

reported part of the measurement error had resulted from the presence of powder on the surfaces of 

interest [21].  

Composite restorations were used as references for 3D model alignment to minimize the measurement 

uncertainty. Reference alignment, as supported by previous research, demonstrated reduced errors in 

alignment and measurements when compared to best fit alignment, the latter available in most 

software tools [25]. In a clinical scenario, relatively stable surfaces, such as existing restorations or 

dental surfaces that are expected to be less affected by tooth wear, should preferably be chosen as 

references for more accurate model alignment. This could be for example the buccal or lingual tooth 

surfaces in case of erosive wear due to intrinsic or extrinsic factors, respectively. If no stable reference 

surfaces can be defined, the best fit alignment can be applied as a first step to determine which surfaces 

show the least differences compared to the baseline model; subsequently, these same surfaces can be 

used to conduct the reference alignment. Additionally, single tooth alignment, an alternative that could 

potentially lead to even smaller measurement uncertainty, involves defining reference surfaces on 

every tooth, something that requires additional time or might not always be possible due to the lack of 

reference on every tooth. Therefore, alignment and comparison of the complete model were chosen in 

the current study to more closely mimic future clinical use, as fewer reference surfaces – only on 

selected teeth – are needed for the model alignment. Model alignment is particularly advantageous to 

obtain measurements on teeth that may be affected by tooth wear on all surfaces and do not have an 

easily identifiable reference surface.  

In contrast to previous similar studies [20,21,25], which used single-tooth models or enamel samples 

to investigate 3D systems for detection and monitoring of tooth wear, the current study used dental 

semi-arches as study models, more reflective of in vivo presentation. The semi-arches included full 

crowns of multiple teeth where more than one tooth surface was examined, unlike previous studies 

which assessed individual surfaces of teeth, usually polished to achieve a flat examination plane and 

often surrounded by a reference plane unaffected by the erosion-abrasion challenge [8,11–17]. The 

latter set-up could more easily allow comparison of the results using other equipment such as surface 

profilers or optical coherence tomography (OCT) scanners. The possibility of including a surface 

profiler or OCT scanner in the current study as comparison methods [8,11–17] was contemplated. 

However, due to the limited scan range of such methods when it comes to the assessment of 

comparably large three-dimensional models and considering the available data supporting the validity 

of the IOS system employed in this study [27,28], no comparison method was adopted.  

The IQR of the profile difference increased with immersion time in acid from 0.01mm to 0.08 in the 

second model. The increase in the measurement range can be attributed to the fact that multiple 

surfaces on teeth from different people were assessed. It is known that the enamel composition and 

thus the tooth wear rate varies from person to person or even from one tooth surface to another [3], 

which may explain some of the outliers within the measurements. For example, the outliers no. 199-

https://doi.org/10.1016/j.jdent.2020.103445


Pre-print version of article published in Journal of Dentistry 1000 (2020) 103445,  

https://doi.org/10.1016/j.jdent.2020.103445 

10 

 

208 in the second dental semi-arch (Fig. 5) correspond to the same tooth, which was possibly more 

susceptible to tooth wear than the rest of the sample.  

Finally, it was difficult to directly compare the absolute profile difference measurements with findings 

from previous studies due to methodological differences, e.g. types of measurement devices, 

differences in erosion-abrasion protocols and measurement criteria. Nevertheless, our findings open 

for the possibility of further work focusing on the reduction of measurement error and automated 

calculation of tooth substance loss. Additionally, longitudinal clinical trials to assess the system’s in 

vivo performance in detecting and monitoring early tooth substance loss would be of great value. 

5. Conclusion 

Tooth substance loss due to erosive tooth wear was detected by the IOS system at very initial stages, 

with the smallest significant loss for the samples at 0.11 mm. Furthermore, increasing tooth substance 

loss after consecutive erosion-abrasion cycles was quantified showing significant correlation with the 

exposure time in the acid. Therefore, the use of the IOS aided by specific software for early detection 

and monitoring of tooth wear is encouraging and can potentially be applied in vivo.  
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