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Environmental shaping of the bacterial and
fungal community in infant bed dust and
correlations with the airway microbiota
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Urvish Trivedi1, Morten A. Rasmussen2,4, Jakob Stokholm2, Hans Bisgaard2 and Søren J. Sørensen1*

Abstract

Background: From early life, children are exposed to a multitude of environmental exposures, which may be of
crucial importance for healthy development. Here, the environmental microbiota may be of particular interest as it
represents the interface between environmental factors and the child. As infants in modern societies spend a
considerable amount of time indoors, we hypothesize that the indoor bed dust microbiota might be an important
factor for the child and for the early colonization of the airway microbiome. To explore this hypothesis, we analyzed
the influence of environmental exposures on 577 dust samples from the beds of infants together with 542 airway
samples from the Copenhagen Prospective Studies on Asthma in Childhood2010 cohort.

Results: Both bacterial and fungal community was profiled from the bed dust. Bacterial and fungal diversity in the
bed dust was positively correlated with each other. Bacterial bed dust microbiota was influenced by multiple
environmental factors, such as type of home (house or apartment), living environment (rural or urban), sex of
siblings, and presence of pets (cat and/or dog), whereas fungal bed dust microbiota was majorly influenced by the
type of home (house or apartment) and sampling season. We further observed minor correlation between bed dust
and airway microbiota compositions among infants. We also analyzed the transfer of microbiota from bed dust to
the airway, but we did not find evidence of transfer of individual taxa.

Conclusions: Current study explores the influence of environmental factors on bed dust microbiota (both bacterial
and fungal) and its correlation with airway microbiota (bacterial) in early life using high-throughput sequencing.
Our findings demonstrate that bed dust microbiota is influenced by multiple environmental exposures and could
represent an interface between environment and child.
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Background
As societies become more modernized, people tend to
spend an increasing amount of time indoors, especially
within their homes [1]. Here, humans are exposed to a
large number of microbes, which can have important
implications for health and disease. With the advance-
ment of sequencing technologies, it is now possible to
study the indoor microbiome [2–4] and how microbes
therein affect the inhabitants [5, 6]. Most studies to date
have characterized the indoor microbiome in schools,
homes, offices, hospitals, or kindergarten classrooms [5,
7–10]. In homes, studies were mostly done on floors,
kitchen sinks, and bathrooms [5, 11]. However, very little
is known about microbial communities present in beds
with which humans have extended daily exposure [12].
Environmental factors such as pets, type of housing,

and land use of the surrounding area have been associ-
ated with the microbiota of homes [2, 13, 14]. Many
published studies have looked at the influence of pets in
homes, but none have addressed a pet’s influence on the
bed microbiome. Many pet owners share their bedroom
space with their pets [15]; therefore, the pets may influ-
ence the bed dust composition, including health relevant
taxa, as microbes can be airborne and get enriched in
closed systems. Some studies reported that the exposure
to pets (e.g., dogs and cats) decreases the risk of allergic
diseases [16–18], where another has shown increased
risk [19]. With the reasonably consistent findings across
studies, exposure to pets, specifically dogs, remains a
promising approach for identifying a prevention strategy
for allergic diseases in early life.
Furthermore, especially among young infants, the bed

dust is a highly relevant place of sampling for capturing
the indoor dust microbiota, which can serve as a proxy
for many environmental exposures and act as a seeding
source for the microbiota colonizing the child. Early in-
fancy characterizes a rapid developmental phase of the
airway microbial colonization [20] but also with regard
to immune function [21]. Elucidating the relationship
between the indoor and infant airway microbiome in
early life could be important in understanding human
development, especially as the early life airway micro-
biota has been associated with later asthma development
[22, 23]. The relationship between microbial exposures
from surroundings and the composition of the infant
airway microbiota is still poorly understood [24, 25].
In this study, we evaluate which environmental factors

influence the bacterial and fungal composition of the in-
fants’ beds at 6 months after birth. Additionally, we com-
pare bed dust to the bacterial composition of the airways
at age 3 months. All samples were collected in the
Copenhagen Prospective Studies on Asthma in Child-
hood2010 (COPSAC2010) cohort [26]. Through a compre-
hensive analysis of the microbiomes in bed dust and

early life airways, we aim to elucidate the interactions
between the two and secondarily identify the external
factors that affect the microbial interactions between
bacterial and fungal microbiome. To our knowledge, this
is the first study to provide detailed qualitative and
quantitative descriptions of microbial taxa and diversity
in bed dust.

Results
Characteristics of the cohort
In this study, we included 584 bed dust samples collected
from the infants’ beds at 6months after birth and 658 air-
way samples collected from the infants 3 months after
birth. The demographic information about the study
population in this study is summarized in Table S1.

Sequencing results and quality control
In total, for the 584 dust samples and 70 controls (in-
cluding negative and positive controls) obtained from
the bed of the cohort children at age 6 months, we had
65,183,188 and 57,936,573 raw reads, from 16S riboso-
mal RNA gene (16S rRNA gene) (V3-V4 region) and in-
ternal transcribed spacer (ITS) amplicon (ITS2 region)
sequencing including controls, respectively. After quality
filtering and chimera detection, amplicon sequences
were clustered into 79,347 and 24,474 amplicon se-
quence variants (ASVs) for 16S rRNA gene and ITS
data. The coverage of our sequencing was assessed by
rarefaction curves, showing a beginning plateau at 10,
000 reads per sample (Fig. S1a and b). After removing
the negative controls and the samples that did not reach
a satisfactory read depth (minimum 3000 reads), we
were left with 577 samples, representing 49,371 and 20,
211 unique bacterial and fungal ASVs.
In the total 658 airway samples obtained from the co-

hort from children at age three, 34,319,874 raw reads
passed quality filtering. After quality filtering and
chimera detection, amplicon sequences were clustered
into 3,692 ASVs for 16S rRNA gene (V4 region) data.
We removed airway samples without a matching bed
dust sample from the downstream analysis, ending up
with 542 samples that contained a total of 2,272 ASVs.

