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Abstract: We extract the long-range gravitational potential between two scalar parti-

cles with arbitrary masses from the two-to-two elastic scattering amplitude at 2nd Post-

Minkowskian order in arbitrary dimensions. In contrast to the four-dimensional case, in

higher dimensions the classical potential receives contributions from box topologies. More-

over, the kinematical relation between momentum and position on the classical trajectory

contains a new term which is quadratic in the tree-level amplitude. A precise interplay

between this new relation and the formula for the scattering angle ensures that the latter

is still linear in the classical part of the scattering amplitude, to this order, matching an

earlier calculation in the eikonal approach. We point out that both the eikonal exponen-

tiation and the reality of the potential to 2nd post-Minkowskian order can be seen as a

consequence of unitarity. We finally present closed-form expressions for the scattering angle

given by leading-order gravitational potentials for dimensions ranging from four to ten.

Keywords: Classical Theories of Gravity, Scattering Amplitudes

ArXiv ePrint: 2003.10274

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP07(2020)122

mailto:a.cristofoli@nbi.ku.dk
mailto:phdamg@nbi.dk
mailto:divecchi@nbi.dk
mailto:carlo.heissenberg@su.se
https://arxiv.org/abs/2003.10274
https://doi.org/10.1007/JHEP07(2020)122


J
H
E
P
0
7
(
2
0
2
0
)
1
2
2

Contents

1 Introduction 1

2 Scattering amplitudes in D-dimensional General Relativity 5

3 The post-Minkowskian potential in arbitrary dimensions 9

3.1 The Lippmann-Schwinger equation in D dimensions 9

3.2 The effective field theory matching in D dimensions 13

3.3 More on the EFT matching and the Lippmann-Schwinger equation 15

4 From the classical amplitude to kinematics 15

4.1 An alternative derivation 17

5 The scattering angle in arbitrary dimensions 19

5.1 Eikonal exponentiation and unitarity 22

6 Simple expressions for the deflection angle 23

7 Conclusions 25

A Normalization of the amplitude 26

B One-loop integrals in the ~ → 0 limit 28

B.1 Triangle integrals 29

B.2 Box integrals 31

B.3 The potential region 34

B.4 Auxiliary integrals 36

1 Introduction

The study of gravitational collisions has recently received a lot of attention thanks to the

amazing experimental breakthroughs in the detection [1–5] of gravitational-waves coming

from black-hole or neutron star mergers. Given the expected improvements in detector

sensitivity, it will be extremely important in the future to have high-precision theoretical

predictions from General Relativity. To this aim the use of quantum field theory amplitudes

to extract the post-Minkowskian (PM) expansion of General Relativity has recently gained

considerable momentum [6–21], and progress is now also being made on extensions to

spinning objects [22–31]. The underlying physical motivation for this approach lies in the

observation that, during the early stages of a merger event, when the two compact objects

are still far apart, gravitational interactions are weak and can be conveniently treated
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in a weak-coupling approximation. The perturbative series that naturally organizes the

calculation of scattering amplitudes in quantum field theory then offers a convenient tool

to study the dynamics of such systems for weak gravitational fields without the need to

consider the limit of small velocities, thanks to the Lorentz invariance of the amplitude.

The price one has to pay in order to eventually retrieve predictions for General Relativity is

the proper handling of the classical limit. Indeed, going to higher orders in the gravitational

coupling in the classical theory entails evaluating Feynman diagrams with more and more

loops in the quantum theory and one may wonder as to how the loop expansion may yield

precision corrections to classical quantities, an issue that was first clarified in the seminal

papers [32, 33] and more recently investigated systematically in [34].

A fundamental and gauge-independent quantity that is most readily computed from

quantum field theoretic amplitudes is the scattering angle of two colliding massive objects.

Computations of classical gravitational observables using relativistic amplitude techniques

have so far been performed with two a priori different approaches. One is based on the

evaluation of the eikonal phase, while the other proceeds by constructing the Hamiltonian,

i.e. the effective interaction potential. The deflection angle can then be easily obtained

from either of these two quantities.

The eikonal approach began in the late eighties with the work by ’t Hooft [35] and

independent parallel work of two other groups [36–38], dealing with transplanckian energy

collisions of strings in a generic number D of macroscopic dimensions. It was further

developed in refs. [8, 39–50] and extended to the scattering of strings off a stack of D-

branes [51, 52] (see ref. [53] for a review) and recently to supersymmetric theories [54–56].

That approach has its origin in the observation that, in general, a tree diagram in

gravity diverges at high energy, implying that unitarity is violated in this regime. A viable

way to restore unitarity is to first observe that also the loop diagrams are divergent at

high energy and actually their degree of divergence increases with the number of loops.

Then, Fourier transforming a suitably normalized amplitude from momentum space to the

(D − 2)-dimensional impact parameter space, one sees that the leading terms for large

impact parameter of the various diagrams re-sum into an exponential given by the tree

contribution, whose phase is called the leading eikonal. In this way one obtains a quantity

that is consistent with unitarity. Sub-leading eikonals can be obtained in a similar way by

re-summing diagrams that are subdominant for large impact parameter. Unlike the leading

one, they also contain an imaginary part related to inelastic processes, although we do not

discuss these new effects in this paper.

Having determined the eikonal, one can then use it to compute the classical deflection

angle taking its derivative with respect to the impact parameter. Other physical quanti-

ties, as for instance the Shapiro time delay, can also be computed from the eikonal. An

interesting aspect of this approach is that, in order to compute the deflection angle to a

given order in the coupling, one must still compute, in principle, an infinite number of

loops to check the exponentiation.

In contrast, the Hamiltonian approach relies on the calculation of the effective inter-

action potential between two massive particles from the scattering amplitude, which is

achieved as follows. One first imposes that the two-to-two scattering amplitude in General
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Relativity be equal to that of an effective theory of massive particles interacting via a long-

range potential and then reconstructs the potential that ensures this matching condition

order by order in Newton’s coupling constant GN . To this purpose one can either employ

the relativistic Lippmann-Schwinger equation and the technique of Born subtractions for a

first-quantized effective theory [12, 15], or alternatively the Effective Field Theory (EFT)

matching procedure [9, 13].

These two methods have proven to be completely equivalent in the cases that have

been studied and lead to the same effective potential. Indeed, one would expect the first-

and second-quantized effective theories to be equivalent as long as quantum effects such as

particle creation are discarded. We shall review the demonstration of equivalence below.

