
u n i ve r s i t y  o f  co pe n h ag e n  

Post-Minkowskian Hamiltonians in modified theories of gravity

Cristofoli, Andrea

Published in:
Physics Letters B

DOI:
10.1016/j.physletb.2019.135095

Publication date:
2020

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Cristofoli, A. (2020). Post-Minkowskian Hamiltonians in modified theories of gravity. Physics Letters B, 800,
[135095]. https://doi.org/10.1016/j.physletb.2019.135095

Download date: 10. Sep. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Copenhagen University Research Information System

https://core.ac.uk/display/333605399?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.physletb.2019.135095
https://doi.org/10.1016/j.physletb.2019.135095


u n i ve r s i t y  o f  co pe n h ag e n  

Post-Minkowskian Hamiltonians in modified theories of gravity

Cristofoli, Andrea

Published in:
Physics Letters B

Publication date:
2020

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Cristofoli, A. (2020). Post-Minkowskian Hamiltonians in modified theories of gravity. Physics Letters B, 1-11.
[10.1016].

Download date: 06. aug.. 2020



Physics Letters B 800 (2020) 135095
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Post-Minkowskian Hamiltonians in modified theories of gravity

Andrea Cristofoli

Niels Bohr International Academy and Discovery Center, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 September 2019
Received in revised form 5 November 2019
Accepted 8 November 2019
Available online 13 November 2019
Editor: M. Cvetič
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The aim of this note is to describe the computation of post-Minkowskian Hamiltonians in modified 
theories of gravity. Exploiting a recent relation between scattering amplitudes of massive scalars and 
potentials for relativistic point-particles we derive a contribution to post-Minkowskian Hamiltonians at 
second order in the Newton’s constant coming from R3 modifications in General Relativity. Using this 
result we calculate the associated contribution to the scattering angle for binary black holes at second 
post-Minkowskian order, showing agreement in the non-relativistic limit with previous results for the 
bending angle of a massless particle around a static massive source in R3 theories.

© 2019 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
0. Introduction

The detections of gravitational waves by the LIGO and Virgo 
collaboration, has opened up the possibility to test Einstein’s the-
ory of General Relativity at an unprecedented level, heralding a 
new era in fundamental physics [1]. A central framework is the 
Effective One Body approach [2,3], where information from Nu-
merical Relativity and analytical approaches are combined in order 
to lead to improved gravitational wave templates. Among these 
several inputs, it has been recently suggested [4,5] that also post-
Minkowskian (PM) results, valid for weak gravitational fields and 
unbound velocities, can independently lead to improved model-
ing of bound binary dynamics. Given the growing results in post-
Minkowskian physics [6–13], we would like to explore how con-
tributions to post-Minkowskian Hamiltonians can be defined in 
modified theories of gravity. With no loss of generality, we here re-
strict ourselves on R3 modifications1 to General Relativity [14–18]. 
Recently, these have been studied in the context of scattering am-
plitudes [19,20] leading to a post-Newtonian definition of the po-
tential [21,22]. However, scattering amplitudes contain relativistic 
information that is lost in the passage to post-Newtonian point-
particles potentials. We show how this can be restored defining 
a post-Minkowskian potential in cubic theories of gravity, without 
restricting to the case of non-relativistic point-particles. Using this 

E-mail address: a.cristofoli@nbi.ku.dk.
1 These arise as further contributions to the Ricci scalar in the Einstein-Hilbert 

action, where the only non-trivial modifications are given by Rμν
αβ Rαβ

ρσ Rρσ
μν and 

Rμνα
β Rβγ

νσ Rσ
μγα .
https://doi.org/10.1016/j.physletb.2019.135095
0370-2693/© 2019 The Author. Published by Elsevier B.V. This is an open access article 
SCOAP3.
result we derive the associated contribution to the fully relativis-
tic scattering angle for binary black holes at second order in the 
Newton’s constant. By then taking the non-relativistic limit of one 
particle and the massless of the other, we are able to reproduce 
the bending angle recently calculated in [19] for a massless parti-
cle around a static massive source.