Microbial community composition in bed dust
A total of 930 bacterial genera from 31 phyla were de-
tected in the beds of 6-month-old infants. The most
abundant phyla were Firmicutes (43.05%), Proteobacteria
(25.69%), Actinobacteria (19.27%), Cyanobacteria
(6.89%), Bacteroidetes (2.17%), and Fusobacteria (1.85%)
(Fig. 1a, Fig. S3a, Table S2). The remaining 25 phyla
combined represented 1% of the relative abundance.
Taxonomic identification at the class, family, and genus
levels (Fig. S3b, c, and d, respectively) revealed that most
of the Firmicutes belonged to the class Bacilli, with

Gupta et al. Microbiome           (2020) 8:115 Page 2 of 16



varying amounts of the families Streptococcaceae and
Staphylococcaceae. Among these, the most abundant
genera were Streptococcus (23.6%), Staphylococcus
(12.43%), Rothia (6.17%), Haemophilus (4.15%), Paracoc-
cus (4.12%), and Corynebacterium (4.09%) (Table S3).
A total of 102 fungal genera from 6 phyla were de-

tected. The most abundant phyla were Ascomycota
(82.47%) and Basidiomycota (6.60%) (Fig. S4a, Table S4).
The remaining four phyla represented less than 1% of
the overall abundance with an additional 10.53% of the
sequences not classified at the phylum level (Fig. S4b,
Table S4). A similar trend was observed at the family
level (Fig. S4c) and class level (Table S5). The most
abundant genera were Spegazzinia (9.61%), Aureobasi-
dium (5.34%), Sphaerellopsis (4.99%), Curvularia
(4.83%), Saccharomyces (4.50%), and Penicillium (3.55%)
(Fig. S4d, Table S6), with 44.1% of reads being unclassi-
fied Ascomycota.

Correlations between the bacteria and fungi in bed dust
We explored the relationship between the bacterial and
fungal members in the bed dust microbiota of the chil-
dren at 6 months. Bacterial and fungal alpha diversity
values were positively correlated (robserved = 0.17, rshannon
= 0.24), when assessed by linear regression (pobserved =
2.9e−05, pshannon = 8.8e−09) (Fig. 1b). We further looked
at the correlation both within and between the fungal
and bacterial microbiomes for the genera present in at

least 30% of the samples (n = 173). For fungal-fungal
correlation, most of the significant correlations (p <
0.01) were positive, while correlations between Saccharo-
myces with Spegazzinia (Spearman correlation coeffi-
cient, r = − 0.15), Curvularia (Spearman correlation
coefficient, r = − 0.23), Sphaerellopsis (Spearman correl-
ation coefficient, r = − 0.19), and Neophaeosphaeria
(Spearman correlation coefficient, r = − 0.13) were nega-
tive (Fig. S5). The strongest positive correlation occurred
between Spegazzinia and Curvularia (Spearman correl-
ation coefficient, r = 0.54), while Curvularia and Saccha-
romyces (Spearman correlation coefficient, r = − 0.23)
exhibited the strongest negative correlation.
A higher number of significant correlations were

found for bacteria-bacteria correlation compared to
fungal-fungal correlation. The strength of negative cor-
relation is very low in bacteria-bacteria correlation
(Spearman correlation coefficient, (r) range from − 0.12
to − 0.28). For example, the genera Sphingomonas was
significantly correlated (p < 0.01) with more than 30
genera; most correlations were positive (Spearman cor-
relation coefficient, (r) range from 0.15 to 0.72) and
showed negative correlations with 10 genera (Spearman
correlation coefficient, (r) range from − 0.12 to − 0.16).
Peptoniphilus genera showed the strongest positive cor-
relation with Finegoldia (Spearman correlation coeffi-
cient, r = 0.75). We also observed many clinically
relevant genera that were significantly correlating with

Fig. 1 a Relative abundance of bacterial phyla in bed dust and airway samples. Phyla with a mean abundance of at least 1% abundance across
bed dust samples are represented in colors. b Associations between fungal and bacterial alpha diversity (observed richness and Shannon diversity
index values) for a given sample. The shaded gray region represents 95% confidence intervals. Linear regression analysis: p = 2.9e−05, R = 0.17 for
observed richness and p = 8.8e−09, R = 0.25 for Shannon diversity
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many other genera, for example, Moraxella showed
strongest positive correlation with Abiotrophia genus
(Spearman correlation coefficient, r = 0.32), whereas
Staphylococcus showed the strongest positive correlation
with Corynebacterium (Spearman correlation coefficient,
r = 0.6) and strongest negative correlation with Strepto-
coccus (Spearman correlation coefficient, r = − 0.27). On
the other hand, Streptococcus shows significantly positive
correlation with Gemella (Spearman correlation coeffi-
cient, r = 0.64) (Fig. S6).
We next assessed the correlations between the fungal

and bacterial microbiota at the genus level. Comparing
the relative abundances, both positive and negative corre-
lations existed between fungal and bacterial taxa (Fig. 2).
Cutibacterium and Malassezia showed the strongest
inter-domain positive correlation (Spearman correlation
coefficient, r = 0.43), whereas Prevotella with Erythrobasi-
dium (Spearman correlation coefficient, r = − 0.25) exhib-
ited the strongest negative correlation.