Note that the scattering amplitude contains, in general, not only classical and quantum

terms, as identified by their behavior in terms of ~, but also super-classical terms. With our

conventions, classical terms have a finite limit as ~→ 0 and quantum terms vanish, while

super-classical contributions give rise to singular expressions, corresponding to infinitely

rapid phase oscillations in the S-matrix. It is therefore crucial that the super-classical

terms cancel out in the procedure of extracting the classical potential from the scattering

amplitude. We find that this cancellation occurs and in fact also ensures that the potential

is real.

In this work we show that indeed both the eikonal exponentiation and the reality of the

classical potential are ultimately direct consequences of the unitarity of the quantum theory.

This observation also lies behind the explanation of the following puzzling question:

in the Hamiltonian approach one only needs to compute the classical part of the scattering

amplitude up to the given order of the expansion in Newton’s coupling constant GN .

Classical Hamilton-Jacobi analysis then yields the scattering angle up to that order. Why,

then, does the eikonal approach require the computation of the near-forward scattering

amplitude to all orders in the coupling GN in order to derive a fixed-order result for

scattering angle? One of the purposes of this paper is to provide an answer to this question.

For consistency, it must be that the exponentiation of all higher order terms required in the

eikonal limit is automatic. We shall argue that the infinite string of identities needed for

the eikonal exponentiation of the classical parts of the near-forward scattering amplitude

follow from unitarity. This then resolves the apparent conflict and explains why the two

methods for calculating the scattering angle are equivalent.

We consider the scattering problem in a general D-dimensional setting rather than just

limiting ourselves to the four-dimensional case. As is known already from non-relativistic

quantum mechanics, four space-time dimensions represents a borderline case for scattering

in Coulomb-like potentials (such as the leading-order scattering in general relativity) due to

the slow fall-off of the potential at infinity and the associated logarithmic phase of the scat-

tered wave. In relativistic quantum field theory this is reflected in the well-known infrared

divergences of the scattering amplitude in four dimensions. Once we move beyond four

dimensions, even just infinitesimally such as in dimensional regularization, these infrared

divergences are regularized.

The need to maintain reparametrization (gauge) invariance at all stages of the am-

plitude calculations while taming the infrared divergences thus leads us to perform the

– 3 –
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amplitude calculations beyond D = 4 dimensions. Moreover, as we shall demonstrate, it

is not correct that the D-dimensional result just trivially mimics the corresponding one

in four-dimensional space-time. A new term proportional to (D − 4) appears at one-loop

order. This could potentially have repercussions at higher loop order if cancelled against

infrared sub-divergences, thus threatening to introduce new finite pieces even after taking

the D → 4 limit.

To be more specific, we use the relativistic Lippmann-Schwinger equation to derive the

long-range effective potential up to 2PM order from the elastic scattering amplitude of two

scalar particles with arbitrary masses in a generic D-dimensional space-time.

While in ref. [50] the box and triangle diagrams were computed for small transferred

momentum q, i.e. in the classical limit, using a saddle-point evaluation in the space

of Schwinger parameters, we here perform the same calculation employing the so-called

method of regions [57] in momentum space. This consists in evaluating the asymptotic

expansion of the relevant Feynman integrals as q → 0 considering loop momenta k that

scale in a definite way with respect to q in this limit.

We identify the soft region, characterized by the scaling relation k ∼ O(q), as the

one producing the non-analytic terms that eventually give rise to the long-range potential,

namely the ones considered in ref. [50]. The integrals also receive contributions from the

hard region, k ∼ O(1), that are proportional to positive integer powers of q2 and hence

do not contribute to the long-range behavior in position space, although they are needed

for the overall consistency of the small-q expansion. Indeed, as is often the case, the

hard and soft series separately possess spurious singularities that are just artifacts of the

splitting into regions. However, only the singularities originally present in the Feynman

integrals survive in the sum of the two series, which provides a nontrivial cross check of

the asymptotic expansion thus obtained.

Another region that is often used in order to extract the non-analytic terms in the

classical limit is the potential region. Considering a combination of classical limit q → 0

and nonrelativistic limit1 v → 0, with v the characteristic velocity of the asymptotic states

in the center-of-mass frame, one defines the scaling of the loop momenta k = (k0,~k) in the

potential region as k0 ∼ O(qv) and ~k ∼ O(q). The potential expansion allows one to break

down the Feynman integrals into (D − 1)-dimensional integrals in a non-relativistic spirit.

In its turn, this opens the possibility to compare General Relativity amplitudes directly

to the (D − 1)-dimensional integrals arising in the effective theory, i.e. to perform the

matching mentioned above at the level of integrands, disposing with the need to actually

evaluate certain integrals. We check that, to leading order in the small-v expansion, the

result obtained from the potential region agrees with the non-relativistic limit of the one

furnished by the soft region. However, we deem more convenient to apply the method

of regions in a covariant fashion directly to the D-dimensional integrals involved in the

evaluation of the fully relativistic amplitude, as outlined above, i.e. to base our calculation

on the soft and hard regions.

1We are grateful to Julio Parra-Martinez and Mikhail Solon for pointing out that the role played by

the non-relativistic limit in the definition of the potential region was not properly spelled out in an earlier

version of this paper.
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An important new feature that appears in our analysis for D > 4 is that the 2PM

potential receives a nonzero contribution from the sum of the box and crossed box diagrams,

which, of course, vanishes if we take D = 4. This new contribution comes about because

of a nontrivial classical term arising from the sum of box and crossed box diagrams that

is not exactly compensated by the Born subtraction of the effective theory. Interestingly,

this compensation is exact for any D, and thus no new term appears for D > 4 if we limit

ourselves to leading order in the non-relativistic expansion, i.e. to the leading term of the

potential region.

Similarly, when we solve the energy equation for the kinematical relation between

momentum and position on the classical trajectory, p2(r,GN ), in dimensions D > 4, we

find that new terms that are quadratic in the scattering amplitude appear. To 2PM order,

this nonlinearity is precisely canceled by a new term for the classical scattering angle. In

this somewhat surprising way, the scattering angle still depends linearly on the amplitude,

to this order. The scattering angle we compute here coincides perfectly with the one

obtained in ref. [50] using instead the eikonal method.

The paper is organized as follows. In section 2 we collect the classical and super-

classical terms to the one-loop two-to-two amplitude, arising from triangle and box dia-

grams, which we evaluate with the method of regions. In section 3 we extract the long-range

classical potential at 2PM order from the amplitude solving the Lippmann-Schwinger equa-

tion by means of Born subtractions and describe the equivalence between this technique

and the strategy of EFT matching. Section 4 is then devoted to evaluating, given the 2PM

potential, the relation p2(r,GN ) for the classical trajectory, which we then use in section 5

to determine the deflection angle to 2PM order. In section 6 we furnish explicit expressions

for the scattering angle given by the 1PM interaction potential for space-time dimensions

ranging from four up to ten. The paper contains two appendices. In appendix A we detail

our conventions for the normalization of various scattering amplitudes appearing through-

out the paper, while in appendix B we present the explicit calculation of the relevant

one-loop integrals in the limit ~→ 0 using the method of the regions.