1. Higher derivative corrections in General Relativity

A non-trivial modification of the one-loop scattering of mas-
sive scalars in cubic theories of gravity has been recently studied 
with amplitudes techniques in [19,20]. In what follows we focus 
on the contribution given by I1 ≡ Rμν

αβ Rαβ
ρσ Rρσ

μν . As can be seen 
from [23], this arises as a non-trivial modification to the usual 
Einstein-Hilbert action which for simplicity of discussion we will 
parametrize by an unknown coefficient α with the dimension of 
length squared, following [19]. The associated classical information 
in the scattering of two massive scalars of masses m1, m2 has been 
calculated here [19,20]. This is given by

Mα(p,q) = (1)

= D
[
I(m1) c(m1,m2) + I(m2) c(m2,m1)

]
+ ... (2)
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where, using s = (p1 + p3)
2 and t = (p1 − p2)

2, we have defined

D = iπ2G2
Nα2

√
E1 E2 E3 E4

(3)

I(m j) =
∫

d4k

(2π)4

1

(p1 − k)2(p3 − k)2(k2 − m2
j )

(4)

c(mi,m j) = 4t2m4
i

(4m2
i − t)2

[ 3∑
k=1

βk(mi,m j)t
(k−1)

]
(5)

β1(mi,m j) = 2m2
i

[
(m2

i + m2
j − s)2 − 4m2

i m2
j

]
(6)

β2(mi,m j) = −3m4
i + 2m2

i m2
j + (m2

j − s)2 (7)

β3(mi,m j) = m2
i − m2

j + s (8)

We choose the center-of-mass frame and parametrize the mo-
menta of the scattering particles as

pμ
1 = (E1, �p ) , pμ

2 = (E1, �p ′)
pμ

3 = (E2,−�p ) , pμ
4 = (E2,−�p ′)

(9)

�q ≡ �p ′ − �p (10)

|�p| = | �p′| ≡ p , |�q| ≡ q (11)

We now proceed to define a post-Minkowskian potential in the 
context of this modified theory of gravity using a recent relation 
between post-Minkowskian amplitudes and Hamiltonians [13]. The 
simplicity of this computation here lies in the lack of the Born 
subtraction, as there is no tree level amplitude to iterate that scales 
in the same way as (2). We can thus define a post-Minkowskian 
potential to second order in G N and in the coupling α as

V I1
2P M(p, r) =

∫
d3q

(2π)3
ei�q·�rMα(p,q) (12)

By performing a proper k0 integration on (4), the scalar triangle 
integral becomes [6,24]

I(m j) = − i

32m jq
+ ... (13)

where the ellipsis denotes quantum contributions.
To leading order in q the associated post-Minkowskian potential 

is2

V I1
2P M(p, r) = π2G2

Nα2

32E1 E2

∫
d3q

(2π)3

[
c(m1,m2)

m1
+ c(m2,m1)

m2

]
ei�q·�r

q

(14)

= π2G2
Nα2

128E1 E2

(
β1(m1,m2)

m1
+ β1(m2,m1)

m2

)∫
d3q

(2π)3
ei�q·�rq3 (15)

V I1
2P M = 3α2

32E1 E2

G2
N

r6

(
β1(m1,m2)

m1
+ β1(m2,m1)

m2

)
(16)

In the non-relativistic limit, our post-Minkowskian potential re-
duces to

V I1
2P M(p, r) = 3α2

4

G2
N p2

r6

(m1 + m2)
3

m1m2
+ ... (17)

2 The reason we only keep the leading term in q is due by h̄ counting. For a 
detailed analysis on how to restore the proper classical limit from an amplitude 
calculation see [25].
in agreement with the post-Newtonian calculation in [19]. For 
the sake of completeness we also report the post-Minkowskian 
contribution to the potential given by the remaining cubic term 
Rμνα

β Rβγ
νσ Rσ

μγα . This has been recently calculated in [19] as 
coming from the topological invariant G3 = Rμν

αβ Rαβ
ρσ Rρσ

μν −
2Rμνα

β Rβγ
νσ Rσ

μγα . The result has been found equal to

V G3
2P M(p, r) = 12α2G2

N

E1 E2

m2
1m2

2(m1 + m2)

r6
(18)

In a natural way, the same procedure for defining a post-
Minkowskian potential can be applied for more general modified 
theories of gravity.