Environmental factors shaping the bed dust microbiome
The effect of environmental factors on the bed dust
microbiome, i.e., income level, type of home, type of liv-
ing environment, pets, season of dust sample collection,
race, and number of male or female siblings, was evalu-
ated (Table 1). The bacterial richness in the bed dust
was significantly affected by the type of home (house or
apartment, median richness 294 and 269, respectively),
type of living environment (rural or urban, median rich-
ness 298 and 267, respectively), and pets (cat and dog vs
no pets, median richness 346 and 273, respectively)
(Wilcoxon test, adjusted p = 0.0089, adjusted p = 0.0004,
and adjusted p = 0.00045, respectively). We investigated
the bacterial richness in the apartment and house locat-
ing either in the rural and urban areas. Apartments in
rural areas showed significantly higher bacterial richness
compared to apartments in urban areas (apartments in
rural vs urban, median richness 302 vs 263) (Wilcoxon
test, adjusted p = 0.024) while houses had no significant
differences between rural and urban areas (Fig. S7a). On
the other hand, bacterial richness between houses and
apartments in rural and urban areas was not significantly
different (Fig. S7b).
The fungal richness was significantly affected by the

type of home (house or apartment, median richness 251
and 230, respectively) and the season of sampling (me-
dian richness for summer 262, winter 233, spring 266,
and autumn 229) (Kruskal-Wallis test, adjusted p = 1.3e
−05). The samples collected in spring and summer
showed a higher fungal diversity. We further investigated
the fungal richness into the apartment and house
present in the rural and urban areas, and we did not ob-
serve any significant differences (Fig. S8a). On the other
hand, fungal richness between house and apartment in

urban areas was significantly different (house vs apart-
ment in urban areas, median richness 255 vs 228) (Wil-
coxon test, p = 0.003) (Fig. S8b), whereas the houses and
apartments present in rural areas were not.
Moreover, siblings correlated with an increased bacter-

ial (no vs yes, median richness 265 vs 298) (Wilcoxon
test, adjusted p = 0.03) and fungal richness (no vs yes,
median richness 226 vs 255) (Wilcoxon test, adjusted p
= 0.0023). We further observed that homes that had only
male siblings showed significantly higher bacterial rich-
ness compared to homes that had no siblings (median
richness 311 vs 265) (Wilcoxon test, adjusted p =
0.0079). However, homes that had only female siblings
did not show any significant difference (median richness
265 vs 284) (Wilcoxon test, adjusted p = 0.4). Moreover,
fungal richness correlated with male and/or female sib-
lings (median richness for no siblings 225, male only
258, female only 251, both male and female 273) (Krus-
kal-Wallis test, adjusted p = 0.0093). We further ob-
served that number of male siblings correlated with an
increase in bacterial (none vs two or more, median rich-
ness 265 vs 330) (Wilcoxon test, adjusted p = 0.0004)
and fungal richness (none vs two or more, median rich-
ness 225 vs 267) (Wilcoxon test, adjusted p = 0.0047).
On the other hand, we did not observe any significant
changes in bacterial (none vs two or more, median rich-
ness 265 vs 321) (Wilcoxon test, adjusted p = 0.1) or
fungal richness (none vs two or more, median richness
225 vs 257) (Wilcoxon test, adjusted p = 0.073) in rela-
tion to increase in female siblings.
The bacterial microbial community (beta diversity)

was significantly affected by the type of living environ-
ment, pets, the season of dust samples collection, and
presence of siblings (PERMANOVA for weighted Uni-
frac, p = 0.001, R2 = 0.008; p = 0.005, R2 = 0.007; p =
0.001, R2 = 0.01; and p = 0.026, R2 = 0.003, respectively).
With the exception of pets and siblings, this was also the
case for the fungal microbial community (PERM
ANOVA for weighted Unifrac, p = 0.001, R2 = 0.014 and
p = 0.001, R2 = 0.105, respectively) (Table 1). We next
investigated the interaction between all the significant
factors and look for the marginal effects. We performed
PERMANOVA for weighted Unifrac distance; environ-
mental factors namely season had the largest interaction
with bacterial and fungal bed dust microbiome compos-
ition (p = 0.001, R2 = 0.021; p = 0.001, R2 = 0.084, re-
spectively) (Table S15).

Influence of pets on bed dust microbiome
Various environmental factors influenced the bed dust
microbiome composition (Table 1), and we performed
in-depth evaluations of the effects of pets. Among the
families, 87/577 (15.1%) had cat only, 69/577 (11.9%)
had dogs only, and 32/577 (5.5%) had both cat and dog.
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We observed that the bacterial alpha diversity were not
significantly associated with the presence of either a cat
or a dog only, but significantly higher in homes with
both cat and dog (Kruskal-Wallis test, pobserved = 0.0039,

pshannon = 0.066, pchao1 = 0.0021) (Fig. 3), whereas fungal
alpha diversity was not influenced by the pet ownerships
(Kruskal-Wallis test, pobserved = 0.52, pshannon = 0.92,
pchao1 = 0.46) (Fig. S9).