2 Scattering amplitudes in D-dimensional General Relativity

In this section we derive the super-classical and classical parts of the one-loop amplitude

M1−loop in Einstein gravity minimally coupled to two massive scalar fields,

S =

∫
dDx

√
−g R

16πGN
− 1

2

∫
dDx
√
−g

∑
i=1,2

(
gµν~2∂µϕi∂νϕi +m2

iϕ
2
i

)
, (2.1)

for a general space-time dimension D. Focusing on the gravitational interaction of spin-less

fields we can compute the large-distance classical scattering of Schwarzschild black holes

(or more generically a point-particle) in the perturbative loop expansion. This amplitude

has been recently computed in ref. [50] using a Schwinger parametrization of the various

propagators entering the loop and the method of steepest descent in those parameters.

One of the surprising results was that the classical piece of M1−loop includes, for D > 4,

a nonvanishing contribution from the sum of box and crossed-box Feynman diagrams. We

– 5 –
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here employ an alternative method that, in the QCD literature, is known as the method

of the regions [57]. It is conveniently used to determine the behavior of a loop integral

when one is interested in a kinematical limit involving the external momenta, for instance

when one of them is small. Here this method is used to determine an expansion of the loop

integrals in powers of ~, confirming the result of ref. [50].

Let us consider the scattering of two point-like scalar particles, schematically repre-

sented by the diagram in the following figure, whose amplitude is given by a sum over all

loop contributions:

p1

p2

p3

p4

=⇒M(~p, ~p ′) =

∞∑
n=0

Mn−loop(~p, ~p ′) . (2.2)

We refer to appendix A for more details on our conventions for the normalization of the

scattering amplitude.

In the center-of-mass frame we have

pµ1 = (E1(p), ~p ) ,

pµ2 = (E2(p),−~p ) ,

pµ3 = (E1(p), ~p ′) ,

pµ4 = (E2(p),−~p ′)
(2.3)

and we define

p ≡ |~p | = |~p ′| , (2.4)

E1(p) ≡
√
p2 +m2

1 , E2(p) ≡
√
p2 +m2

2 , (2.5)

Ep ≡ E1(p) + E2(p) , ξ(p) ≡ E1(p)E2(p)

E2
p

, (2.6)

qµ ≡ pµ1 − p
µ
3 , ~q ≡ ~p− ~p ′ . (2.7)

The previous quantities are related to the Mandelstam variables

s = −(p1 + p2)2 , t = −(p1 − p3)2 = −q2 (2.8)

and

s = E2
p , p2 =

(E2
p − (m1 +m2)2)(E2

p − (m1 −m2)2)

4E2
p

. (2.9)

We will use a mostly positive signature metric, so that in particular

qµqµ = q2 = |~q |2 (2.10)

– 6 –
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in the center-of-mass frame, and following ref. [50] we define

κ2
D ≡ 8πGN , γ(p2) ≡ 2(p1 · p2)2 − 2m2

1m
2
2

D − 2
. (2.11)

We first proceed by decomposing the one-loop amplitude in terms of Feynman integrals as

follows:

M1−loop = d�(I�,s + I�,u) + (d/)µνI
µν
/ + d/I/ + (d.)µνI

µν
. + d.I. + · · · , (2.12)

where the ellipsis denote quantum contributions. The integrals involved in the above

expression are the triangle integrals2

I. =

∫
dDk

(2π~)D
~5

(k2 − iε) ((q − k)2 − iε)) (k2 − 2p1 · k − iε)
, (2.13)

Iµν. =

∫
dDk

(2π~)D
~3kµkν

(k2 − iε) ((q − k)2 − iε)) (k2 − 2p1 · k − iε)
, (2.14)

together with I/, I
µν
/ which are given by substituting p1 ↔ p2 and p3 ↔ p4 in eqs. (2.13)

and (2.14), the box integral

I�,s =

∫
dDk

(2π~)D
~5

(k2 − iε)((k − q)2 − iε)(k2 − 2p1 · k − iε)(k2 + 2p2 · k − iε)
(2.15)

and the crossed box I�,u, obtained by the replacement p1 ↔ −p3 from eq. (2.15). The

associated decomposition coefficients are

d� = 4iκ4
Dγ

2(p2) , dµν. =
16iκ4

D(D − 3)m4
1

(D − 2)

~2pµ2p
ν
2

q2
(2.16)

and

d. = 4im2
1κ

4
D

[
2m2

1m
2
2

D2 − 4D + 2

(D − 2)2
− 2m2

1E
2
p +m4

1 +
(
m2

2 − E2
p

)2]
, (2.17)

while dµν/ and d/ are obtained by replacing m1 ↔ m2 in dµν. and d..

In appendix B we employ the method of expansion by regions to evaluate the classical

limit of the one-loop integrals (2.13), (2.14) and (2.15) in arbitrary dimensions D and

in a generic reference frame. This limit entails letting ~ → 0 in such a way that in the

center-of-mass frame the three-momentum transfer ~q vanishes, while the transferred wave

number 1
~ |~q |, the total energy Ep and the masses m1, m2 are kept fixed (see e.g. [13, 34]).

It turns out that this analysis in D dimensions presents some new features as compared

with that of ref. [9], while being in perfect agreement for D = 4. The modified expressions

for generic D ≥ 4 will be instrumental in reproducing the correct scattering angle in D

dimensions [50].

2The dependence on ~ in the various integrals follows from the fact that, with our conventions, the

amplitude in (2.12) has dimension of E3LD−1 where E is an energy and L is a length, as detailed in

appendix A.

– 7 –
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Quoting first for completeness the tree-level contribution

Mtree(~p, ~p
′) = −2γ(p2)κ2

D

~2

q2
, (2.18)

we are finally able to cast the classical and super-classical terms of the one-loop scattering

amplitude in General Relativity and in D dimensions in the following form:

M1−loop(~p, ~p ′) =M/(~p, ~p
′) +M.(~p, ~p

′) +M�,s(~p, ~p
′) +M�,u(~p, ~p ′) + · · · , (2.19)

where

M/(~p, ~p
′) +M.(~p, ~p

′) = −
2
√
πκ4

D(m1 +m2)

(4π)
D
2

×

(
4(p1 · p2)2 − 4m2

1m
2
2

(D − 2)2
−

(D − 3)E2
pp

2

(D − 2)2

)

×
Γ(5−D

2 )Γ2(D−3
2 )

Γ(D − 3)

(
q2

~2

)D−5
2

(2.20)

and

M�,s(~p, ~p
′) +M�,u(~p, ~p ′) = − iπ

(4π)
D
2

2κ4
Dγ

2(p2)

Ep p

Γ(6−D
2 )Γ2(D−4

2 )

Γ(D − 4)

1

~

(
q2

~2

)D−6
2

−
2
√
πκ4

Dγ
2(p2)

(4π)
D
2

(m1 +m2)

E2
p p

2

Γ(5−D
2 )Γ2(D−3

2 )

Γ(D − 4)

(
q2

~2

)D−5
2

.