2. The scattering angle

At second post-Minkowskian order in G N , the Hamiltonian for 
a binary system of spinless binary black holes, including contribu-
tions from cubic gravity, is given by

Hα
2P M(p, r) =

√
p2 + m2

a +
√

p2 + m2
b + V 2P M(p, r)+ V α

2P M(p, r)

(19)

where V 2P M(p, r) has been calculated here [6,13], being V α
2P M the 

sum of (16) and (18). Since the motion lies on a plane, we can in-
troduce the following coordinates on the phase space (r, φ, pr , pφ)

so as to express the momentum in the center of mass frame as

p2 = p2
r + p2

φ

r2
, pφ = L (20)

being L the angular momentum of the system, which is a con-
served quantity.

The associated Hamilton-Jacobi equation is given by√
p2 + m2

a +
√

p2 + m2
b + V 2P M(p, r) + V α

2P M(p, r) = E (21)

with E being the energy, another constant of motion.
By solving now in p2 we can express the momentum in the 

center of mass frame as

p2 = p2(E, L,α, r) , p2 = p2
0 + G N f1

r
+ G2

N f2

r2
+ G2

Nα2 fα
r6

+ ...

(22)

where the ellipsis denotes higher contributions in G N and

p2
0 = (p1 · p2)

2 − m2
1m2

2

s

f1 = −2c1√
s

, f2 = − 1

2
√

s

(
c�a

ma
+ c�b

mb

) (23)

fα = − 3

16E

(
β1(m1,m2)

m1
+ β1(m2,m1)

m2

)
− 24m2

1m2
2(m1 + m2)

E

(24)

At this point, by considering the angular variable φ, it is straight-
forward to derive the following expression for its total change 
during a scattering


φ = π + χ ,
χ(E, L)

2
= −

+∞∫
rmin

dr
∂ pr

∂L
− π

2
(25)

where rmin is the positive root for pr = 0.
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In order to evaluate (25) we proceed perturbatively by ex-
panding both the integrand and the extreme of integration in G N , 
where

rmin = L

p0
+ ... , pr =

√
p2

0 − L2

r2
+ ... (26)

being the leading term of rmin equivalent to the impact parame-
ter b.

This expansion gives rise to divergent integrals which can be 
handled only by means of the Hadamard Partie finie3 (Pf) of the 
latter as shown by Damour in [5,26]. Restricting to the contribution 
to (25) due to R3 one finds

χα
2P M

2
= − LG2

Nα2 fα
2

Pf

+∞∫
r0

dr

r8

(
p2

0 − L2

r2

)− 3
2

(27)

Changing variables to u = 1
r the integral becomes

χα
2P M

2
= − G2

Nα2 fα
2L2

Pf

u0∫
0

du
u6

(u2
0 − u2)

3
2

, u0 ≡ 1

b
(28)

The remaining integration is straightforward, leading to

χα
2P M

2
= 15πG2

Nα2 fα
32L2b4

(29)

χα
2P M

2
= −45πG2

Nα2

512L2b4 E

(
β1(m1,m2)

m1
+ β1(m2,m1)

m2

+ 128m2
1m2

2(m1 + m2)

) (30)

Equation (30) has to be considered as an additional contribution to 
the fully relativistic scattering angle at second order in G N coming 
from a cubic theory of gravity. In particular, by taking the non-
relativistic limit of our result with the additional condition m1 = m
and m2 = 0, we have

χα
2P M = −45G2

Nα2πm2

32b6
+ ... (31)

which agrees with the non-relativistic contribution derived in [19]
for the bending angle of a massless particle around a static massive 
source.4 In this case, the G3 contribution to the potential is found 
to be absent for the bending angle of a massless particle, but not 
in the fully relativistic scattering angle of two massive particles as 
it can be seen from (30).