Fig. 2 Spearman correlation by genus abundance. Only significant values (p < 0.05 after FDR adjustment) are shown. Correlation inferred for the
bed dust microbiome based on bacteria and fungi combined. Orange and blue represents significant negative correlations and positive
correlations. Darker color represents stronger correlations

Gupta et al. Microbiome           (2020) 8:115 Page 5 of 16



Table 1 The effects of environmental factors on alpha and beta diversity on the bed dust microbiome

Category Variable Overall
n (%)

Bacterial
Alpha diversity
(median richness)

Bacterial
Alpha
diversity^

Adjusted
p value

Bacterial
Beta
diversity#

R2/p
value

Fungal
Alpha diversity
(median richness)

Fungal
Alpha
diversity^

Adjusted
p value

Fungal
Beta
diversity#

R2/p
value

n 577

Sex Male 301
(52.2)

Income level* Low 52 (9) 308 0.46 0.004/
0.132

228 0.51 0.003/
0.417

Medium 302
(52.3)

285 246

High 222
(38.5)

274 246

Type of home House↑ 316
(54.8)

294 0.0089 0.003/
0.076

251 0.0016 0.003/
0.139

Apartment 231
(40)

269 230

Type of living
environment

Rural↑ 251
(43.5)

298 0.0004 0.008/
0.001

246 0.14 0.014/
0.001

Urban 295
(51.1)

266 242

Pets Cat 87
(15.1)

292 0.0039 0.007/
0.005

255 0.52 0.004/
0.468

Dog 69
(11.9)

294 252

Both↑ 32
(5.5)

346 247

Season of dust
sample collection

Winter (December,
January, February)

140
(24.5)

272 0.97 0.01/
0.001

233 1.3e−05 0.105/
0.001

Spring↑ (March, April,
May)

115
(20.1)

288 266

Summer↑ (June, July,
August)

149
(26)

283 262

Autumn (September,
October, November)

168
(29.4)

277 229

Race Caucasian 552
(95.7)

281 0.12 0.002/
0.054

243 0.9 0.001/
0.442

Siblings No 132
(22.87)

265 0.03 0.003/
0.026

225 0.0023 0.0023/
0.329

Yes↑ 329
(57.02)

298 255

Siblings No 132
(22.87)

265 0.049 0.009/
0.003

225 0.0093 0.011/
0.053

Male only 140
(24.26)

311 ↑ 258 ↑

Female only 121
(20.97)

284 251 ↑

Both male and female 68
(11.78)

290 273 ↑

Number of male
siblings

None 132
(22.87)

265 0.0015 0.007/
0.33

225 0.0062 0.0003/
0.99

One 114
(19.75)

308 255

Two or more↑ 26
(4.5)

330 267
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We used the phylogeny-based weighted UniFrac
method to assess the relatedness between samples from
homes that had dogs and/or cats using principal coordin-
ate analysis (PCoA). We found a small, but significant, ef-
fect on the bacterial community composition
(pPERMANOVA = 0.003, R2 = 0.007), but no significant effect
on the fungal community composition (pPERMANOVA =
0.9, R2 = 0.004) (Fig. S10). Compared to homes without
cats or dogs, we found that homes that had both cat and
dog had over-representation of 19 taxa in infant beds, be-
longing to the phyla Firmicutes and Proteobacteria (Fig. 4,
Table S7), and under-representation of 6 taxa, belonging
to Cyanobacteria and Proteobacteria. Among these phyla,
genera such as Gemella, Staphylococcus, and Sphingomo-
nas were significantly over-represented (log10(LDA score)
> 4, p < 0.05), and Enhydrobacter genera were significantly
under-represented (log10(LDA score) > 4, p < 0.05).
In homes with either a cat or a dog, the bacterial

microbiota appeared to be less influenced than homes
with both (Fig. 3). Homes with a dog had over-
representation of 21 taxa compared to homes that had
no pets, belonging to the phyla Firmicutes, Fusobacteria,
Proteobacteria, Cyanobacteria, and Actinobacteria,
whereas homes with a cat had over-representation of 3
taxa, belonging to phylum Actinobacteria (Table S8).
Genera belonging to Paeniclostridium, Atopobium,
Tychonema, and Acinetobacter (log10(LDA score) > 3.5,
p < 0.05) were significantly more abundant in the homes
that have only dog, whereas Turicella (log10(LDA score)
> 3.5, p < 0.05) was significantly more abundant in the
homes that have only cat (Table S9).
Furthermore, homes with both cat and dog had over-

representation of 38 taxa, belonging to the phyla Asco-
mycota, Basidiomycota, Chytridiomycota, and Mortierel-
lomycota. Genera belonging to Neophaeosphaeria,
Mortierella, Preussia, Tylospora, Spizellomyces, Oleogut-
tula, and Monilochaetes (log10(LDA score) > 3.5, p <
0.05) were the significant ones that were over-

represented in the homes that had both cat and dog
(Table S10). Genera belonging to Setosphaeria, Peziza,
Melanogaster, Lodderomyces, Preussia, Curvularia, and
Dirkmeia (log10(LDA score) > 3.5, p < 0.05) (Table S11)
were significantly more abundant in the homes that have
only dog, whereas Oleoguttula, Curvularia, and Calo-
placa (log10(LDA score) > 3.5, p < 0.05) were signifi-
cantly more abundant in the homes that have an only
cat (Table S12).

Influence of living environment (rural or urban) on bed
dust microbiome
Bacterial richness and composition of the bed dust were
highly influenced by the living environment (rural or urban)
(Table 1). We further investigated and identified the taxa at
genus level between rural and urban living environments.
We found 353 genera in the bed dust from rural environ-
ment that were not present in the bed dust from urban
environment (Table S13, Fig. S11a). In addition, we per-
formed differentially abundant analysis using Wilcoxon
tests to identify the taxa with significantly different abun-
dance between the two groups (Fig. S11b). Paracoccus,
Micrococcus, and Sphingomonas were the top three signifi-
cantly more abundant taxa in the rural environment (ad-
justed p value <0.05). Moreover, genera belonging to order
Rickettsiales were significantly more abundant in the urban
environment (adjusted p value <0.05).

Seasonal effect on other environmental factors
To test for interactions between the season of sampling
and the effect of environmental variables in the bed dust,
we stratified the significant variables from Table 1 by the
season of sampling. The effect of “type of living environ-
ment” and “type of home” on microbial diversity was
consistent across seasons. However, the homes with
both cat and dog only had a higher bacterial diversity in
their bed dust when sampled in the fall and winter
(Table S14).