(2.21)

These results are in agreement with those of ref. [50].3

It should be stressed that the above result for the triangle and box contribu-

tions (2.20), (2.21) is obtained from the expansion of the corresponding integrals in the

soft region, as detailed in appendix B. Such integrals also receive additional contributions

from the hard region that are, however, proportional to positive integer powers of q2

~2 . We

thus discard such terms because they would give rise to strictly local contributions in po-

sition space, while we are interested in the long-range behavior of the effective potential.

Nevertheless, the interplay between the soft and the hard series is important because it

ensures the proper cancellation of spurious divergences that arise for specific dimensions in

the above expressions, e.g. in D = 5, and thus provides a nontrivial consistency check of

the asymptotic expansion.

The expression (2.20) for the triangle topologies could be also alternatively obtained

from the leading-order expansion of the associated triangle integrals in the potential re-

gion, as described in appendix B.3. The potential region also allows for a quick evalua-

tion of the sum of box and crossed box diagrams to leading order in the nonrelativistic

limit, p
m1
, p
m2
� 1.

3Actually the corresponding amplitudes in ref. [50] are obtained from the ones appearing here multiplying

by a factor − 1
~ , since in this paper we use (A.1), while in ref. [50] (A.22) is used instead.

– 8 –
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The result furnished by the leading potential region coincides with the small-velocity

limit of (2.21), which, as we stressed, is based on the soft region. Actually, the first

term on the right-hand side of (2.21), namely the super-classical term, coincides with the

corresponding term arising from the leading potential approximation. The second term,

instead, agrees with the corresponding classical term in the leading potential expansion only

in the nonrelativistic limit, in which Ep ≈ m1 +m2. We refer the reader to appendix B.3

for a detailed discussion of this comparison.

3 The post-Minkowskian potential in arbitrary dimensions

In this section, we address the calculation of the long-range effective interaction potential

to 2PM order in arbitrary dimension, stressing in particular the new elements that appear

when away from D = 4. Our strategy is based on the method of Born subtractions [12, 15],

which is equivalent to the technique of EFT matching [9, 13].

As we have stressed, the two-to-two amplitude presents, to one-loop order, both super-

classical, O(~−1), and classical, O(~0), contributions, as identified by their ~ scaling. The

super-classical term arises in particular from the sum of box and crossed box diagrams,

which are also the source of the imaginary part of the amplitude and, in D = 4, of the

infrared divergence. Inverse powers of ~ are conventionally labelled “IR” in four dimensions

since they characterize the terms responsible for infrared divergences there. It should be

stressed, however, that the very notion of infrared divergent integrals becomes ambiguous

away from four dimensions. Therefore, we shall keep labelling the terms entirely by their

scaling (power) with respect to ~, which is well-defined for any D.

The calculation of the post-Minkowskian potential in the center-of-mass frame will

then reveal how the super-classical and imaginary term eventually cancel, providing a

well-defined, real and classical expression for the interaction potential, but leave behind

nontrivial contributions in generic dimensions D > 4. We will also see how this cancellation

can be understood as a consequence of the unitarity of the underlying quantum theory.

3.1 The Lippmann-Schwinger equation in D dimensions

In order to define a post-Minkowskian potential in momentum space and in an arbitrary

number of dimensions D = d + 1 we can use a fully relativistic Lippmann-Schwinger

equation as in [12]

M̃(~p, ~p ′) = Ṽ D(~p, ~p ′) +

∫
dd~k

(2π~)d
Ṽ D(~p,~k)M̃(~k, ~p ′)

Ep − Ek + iε
. (3.1)

where in the left-hand side we have defined scattering amplitudes with a proper normal-

ization factor (see appendix A, in particular eq. (A.17))

M̃(~p, ~p ′) =
M(~p, ~p ′)

4E1(p)E2(p)
, (3.2)

while on the right hand side we have denoted by M̃(~k, ~p ′) their analogue definition off the

energy shell with |~k| 6= |~p ′|. In what follows our aim is to extract the classical potential to
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2PM order for arbitrary D ≥ 4. We will work in the center-of-mass frame using an isotropic

gauge which identifies the phase space (r, p) of a two body Hamiltonian with the Fourier

analogue of the exchanged momentum q in the center of mass and with the modulus of the

momenta p. The advantage of the latter is the absence of p · r terms in the Hamiltonian

and it has shown extremely useful in the computation of post-Minkwoskian Hamiltonians

as shown in [9, 12].

We solve perturbatively eq. (3.1) for the potential itself

Ṽ D(~p, ~p ′) =M̃(~p, ~p ′) +

∞∑
n=1

(−1)n
∫

dd~k1

(2π~)d
dd~k2

(2π~)d
· · · d

d~kn
(2π~)d

× M̃(~p,~k1) · · · M̃(~kn, ~p
′)

(Ep − Ek1 + iε) · · · (Ekn−1 − Ekn + iε)

(3.3)

and truncate the series up to order G2
N

Ṽ D
1PM(~p, ~p ′) + Ṽ D

2PM(~p, ~p ′) = M̃tree(~p, ~p
′) + M̃1−loop(~p, ~p ′) + M̃B(~p, ~p ′) , (3.4)

where we have denoted the first Born subtraction by

M̃B(~p, ~p ′) ≡ −
∫

dd~k

(2π~)d
M̃tree(~p,~k)M̃tree(~k, ~p

′)

Ep − Ek + iε
. (3.5)

Although we do not explicitly distinguish between on-shell and off-shell scattering am-

plitudes in our notation, it should be stressed that the functions M̃(p, k) entering the

integrand on the right-hand side of (3.5) are evaluated for states that do not necessar-

ily respect energy conservation and the sum over states indeed runs over all intermediate