3. Conclusion

We have derived the post-Minkowskian contribution to rela-
tivistic point-particles Hamiltonians in modified theories of grav-
ity. We have restricted ourselves to the case of R3 modifica-
tions, although similar changes are expected to appear also for 
R2 terms [27–29]. The derived post-Minkowskian contribution, 
once expanded for small velocities, is in agreement with the re-
cent post-Newtonian computation [19]. The simplicity of the cal-
culation has taken advantage of a recent relation between post-
Minkowskian amplitudes and Hamiltonians for relativistic point-
particles [13]. Indeed, the computation has required no effective 

3 For further details, see Appendix A.
4 The authors in [19] have used a convention for the deflection angle which dif-

fers by a minus sign compared to ours.
field theory matching as well as no need to known the operator 
reproducing the R3 modifications in an effective field theory of 
scalar fields. We have also derived an additional contribution to 
the fully relativistic scattering angle of black holes at second order 
in G N arising from R3, showing agreement in the non-relativistic
limit with a result derived in [19] for the bending angle of a mass-
less particle around a static massive source. It would be interesting 
to systematically explore similar results in other alternative formu-
lations of General Relativity.
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Appendix A. Hadamard Partie finie

In order to evaluate perturbatively the scattering angle, one 
needs to expand both the integrand as well as the extreme of in-
tegration in G N . As noticed in [5,26], the procedure gives rise to 
spurious divergences which can be handled in a proper way only 
by means of the Hadamard Partie finie of the latter. In order to see 
how this procedure applies, let’s consider the 1PM scattering angle

χ

2
= L

+∞∫
rmin

dr

r2 pr(r)
− π

2
(32)

= L

+∞∫
0

dr

r2

θ(r − rmin)

pr
− π

2
(33)

The integrand in Eq. (33) has to be Taylor expanded in G N both for 
pr as well as for rmin , giving5

θ(r − rmin) = θ(r − b) + δ(r − b)
G N f1

2p2
0

+ ... (34)

1

pr
= 1

(p2
0 − L2

r2 )
1
2

− f1G N

2(p2
0 − L2

r2 )
3
2 r

+ ... (35)

Plugging these into Eq. (33) one obtains

χ

2
= L

+∞∫
0

dr

r2

[
θ(r − b) + δ(r − b)

G N f1

2p2
0

]

×
[

1

(p2
0 − L2

r2 )
1
2

− f1G N

2(p2
0 − L2

r2 )
3
2 r

]
− π

2

(36)

= − LG N f1

2

+∞∫
b

dr

r3

1

(p2
0 − L2

r2 )
3
2

+ LG N f1

2p2
0

+∞∫
0

dr

r2

δ(r − b)√
p2

0 − L2

r2

(37)

= − LG N f1

2b2 p3
0

+∞∫
1

dx

(x2 − 1)
3
2

+ LG N f1

2b2 p3
0

+∞∫
0

dx

x

δ(x − 1)√
x2 − 1

(38)

5 We have used the fact that rmin = b − G N f1

2p2
0

+ ... which can be derived by using 
the definition of rmin .
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where in the last line we have changed variable using r = xb.
At this point, we can notice the presence of two divergent con-

tributions to the scattering angle. In order to deal with them, one 
needs to regularize these integrals. The Hadamard Partie finie con-
sists of regularize them in the following way

χ = lim
�→1

(
− LG N f1

2b2 p3
0

+∞∫
�

dx

(x2 − 1)
3
2

+ LG N f1

2b2 p3
0

+∞∫
0

dx

x

δ(x − �)√
x2 − 1

)

(39)

In doing so, one obtains

χ = lim
�→1

(
− LG N f1

2b2 p3
0

[
�√

�2 − 1
− 1

]
+ LG N f1

2b2 p3
0

[
1

�
√

�2 − 1

])
(40)

= G N f1

2Lp0
(41)

which give us the desired finite contribution to the scattering an-
gle. As shown in [5,26], this technique can be generalized to any 
PM order providing a powerful tool for the perturbative evaluation 
of the scattering angle.
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