Table 1 The effects of environmental factors on alpha and beta diversity on the bed dust microbiome (Continued)

Category Variable Overall
n (%)

Bacterial
Alpha diversity
(median richness)

Bacterial
Alpha
diversity^

Adjusted
p value

Bacterial
Beta
diversity#

R2/p
value

Fungal
Alpha diversity
(median richness)

Fungal
Alpha
diversity^

Adjusted
p value

Fungal
Beta
diversity#

R2/p
value

Number of female
siblings

None 132
(22.87)

265 0.29 0.008/
0.33

225 0.11 0.003/
0.95

One 97
(16.81)

274 248

Two or more 24
(4.16)

321 257

^Alpha diversity were calculated based on observed richness and significance were calculated using the Wilcoxon test (for two groups) and Kruskal-Wallis test (for
three or more groups), FDR corrected
#Effects were quantified with R2, and p values, as determined by PERMANOVA on weighted UniFrac distances. Significant adjusted p values (p < 0.05) are shown
in bold
↑The significant increase in alpha diversity of bacterial and/or fungal microbiome
*Income level is categorize into low (< €50,000/year), medium (€50,000–€110,000/year), and high (> €110,000/year)
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Correlations between the dust and airway microbiota
Next, we evaluated whether associations existed between
the two microbial compartments (beds dust when in-
fants were 6 months old and airways at 3 months), pos-
sibly alluding to the importance of the dust microbiota
on the infant airway composition. We observed signifi-
cantly higher bacterial alpha diversity in bed dust com-
pared to infant airways (Wilcoxon test, adjusted p < 1e
−15) (Fig. 5a). Furthermore, bed dust and airway

microbiota separated well by Bray-Curtis distance mea-
sures (PPERMANOVA < 0.001) (Fig. 5b).
We applied several methods to identify relationships

between bed dust and airway microbiota. Based on the
Spearman correlations, we did not observe any signifi-
cant correlations in alpha diversity (p = 0.9) (Fig. 5d).
Furthermore, we tested for transfer between the dust
and airway bacteria using presence-absence of shared
genera and odds ratio analysis. Interestingly, we did not

Fig. 3 Box plots of the three diversity metrics for bacteria [a observed, b Shannon diversity, and c Chao1 diversity] with homes categorized
according to pet ownership. Alpha diversity was tested using the Kruskal-Wallis test, and Benjamini-Hochberg FDR method was used for p value
correction. After the global test was significant, a Wilcoxon test was performed to determine which group of the independent variable differs
from each other group
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identify any significant sharing of genera using this
method (Fig. S12). In addition, bed dust and airway sam-
ples from the same child were not more similar to each
other than randomly paired dust and airway samples
using Bray-Curtis distance (Wilcoxon test, adjusted p =
0.3) (Fig. 5c).
When taking into account the relative abundance and

looking for correlations, we found that the fungal com-
munity composition in bed dust did not show significant
correlations with the airway bacterial community. How-
ever, we observed several bacterial genera in the bed
dust that correlated significantly with bacterial abun-
dances in the infant airways (p < 0.01) (Fig. 6). For ex-
ample, Youngiibacter and Pseudolabrys in dust samples
had many positive correlations with genera from the air-
way samples. Moreover, multiple genera in the bed dust
samples such as Arachidicoccus, Pseudosphingobacter-
ium, Calothrix, and Syntrophaceticus showed positive
correlations with Luteibacter among airway samples.

Discussion
In this study, we determined that bacterial and fungal
communities in bed dust are related to each other with
positive correlations in alpha diversity and that they are
both influenced by environmental factors. The presence
of pets and type of living environment (rural or urban)
are the dominant factors among those studied that most
affect microbial communities.

We observed that the fungal microbiota composition
of bed dust samples was dominated by fungi from the
phyla Ascomycota and Basidiomycota (Fig. S4a). In ac-
cordance with previous work, Aureobasidium and Peni-
cillium genera have commonly been identified in homes
[27] at several sites such as floors [28] and kitchen sinks
[29]. These shared features in community composition
indicate that common taxa present elsewhere in homes
are likely to be discovered in beds also.
Moreover, the bed dust samples were dominated by

Gram-positive bacteria, including genera known to be
associated with human sources such as Staphylococcus,
Streptococcus, and Corynebacterium (Fig. S3d). These
bacterial genera, which are commonly found on human
skin [30], have been documented in other studies of the
home microbiomes as well [31, 32]. The human contri-
bution to bacteria within the home is further confirmed
in a study [5] showing the abundance patterns of bacter-
ial taxa in samples from homes that closely resemble the
microbial profiles of its human residents.
Environmental factors such as pets had a significant

influence in shaping the bed dust microbiomes. Studies
have shown that bacterial diversity increases significantly
by the presence of a dog (but not by a cat) in a house-
hold [4, 14]. We observed that bacterial diversity was in-
creased significantly by the presence of both cat and dog
in the home (Fig. 3) but not if either one was present
alone. Many taxa associated with pet ownership have
previously been associated with human health outcomes.