(D − 1)-momenta ~k. They are defined by T -matrix elements for asymptotic states with

energies unconstrained, i.e., |~p | 6= |~k|. This is analogous to the EFT approach where the

potential Ṽ D(~p,~k) likewise is defined off the energy shell, i.e., with |~p | 6= |~k|. The off-shell

extension of the T -matrix and V corresponds to the choice of operator basis in the EFT

formalism. For instance, insisting on (D− 1)-dimensional rotational symmetry, the analog

of Wilson coefficients in the expansion of V will not depend on the scalar product ~p ·~k but

only on ~p2 and ~k2. After Fourier transforming, this corresponds to the choice of isotropic

coordinates. In the center-of-mass frame and using this isotropic parametrization

M̃tree(~k,~k
′) ≡ GN

A1

(
k2+k′2

2

)
1
~2 |~k − ~k′|2

, A1

(
k2 + k′2

2

)
= −

4πγ(k
2+k′2

2 )

E1(k
2+k′2

2 )E2(k
2+k′2

2 )
, (3.6)

where |~k| is not necessarily equal to |~k′|. For a physical on-shell process in which |~p| = |~p ′|
this of course reduces to

M̃tree(~p, ~p
′) = GN

A1(p2)
1
~2 q

2
, A1(p2) = − 4πγ(p2)

E1(p)E2(p)
. (3.7)

At this point we need to evaluate the Born subtraction given by the integral in eq. (3.5).

We focus on the contributions to (3.5) arising from the soft region, which are obtained in
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this case expanding the integrand around k2 = p2. Indeed, to more directly compare with

the discussion of the expansion by regions presented in appendix B, we could let ~k = ~p+ ~̀

and then expand for ~̀ ∼ O(~), which implies k2 = p2 + O(~). One can also check that

performing the expansion with respect to this shifted variable ~̀ eventually leads to the same

final answer for the leading and subleading terms. We thus begin by Taylor-expanding the

denominator and discard quantum terms. In doing so, we find

M̃B(~p, ~p ′) = − 2Epξ(p)

∫
dd~k

(2π~)d
M̃tree(~p,~k)M̃tree(~k, ~p

′)

~p 2 − ~k 2 + iε

+

(
1− 3ξ(p)

2Epξ(p)

)∫
dd~k

(2π~)d
M̃tree(~p,~k)M̃tree(~k, ~p

′) + · · · ,
(3.8)

where ellipsis denotes quantum contributions which we discard. Using eq. (3.6), we find

M̃B(~p, ~p ′) = − 2Epξ(p)G
2
N

∫
ddk

(2π~)d

~4A2
1

(
~p 2+~k 2

2

)
(~p 2 − ~k2 + iε)|~k − ~p |2|~k − ~p ′|2

+G2
N

(
1− 3ξ(p)

2Epξ(p)

)∫
ddk

(2π~)d

~4A2
1

(
~p 2+~k2

2

)
|~k − ~p |2|~k − ~p ′|2

+ · · · .

(3.9)

We now Taylor-expand also the numerator around k2 = p2. Using eq. (3.6) and reinstating

κD, we find

M̃B(~p, ~p ′) = −
γ2(p2)κ4

D

2E3
pξ(p)

∫
ddk

(2π~)d
~4

(~p 2 − ~k 2 + iε)|~k − ~p |2|~k − ~p ′|2

+
κ4
D

4E3
pξ

2(p)

(
γ2(p2)(ξ(p)− 1)

2E2
pξ(p)

− 4γ(p) p1 · p2

)∫
ddk

(2π~)d
~4

|~k − ~p |2|~k − ~p ′|2

+ · · · , (3.10)

where we have used the following relation, ∂
∂p2

γ(p2) = −2p1·p2
ξ(p) .

The first integral in eq. (3.10) is given in eq. (B.56), while the second can be evaluated

with Feynman parameters. The super-classical and classical parts of the Born subtraction

to this order can then be written as follows

M̃B(~p, ~p ′) =
iπγ2(p2)κ4

D

2p ξ(p)E3
p(4π)

D
2

Γ
(

6−D
2

)
Γ2(D−4

2 )

Γ(D − 4)

1

~

(
q2

~2

)D−6
2

+
κ4
Dγ

2(p2)

4E3
pp

2ξ(p)(4π)
D−1
2

Γ
(

5−D
2

)
Γ2(D−3

2 )

Γ(D − 4)

(
q2

~2

)D−5
2

+
κ4
D

4E3
pξ

2(p)(4π)
D−1
2

(
γ2(p2)(ξ(p)− 1)

2E2
pξ(p)

− 4p1 · p2γ(p2)

)

×
Γ2(D−3

2 )Γ(5−D
2 )

Γ(D − 3)

(
q2

~2

)D−5
2

+ · · ·

(3.11)
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where again ellipsis denotes quantum contributions. Remarkably, not only do the box

and crossed box diagrams give nonvanishing super-classical and classical contributions for

D 6= 4, but similar contributions are also contained in the Born subtraction. It turns

out, as expected, that the two super-classical contributions exactly cancel each other. The

classical terms, however, remain and reproduce for D = 4 the result of ref. [12].

The cancellation of the (super-classical) imaginary part can be interpreted as a conse-

quence of unitarity. Indeed, applying the relation (A.4) to the two-to-two scattering in the

center-of-mass frame, one has

M̃(~p, ~p ′)− M̃(~p ′, ~p ) = −i2π
∫

dd~k

(2π~)d
δ(Ep − Ek)M̃(~k, ~p )M̃(~k, ~p ′) . (3.12)

Recalling that the tree-level amplitude is real and that, because of time reversal invariance,

the whole invariant amplitude is symmetric under the exchange of ~p and ~p ′, we then have,

to 2PM order,

ImM̃1−loop(~p, ~p ′) = −π
∫

dd~k

(2π~)d
δ(Ep − Ek)M̃tree(~p,~k )M̃tree(~k, ~p

′) . (3.13)

Comparing the right-hand sides of (3.4) and (3.5), this identity guarantees that the imag-

inary part of M̃1−loop must cancel against that of the Born subtraction M̃B.

In conclusion, we get the following potential in momentum space up to 2PM:

Ṽ D
1PM(~p, ~p ′) + Ṽ D

2PM(~p, ~p ′)

= −
γ(p2)κ2

D~2

2ξ(p)E2
pq

2

+
κ4
D(m1 +m2)

(4π)
D−1
2 4ξ(p)E2

p

(
−4(p1 · p2)2+

4m2
1m

2
2

(D − 2)2
+

(D − 3)E2
pp

2

(D − 2)2

)

×
Γ(5−D

2 )Γ2(D−3
2 )

Γ(D − 3)

(
q2

~2

)D−5
2

+
κ4
D

4E3
pξ

2(p)(4π)
D−1
2

(
γ2(p2)(ξ(p)− 1)

2E2
pξ(p)

− 4p1 · p2γ(p2)

)

×
Γ(5−D

2 )Γ2(D−3
2 )

Γ(D − 3)

(
q2

~2

)D−5
2

−
κ4
Dγ

2(p2)(m1 +m2 − Ep)
(4π)

D−1
2 ξ(p)E4

pp
2

Γ(5−D
2 )Γ2(D−3

2 )

Γ(D − 4)

(
q2

~2

)D−5
2

.

(3.14)

Fourier-transforming it to configuration space,

V D(r, p) =

∫
dd~q

(2π~)d
Ṽ D(~p, ~p ′)e

i
~ ~q·~x , (3.15)

and making use of the identity∫
dd~q

(2π~)d

(
q2

~2

)ν
e
i
~ ~q·~x =

22ν

π
d
2

Γ(ν + d
2)

Γ(−ν)

1

r2ν+d
, (3.16)
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we get the potential in configuration space up to order 2PM

V D(r, p) = V D
1PM(r, p) + V D

2PM(r, p) + · · · , (3.17)

V D
1PM(r, p) = −γ(p2)GN

E2
pξ(p)

Γ(D−3
2 )

π
D−3
2

1

rD−3
, (3.18)

V D
2PM(r, p) =

G2
N (m1 +m2)

πD−3E2
pξ(p)

(
4m2

1m
2
2

(D − 2)2

+
(D − 3)[(p1 · p2)2 −m2

1m
2
2]

(D − 2)2
− 4(p1 · p2)2

)
Γ2(D−3

2 )

r2D−6

+
G2
N

E3
pξ

2(p)

(
γ2(p2)(ξ(p)− 1)

2E2
pξ(p)

− 4γ(p2)p1 · p2

)
Γ2(D−3

2 )

πD−3

1

r2D−6

+
G2
Nγ

2(p2)(Ep −m1 −m2)

E4
p p

2 ξ(p)πD−3

Γ2(D−3
2 )

Γ(D − 4)

Γ(D − 3)

r2D−6
. (3.19)

Let us stress once more that, for D > 4, the 2PM potential thus receives a nontrivial

contribution from box and crossed-box diagrams that is not exactly compensated by the

Born subtraction. The combination of the two is proportional to the difference between

the total energy and the sum of the masses as shown in the last line of eq. (3.19). As

we shall see in the next section, the appearance of this term for D > 4 will give rise to

a modification in the linear relation between the classical part of the amplitude and the

expression for p2(r,GN ) in the classical trajectory that exists in D = 4 dimensions [14, 15].

3.2 The effective field theory matching in D dimensions

In the previous section we have shown how the classical effective potential can be ob-

tained from a scattering amplitude by means of the Born subtraction, which involves in-

verting (3.1) perturbatively. We have seen in particular how the potential acquires new

nontrivial terms at 2PM order in higher dimensions. Let us now briefly explain how this

calculation can be performed following the method of EFT amplitude-matching intro-

duced in [9].

We consider two theories: a fundamental one, which we also call the underlying theory,

of two massive scalar fields minimally coupled to gravity, and an effective theory of two

massive scalars interacting through a four-point interaction potential, which we denote by

Ṽ D(~p, ~p ′) in momentum space.

In this approach, one starts by making an ansatz for the effective potential: to 2PM

order and in momentum space one has

Ṽ D(~p, ~p ′) = GNc1

(
p2 + p′2

2

)(
q2

~2

)−1

+G2
Nc2

(
p2 + p′2

2

)(
q2

~2

)D−5
2

+ · · · , (3.20)

where c1 and c2 are unknown coefficients. Since the fundamental and the effective theory

should give rise to the same dynamics for the massive scalar particles, a valid matching

condition between the two is the equality of scattering amplitudes order by order in the

– 13 –



J
H
E
P
0
7
(
2
0
2
0
)
1
2
2

coupling, or equivalently in the PM counting

M̃(n−1)−loop(~p, ~p ′) =MEFT
nPM(~p, ~p ′) , (3.21)

where the left hand side of eq. (3.21) is computed in the full theory with the normalization

of eq. (3.2), while the right hand side is computed in the effective theory by a perturbative

expansion in iterated bubbles as done in [9]. At 1PM order, comparing the coefficient of

GN in (3.21) with the tree amplitude (2.18), as dictated by the matching condition

M̃tree(~p, ~p
′) =MEFT

1PM(~p, ~p ′) , (3.22)

gives

c1(p2) = A1(p2) (3.23)

with A1(p2) as in (3.7).

At 2PM order, the EFT amplitude is made by two contributions, a contact term

proportional to the potential and a bubble: truncating at G2
N order one finds

MEFT
2PM(~p, ~p ′) =G2

Nc2

(
p2
)( q2

~2

)D−5
2

+G2
N

∫
dd~k

(2π~)d

~4c2
1

(
p2+k2

2

)
(Ep − Ek + iε)|~p− ~k|2|~p ′ − ~k|2

+ · · · ,

(3.24)

At this point one needs to evaluate the integral appearing in the second line of (3.24) and

then compare this the EFT amplitude with the box and triangle contributions (2.20), (2.21)

so as to derive c2(p2). However, thanks to the condition (3.23), the second line of (3.24)

equals −M̃B(~p, ~p ′), namely the Born subtraction (3.5) except for the overall sign. There-

fore the matching condition

M̃1−loop(~p, ~p ′) =MEFT
2PM(~p, ~p ′) (3.25)

is equivalent to

M̃/(~p, ~p
′) + M̃.(~p, ~p

′) + M̃�,s(~p, ~p
′) + M̃�,u(~p, ~p ′) = Ṽ D

2PM(~p, ~p ′)− M̃B(~p, ~p ′) . (3.26)

We thus see that the EFT matching condition is in fact identical to eq. (3.4), which was at

the basis of the calculation of the previous subsection, and thus leads to the same answer

for the 2PM potential (3.14).

Let us once again briefly stress the new features arising in this analysis in higher

dimensions. We find that the box topologies not only provide a super-classical term that

is compensated by a corresponding contribution in the effective theory, but also possess a

subleading term which is non vanishing and classical in D > 4. This term is not removed

by a similar contribution from MB(~p, ~p ′) and this leaves a term in the 2PM potential

which is proportional to the difference in the total energy and masses. This term vanishes

at D = 4, as can be seen from the last line of eq. (3.19).
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3.3 More on the EFT matching and the Lippmann-Schwinger equation

At 2PM and in arbitrary dimensions the classical post-Minkwoskian potential describing

a binary system in isotropic coordinates is equivalent if computed using the Lippmann-

Schwinger equation or the EFT matching. Restricting to the conservative sector, we can

easily show the equivalence to hold to all orders in GN and in arbitrary dimensions. To

this extent, let’s go back to eq. (3.1) and let’s find a formal solution for a given scattering

amplitude M(~p, ~p ′). Similar to eq. (3.3), the potential will be given by a formal series

M̃(~p, ~p ′) = Ṽ D(~p, ~p ′)

+
∞∑
n=1

∫
dd~k1

(2π~)d
dd~k2

(2π~)d
· · · d

d~kn
(2π~)d

Ṽ D(~p,~k1) · · · Ṽ D(~kn, ~p
′)

(Ep − Ek1 + iε) · · · (Ekn−1 − Ekn + iε)
.