Fig. 4 Different abundances of bacterial communities between homes with both cat and dog and no pets. With LEfSe for data analysis and
visualization, key ASVs were identified as differentiating between homes with both cat and dog and no pets. The threshold for the logarithmic
LDA score was 4 and p < 0.05 for the factorial Kruskal-Wallis test among classes
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For example, Corynebacterium and Staphylococcus genera
were associated with the homes that have both dog and
cat. These genera are found mostly on skin and nose and
may play an active role in host defense [33]. Acinetobacter
was associated with homes that have only a dog. These
genera, part of the human skin microbiota, may protect
against allergic sensitization and inflammation [34].
Some studies have reported that the living environment

(rural or urban) has little to no significant effect on bacter-
ial or fungal diversity [35], whereas others have shown sig-
nificant changes in the microbial diversity [36]. In our
study, the effect of urbanization showed a significant effect
on both bacterial and fungal diversity on the bed dust
microbiome. Approximately 30% of bacterial genera
present in the bed dust from rural areas were not found in
bed dust samples collected from an urban living environ-
ment (Fig. S11). While a wide range of factors can influ-
ence the risk of developing asthma, rates of allergic
asthma are higher for children living in more urbanized
areas than in rural areas [37]. It has been hypothesized
that these geographic differences in allergy rates can be at-
tributed to people living in more urbanized areas being

exposed to lower levels of microbial diversity [38], and our
study supports the hypothesis.
Furthermore, we observed that having siblings in the

household correlated with increased bacterial and fungal
richness, similar to the data from Weikl et al. (2016)
who found that households with more than three occu-
pants had higher bacterial richness [39]. Earlier studies
showed that fewer siblings in early life are associated
with increased risks of developing asthma and other
atopic diseases later in life [40]. Moreover, higher micro-
bial diversity in the environment has been found to be
inversely associated with asthma [25]. Together with our
results, these suggest that siblings protect against asthma
and atopic disease by increasing the bacterial and fungal
richness, but further studies are needed to confirm this.
As no study we know of have investigated how the sex

or siblings affect the bacterial or fungal richness, we
stratified for the sex of siblings. Interestingly, we found
that only male siblings significantly increased bacterial
and fungal richness and correlated with the number of
male siblings. In homes with only female siblings, fungal
richness were significant increased, but we did not have

Fig. 5 Alpha and beta diversity comparison of airway and bed dust samples. a Box plot showing the Shannon diversity. Highly significant
differences were observed in the diversity (Wilcoxon test, p < 2.2e−16) between airway and bed dust samples. b Distances shown in the PCoA
plot are based on Bray-Curtis diversity metrics. The bacterial microbiome of each sample is indicated with one dot. c Bray-Curtis distance
between the dust-airway sample pairs for a specific child compared to the other random sample pair. “Own” represents the distance between
specific children bed dust with their own airway samples. “Others” represents the distance between random pairs of children bed dust with
random airway samples. d Associations between fungal and bacterial alpha diversity (observed richness) for a given sample. The shaded gray
region represents 95% confidence intervals. Linear regression analysis: p = 0.99, R = − 0.00057 for observed richness

Gupta et al. Microbiome           (2020) 8:115 Page 10 of 16



the statistical power to determine if the trend towards
higher bacterial richness were significant. Additionally,
we did not find any significant differences in the richness
when comparing homes with either female or male sib-
lings. While not directly comparable to our study popu-
lation, it has been suggested that men shed more
bacteria to their environment [7] and a study by Raju
et al. found higher bacterial richness in saliva of boys
compared to girls [41].
Interestingly, alpha diversity of the bacterial and fungal

microbiome of the bed dust was significantly and posi-
tively correlated (Fig. 1c). To further understand the as-
sociation between the bacterial and fungal microbiome
in the bed dust samples, we observed numerous signifi-
cant correlations at the genus level. In the fungal-fungal
correlations, we observed mostly positive correlations
with only Saccharomyces having negative correlations (to
Spegazzinia, Curvularia, and Sphaerellopsis). Saccharo-
myces is a common genus in home dust and usually as-
sociated with humans [42]. For bacteria-bacteria
correlations, the most abundant genera Staphylococcus
and Streptococcus showed both positive and negative
correlations with other genera. Staphylococcus and

Streptococcus are a typical part of the human micro-
biome and constantly interact with each other [30].
Moreover, we also observed an inter-domain correlation
between bacteria and fungi and most of these correla-
tions were positive, pointing at synergistic relationships
or that they were transported to the bed dust together
from the same source.
Not surprisingly, the bed dust bacterial microbiota was

different from the airway bacterial microbiota. While
both airway and bed dust samples harbored diverse mi-
crobial communities, the diversity of bacteria was higher
in bed dust samples (Fig. 5a). The airway samples were
dominated by genera from the families Streptococcaceae
and Staphylococcaceae, as well as the genus Moraxella,
which are mainly observed in the upper respiratory
tracts of healthy children [43]. In our comparisons of
bed dust and airway microbiota, based on OR, we did
not observe any significant taxa that were shared be-
tween bed dust and infants’ airway. However, based on
the microbial relative abundance, we observed several
positive correlations between airway bacterial and bed
dust bacterial and fungal microbiomes. The biological
significance of these positive correlations remains

Fig. 6 Spearman correlation by genus abundance. Only significant values (p < 0.05 after FDR adjustment) are shown. Correlation inferred for
bacterial bed dust microbiome with bacterial airway microbiome. Orange and blue colors represent significant negative correlations and positive
correlations. Darker color represents stronger correlations
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unknown, but as we found limited evidence of transfer,
shared exposure reservoirs may be the cause. However,
we cannot exclude the possibility that the difference in
sampling time between the bed dust and airway samples
might have caused this lack of evidence for transfer.
Our study has some limitations. We have used dif-