(3.27)

At this point, we can recast each propagator in eq. (3.27) as being an “effective two body

propagator” so as to rewrite each of them as a couple of matter propagators

1

Eki − Ekj
= i

∫
dk0

2π

1

k0 −
√
k2
j +m2

1

1

Eki − k0 −
√
k2
j +m2

2

. (3.28)

If we now plug back eq. (3.28) into eq. (3.27) we can easily recognize on the right hand

side of the latter the same scattering amplitude computed in [9], where the nth term of the

series corresponds to the nth loop in an effective field theory of only scalar fields. Using

this observation, we get

M̃(~p, ~p ′) = M̃EFT (~p, ~p ′) (3.29)

thus showing the equivalence between EFT matching and the Lippmann-Schwinger equa-

tion. It would be interesting to understand if the equivalence persists once introducing

radiative effects in the potential, which are expected to first appear at 4PM [10].

4 From the classical amplitude to kinematics

In the previous section we have used the classical limit of the scattering amplitude to

derive the classical potential at 2PM order. Including the kinetic terms this brings us to

the following Hamiltonian describing the interaction between the two objects with mass

m1 and m2:

H(r, p) =
∑
i=1,2

√
p2 +m2

i + V D
1PM(r, p) + V D

2PM(r, p) = E . (4.1)

Since E is a constant of motion the previous equation implicitly determines the quantity

p2 = p2(r,GN ) as a function of r and GN . Knowledge of this function is crucial in order

to compute the scattering angle χ in the center-of-mass frame. Going to polar coordinates

we can write p2 as follows:

p2(r,GN ) = p2
r +

L2

r2
, (4.2)
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where pϕ ≡ L is the conserved angular momentum of the system. Then, the deflection

angle is given by the relation:

χ = −2

∫ +∞

rmin

∂pr
∂L

dr − π = 2L

∫ ∞
rmin

dr

r2pr
− π , (4.3)

rmin being the positive root of pr closest to zero. As noticed in refs. [10, 13–15, 17] for

D = 4 one has the remarkable relation

p2(r,GN ) = p2
∞ − 2Ep∞ξ(p∞)M̃(r, p∞) , (4.4)

where M̃(r, p∞) is the Fourier transform of the amplitude given by

M̃cl.(r, p) ≡
∫

dd~q

(2π~)d
M̃cl.(~p, ~p ′)ei

~q
~ ·~x . (4.5)

Working as usual in the center-of-mass frame, we find it convenient here to emphasize

the difference between the momentum evaluated along the classical trajectory, p2(r,GN ),

and the asymptotic momentum by the denoting the latter by p∞, although it had been

simply called p in section 2. For instance, the relation (2.9) between the asymptotic

momentum and the energy now reads

p2
∞ =

(m2
1 +m2

2 − E2
p∞)2 − 4m2

1m
2
2

4E2
p∞

. (4.6)

We shall now generalize eq. (4.4) to the D-dimensional case. Starting from eq. (4.1), we

expand the function p2(r,GN ), whose existence is ensured by the implicit function theorem,

order by order in the coupling GN . This allows us to write

p2(r,GN ) = p2
∞ +GN (p2)′GN=0(r) +

G2
N

2
(p2)′′GN=0(r) + · · · , (4.7)

where for brevity

(p2)′GN=0(r) =
∂

∂GN
p2(r,GN )

∣∣
GN=0

,
1

2
(p2)′′GN=0(r) =

1

2

∂2

∂G2
N

p2(r,GN )
∣∣
GN=0

(4.8)

denote the first two coefficients of said expansion in powers of GN . Note that (4.7) is

a D-independent expression. We then extend the analysis of ref. [15], substituting (4.7)

in (4.1) and solving order by order in GN , to get

GN (p2)′GN=0(r) = −2Ep∞ξ(p∞)V D
1PM(r, p)

∣∣
p2=p2∞

(4.9)

and

G2
N

2
(p2)′′GN=0(r) = − 2Ep∞ξ(p∞)

[
V D

2PM(r, p)− 2Epξ(p)V
D

1PM(r, p)∂p2V
D

1PM(r, p)

+

(
3ξ(p)− 1

2Epξ(p)

)
(V D

1PM)2(r, p)

]
p2=p2∞

.

(4.10)
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Using the fact that γ(p2) in eq. (2.11) can be written as follows,

γ(p2) = 2E2
pp

2 + 2m2
1m

2
2

D − 3

D − 2
, (4.11)

we can easily get

∂p2

(
γ(p2)

E1(p)E2(p)

)
= −γ(p2)(1− 2ξ(p))

2ξ3(p)E4
p

+
2

ξ(p)

(
1 +

p2

ξ(p)E2
p

)
. (4.12)

Inserting then in eqs. (4.9) and (4.10) the potential in eq. (3.19), we find:

GN (p2)′GN=0 = −2Ep∞ξ(p∞)

[
− γ(p2

∞)GN
E2
p∞ξ(p∞)

Γ(D−3
2 )

π
D−3
2

1

rD−3

]
= −2Ep∞ξ(p∞)M̃cl.

tree(r, p∞)

(4.13)

together with

G2
N

2
(p2)′′GN=0

= − 2Ep∞ξ(p∞)

[
−

G2
N

πD−3

Γ2(D−3
2 )

r2D−6

(m1 +m2)

E2
pξ(p)

(
4(p1 · p2)2 − 4m2

1m
2
2

(D − 2)2

−
(D − 3)E2

pp
2

(D − 2)2

)
+
G2
Nγ

2(p2)(Ep −m1 −m2)

E4
p p

2ξ(p) πD−3

Γ2(D−3
2 )

Γ(D − 4)

Γ(D − 3)

r2D−6

]
p=p∞

= −2Ep∞ξ(p∞)

(
M̃cl.

/,.(r, p∞) + (M̃cl.
tree)

2(r, p∞)
ξ(p∞)(Ep∞ −m1 −m2)

p2
∞

Γ(D − 3)

Γ(D − 4)

)
= −2Ep∞ξ(p∞)

(
M̃cl.