ferent DNA extraction kits for the airway and dust
samples. Different types of extraction kits may have
different biases in extraction efficiency, which in turn
may affect the bacterial composition results. More-
over, we have used different sequencing primers for
dust and airway microbiome (V3–V4 region for the
bed dust samples and V4 region for the airway sam-
ples), and different PCR primers preferentially amplify
different sets of taxa [44, 45]. This may hamper the
identification of transfer events on the ASV level.
However, this should not affect the correlation ana-
lysis between the two compartments. Furthermore, we
have collected the children’s airway samples at 3
months of age whereas and the bed dust samples 3
months later. Collecting the samples at the same time
point would have provided a stronger premise for as-
sociation analyses, especially as seasonal differences in
the microbiomes were found. However, we also ob-
served that the sampling season did not seem to
interact with the effect of other environmental vari-
ables, with the exception of the effect of pet owner-
ship that was only found in the fall and winter.
During fall and winter months, Danish people are
likely to spend less time outdoors, but as pets need
to visit there regularly during every season, they can
act as vectors of bacteria from the outside. However,
the stratification results in groups with quite low
numbers, which can result in spurious findings, and
should thus be interpreted with caution. Lastly, many
of the fungal sequencing reads could not be assigned
to specific taxa (10.53% unclassified at the phylum
level, 47.25% of reads being unclassified class level);
this did limit our analysis and indicates that it might
be relevant to revisit our analysis when better fungal
reference databases are available.

Conclusion
In summary, our study finds evidence of interplay be-
tween bacterial and fungal diversity in the bed dust of
young infants and that both bacterial and fungal com-
position are affected by environmental variables. We find
limited evidence of transfer between the dust and devel-
oping airway microbiota. From early life, children are ex-
posed to a multitude of environmental exposures, which
may impact a healthy development perhaps through the
microbiome of bed dust, which may act as the interface
between environment and child.

Methods
Study design and sample collection
The study was embedded in the population-based COP-
SAC2010 prospective mother-child cohort of 736 women and
their children followed from week 24 of pregnancy [26].
Beds dust was sampled by the parents when the infants

were 6months old. This was done using an external filter
kit (DUSTREAM® Collector, Indoor Biotechnologies, or
Dust Collecting Device from ALK-Abello) attached to the
family’s vacuum cleaner with instructions to vacuum the
sheets and pillow for 5min. Filters were then kept in the
freezer for 3 days to kill dust mites and shipped to COP-
SAC where they were kept at − 20 °C until DNA extraction.
The infant airway was sampled using hypopharyngeal aspi-
rates obtained at 3 months of age, using a soft suction cath-
eter passed through the nose and stored at − 80 °C until
DNA extraction [23].

Covariates
Information on educational level, household income, pet
ownership, race, type of home, and home address was
obtained during the scheduled visits to the research
clinic. Living environment (rural/urban) was defined
based on the land cover in a 3-km radius based on chil-
dren’s birth address as previously described (Lehtimäki
et. al., under review).

DNA extraction and amplification
Dust was released from the filter boxes, and 250mg was
used for DNA extraction using the NucleoSpin® 96 Soil
DNA Isolation Kit optimized for epMotion® (MO-BIO
Laboratories, Inc., Carlsberg, CA, USA) using the epMo-
tion® robotic platform model (Eppendorf) under manu-
facturer’s protocol. The bed dust samples were profiled
with bacterial as well as fungal community using ampli-
con sequencing, using a two-step protocol. In the first
step, we amplified the community specific rRNA target
using general primers, and in the second step, we used
primers with sequencing adaptors, barcodes, and the tar-
get sequence, so each sample could be uniquely identi-
fied post-sequencing. For fungi, we targeted the internal
transcribed spacer, region 2 (ITS2), with the primers
gITS7F (5′- GTGARTCATCGARTCTTTG-3′) and
ITS4ngs (5′- TTCCTSCGCTTATTGATATGC-3′). For
bacteria, we targeted variable region V3–V4 of the 16S
rRNA gene, using forward primer 341f (5′- CCTA
YGGGRBGCASCAG-3′) and reverse primer 806r (5-
GGACTACHVGGGTWTCTAAT-3). Negative controls
were included for the extraction and PCR amplification
procedures. All final PCR products were purified using
HighPrepTM PCR (MAGBIO, USA), based on paramag-
netic beads technology. Then, it was normalized using
SequalPrepTM Normalization plate kit (Invitrogen, USA).
Further cleaning and concentration were done by using
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the DNA Clean & ConcentratorTM-5 Kit (Zymo Re-
search, Irvine, CA, USA). Concentrations were then de-
termined using the Quant-iT™ High-Sensitivity DNA
Assay Kit (Life Technologies).
The airway samples from the children at 3months of

age used in this study was a part of COPSAC2010 cohort
that was already published in Mortensen et al. [20] and
Gupta et al. [43]. Genomic DNA was extracted for airway
samples using the PowerMag® Soil DNA Isolation Kit opti-
mized for epMotion® (MO-BIO Laboratories, Inc., Carls-
berg, CA, USA) using the epMotion® robotic platform
model (Eppendorf) under manufacturer’s protocol. The
airway microbiota were profiled with the same method,
but only for bacteria, targeting variable region V4 of the
16S rRNA gene, using forward primer 515f (5′-GTGCCA
GCMGCCGCGGTAA-3′) and 806r (5′-GGACTACHVG
GGTWTCTAAT-3′). The rest of the steps were the same
as mentioned above for dust samples.

Sequencing
Paired-end sequencing was performed on the Illumina
MiSeq System (Illumina Inc., CA, USA), including 5%
PhiX as an internal control. All reagents used were from
the MiSeq Reagent Kits v3 (Illumina Inc., CA, USA) for
bed dust samples and MiSeq Reagent Kits v2 for airway
samples. Automated cluster generation and paired-end
sequencing with dual-index reads were performed with
2 × 300 bp for bed dust samples and 2 × 250 bp for air-
way samples. The sequencing output was generated as
demultiplexed fastq-files for downstream analysis.

Sequence analysis
Primers were removed from the raw paired-end FASTQ
files generated via MiSeq using “cutadapt” [46]. Further,
reads were analyzed by QIIME2 [47] (qiime2-2018.11)
pipeline through dada2 [58] to infer the ASVs present
and their relative abundances across the samples. For
bed dust samples, using read quality scores for the data-
set, forward and reverse reads were truncated at 270 bp
and 220 bp, followed by trimming the 5′ end till 8 bp for
both forward and reverse reads, respectively; other qual-
ity parameters used dada2 default values for both 16S
rRNA gene and ITS sequencing. For airway samples, for-
ward and reverse reads were truncated at 180 bp and
160 bp; other parameters remain the same as mentioned
above. For 16S rRNA gene sequencing, taxonomy was
assigned using a pre-trained Naïve Bayes classifier (Silva
database, release 132, 99%ASV) [48], and for ITS se-
quencing, UNITE database (dynamic-2017-12-01) [49]
were used.

Quality control
To ensure that our analyses were not confounded by
spurious results, we first analyzed the alpha diversity of

negative control samples (including PCR negative, ex-
traction control) that produced sequencing reads and
dust samples (Fig. S1). The DNA extraction and other
negative controls had significantly lower observed rich-
ness than all dust samples (analysis of variance
(ANOVA), p < 0.05) for both fungal and bacterial data.
Furthermore, profiles were significantly different for
both bacterial and fungal microbiome by sample type
(Fig. S2a, b). Sequencing contaminants (75 of 79,347
bacterial and 141 of 24,474 fungal ASVs) were identified
based on the prevalence of ASVs in the negative control
and removed using the decontam package (default pa-
rameters); this did not measurably affect the microbiota
structure (Fig. S2c, d). We then removed the PCR and
sequencing controls before downstream analysis. More-
over, samples that did not have a satisfactory sequencing
of both 16S rRNA gene (minimum 3,000 reads per sam-
ple) and ITS (minimum 3,000 reads per sample) were re-
moved. For airway samples, sequencing contaminants
(14 of 3,692 bacterial ASVs) were identified based on the
prevalence of ASVs in the negative control and removed
using the decontam package (default parameters). The
DNA extraction and other negative controls had signifi-
cantly lower observed richness than all dust samples
(analysis of variance (ANOVA), p < 0.05) (Fig. S2e).

Statistical analysis
Data analysis was conducted in R (R Core Team, 2017).
Initial preprocessing of the ASV table was conducted
using the phyloseq package (v1.20.0) [50]. Further filter-
ing was done by removing ASVs classified as archaea,
chloroplast, or without phylum-level classification, from
16S rRNA gene sequencing data as well as Rhizaria from
ITS sequencing data. Sequencing contaminants were
identified and removed using the decontam package
[51]. To avoid the bias due to sampling depth, the ASVs
table was multiple rarefied [43] to 6774 high-quality se-
quences per bed dust sample for 16S rRNA gene, 9,942
per bed dust sample for ITS, and 1,957 per sample for
airway 16S rRNA gene.
All downstream analyses were performed on this rar-

efied ASVs table unless mentioned. We used three alpha
diversity indices, i.e., observed richness, Shannon diver-
sity index, and Chao1 index. Furthermore, beta diversity
was calculated using weighted and unweighted UniFrac
metric and visualized by principal coordinates analysis
(PCoA). Alpha and beta diversity was calculated using
phyloseq v1.20.0 and visualized with ggplot2 v2.2.1 [52]
in R v3.4.1. Comparison of community richness and di-
versity was assessed by the Kruskal-Wallis test between
all the groups, and comparison between the two groups
was done by Wilcoxon test with Benjamini-Hochberg
FDR multiple test correction. Significance testing be-
tween the groups for beta diversity was assessed using
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permutational multivariate analysis of variance (PERM
ANOVA) using the “vegan” package [53]. Marginal effect
was calculated using the PERMANOVA analysis (for
each significant environmental factor) using the follow-
ing formula: adonis2(dist ~ Type_of_enviornment + Pet
+ Type_of_home + Siblings + Season, by =”margin”) for
beta diversity.

Microbial correlation and differentially abundant analysis
Considering the variable nature of 16S compositional
data, we estimated the core microbial group of ASVs
within the samples with a presence in at least 30% of the
study samples. The correlation analyses were performed
at the genus level of the bed dust and airway samples.
To better understand the dust community structure,
characterize intra-community interactions, and identify
potentially shared niches, the co-occurrence network
analysis was performed and visualized by R. Spearman
correlation analysis built into the function “rcorr” from
the package “Hmisc” [54] was used to calculate the asso-
ciation at the genus level. p values were adjusted for
comparisons with the false discovery rate (FDR) algo-
rithm after compositional transformation. The signifi-
cance of the correlation adjusted p value< 0.01 was the
threshold to define significant correlations. The correl-
ation matrix of genera was visualized by the function
“corrplot” in the package “corrplot” [55]. The linear re-
gression analysis was visualized by the function “ggscat-
ter” in the package “ggpubr” [56]. We analyzed the
transfer of bacteria from bed dust to airway microbiome
using Fisher’s exact test by comparing the presence/ab-
sence of bacteria (at genus level) and calculated the odds
ratio for transfer with a one-sided p value. Only bacteria
(at genus level) showing presence/absence in both the
bed dust as well as the airway were included in the ana-
lysis. Inference for transfer of single bacteria (at genus
level) was evaluated using Benjamini-Hochberg FDR
correction. Furthermore, LEfSe [57] was used to identify
the microbiological markers associated with a pet by lin-
ear discriminant analysis (LDA) effect size of cutoff 3.5.
Other parameters were kept default. For rural and urban
living environment, we have used the Wilcoxon tests.
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