1−loop(r, p∞) + (M̃cl.
tree)

2(r, p∞)
ξ(p∞)Ep∞

p2
∞

Γ(D − 3)

Γ(D − 4)

)
,

(4.14)

where the Fourier transform of the classical part of the scattering amplitude is defined by

eq. (4.5). Inserting eqs. (4.13) and (4.14) in eq. (4.7), we get

p2(r,GN ) = p2
∞ − 2Ep∞ξ(p∞)

(
M̃cl.

tree(r, p∞) + M̃cl.
1−loop(r, p∞)

+ (M̃cl.
tree)

2(r, p∞)
ξ(p∞)Ep∞

p2
∞

Γ(D − 3)

Γ(D − 4)

)
+ · · · , (4.15)

which of course reduces to eq. (4.4) for D = 4.

It was argued in ref. [15] that the simpler relation in four dimensions nicely aligned

with our expectations that the effective potential describing the scattering of particles from

flat space at minus infinity to flat space at plus infinity should depend only on the classical

part of the scattering amplitude. We note that this expectation, although slightly modified

due to the new term proportional to the square of the tree-level amplitude at 2PM order,

is still borne out by this new result for D > 4.

4.1 An alternative derivation

An alternative derivation of the modified relation (4.15) for D > 4 that directly points

towards a generalization to any order in the post-Minkowskian expansion proceeds via

Damour’s effective Hamiltonian defined by the solution to the energy equation (4.1) [6, 7].
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To apply this strategy, let us start with the following ansatz p2(r,GN ) for the solution

of eq. (4.1)

p2(r,GN ) = p2
∞ +

2∑
n=1

GnNf
D
n (p2

∞)

rn(D−3)
, (4.16)

where the constants fDn are found by solving eq. (4.1) iteratively. As discussed in detail

in refs. [7, 14, 15], one can consider the energy-momentum relation (4.16) as an effective

nonrelativistic “Hamiltonian” for the scattering problem, in which the term p2
∞ is regarded

as the kinetic term, i.e. the unperturbed Hamiltonian, while

Veff ≡ −
2∑

n=1

GnNf
D
n (p2

∞)

rn(D−3)
(4.17)

plays the role of an effective small perturbation. Notice however that the “potential” Veff

has the dimension of an energy squared by (4.16). It is crucial that here the coefficients of

the potential are constants, only depending on the total conserved energy E.

The associated Lippmann-Schwinger equation then reads

M̃eff(~p, ~p ′) = Ṽeff(~p, ~p ′) +

∫
dd~k

(2π~)d
M̃eff(~p,~k )Ṽeff(~k, ~p ′)

~p 2 − ~k2 + iε
, (4.18)

where we have rescaled the amplitude by a normalization factor according to

M̃eff(r, p∞) = 2Ep∞ξ(p∞)M̃(r, p∞) (4.19)

as in (A.19) and Ṽeff denotes the effective potential in momentum space. In four dimensions

the perturbative iteration of eq. (4.18) produces only super-classical terms. For example,

at 2PM order, the perturbative expansion of eq. (4.18)

M̃eff(~p, ~p ′) = Ṽeff(~p, ~p ′) +

∫
d3~k

(2π~)3

Ṽeff(~p,~k )Ṽeff(~k, ~p ′)

~p 2 − ~k2 + iε
+ · · · (4.20)

implies

M̃eff(~p, ~p ′) = Ṽeff(~p, ~p ′) +

∫
d3~k

(2π~)3

16π2(f1)2G2
N~4

(~p 2 − ~k2 + iε)(~k − ~p )2(~k − ~p ′)2
+ · · · , (4.21)

where f1 stands for fD1 for D = 4 and we have used that the Fourier transform of 1
r is

equal to 4π~2
q2

(see eq. (3.16)). From eq. (B.56) one can see that the integral in the previous

equation has only super-classical and quantum contributions in D = 4, or in other words

that its classical piece vanishes in four dimensions.

However, this argument does not apply for arbitrary dimensions D > 4. Working again

to 2PM order, the integral involved is now

M̃eff(~p, ~p ′) = Ṽeff(~p, ~p ′) +
1

Γ
(
D−3

2

)2 ∫ dd~k

(2π~)d
16πD−1G2

N (fD1 )2~4

(~p 2 − ~k2 + iε)(~k − ~p )2(~k − ~p ′)2
+ · · · ,

(4.22)
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where we employed (3.16). Using eq. (B.56) and restricting ourselves to just the classical

part of this equation, we get in position space,

M̃cl.
eff(r, p) = Veff(r, p)− 1

2p2

Γ(D − 3)

Γ(D − 4)

G2
N (fD1 )2

r2(D−3)
(4.23)

from which

Veff(r, p) = M̃cl.
eff(r, p) +

1

2p2

Γ(D − 3)

Γ(D − 4)
(M̃cl.

eff,tree)
2(r, p) . (4.24)

Inserting the proportionality relation M̃eff(r, p∞) = 2Ep∞ξ(p∞)M̃(r, p∞), we obtain that

the effective potential at 2PM order for p = p∞ is

Veff(r, p∞) ≡ 2Ep∞ξ(p∞)

×
(
M̃cl.

tree(r, p∞) + M̃cl.
1−loop(r, p∞) + (M̃cl.

tree)
2(r, p∞)

ξ(p∞)Ep∞
p2
∞

Γ(D − 3)

Γ(D − 4)

)
(4.25)

as well as the relation

p2(r,GN ) = p2
∞ − 2Ep∞ξ(p∞)

(
M̃cl.

tree(r, p∞)

+ M̃cl.
1−loop(r, p∞) + (M̃cl.

tree)
2(r, p∞)

ξ(p∞)Ep∞
p2
∞

Γ(D − 3)

Γ(D − 4)

)
,

(4.26)

confirming the previous derivation of eq. (4.15). The advantage of this alternative deriva-

tion is that it is more suitable to generalization to higher orders in the PM expansion.

Further corrections of arbitrarily high order in GN will in general appear in the relation

when D > 4.

5 The scattering angle in arbitrary dimensions

In this section we compute the deflection angle and in particular we see how the new terms

that appear in the quantity p2(r,GN ) reproduce the deflection angle already obtained from

the eikonal in dimensions greater than four [50].

For the calculation of the scattering angle using p2(r,GN ), one could in principle

employ eqs. (4.2) and (4.3), which however involves computing the root rmin of a polynomial

in GN of increasing complexity. A more convenient strategy, as seen in [15], is to express

the scattering angle only in terms of p2(r,GN ) and the impact parameter b as4

χD =
∞∑
k=1

χ̃k(b) , χ̃k(b) =
2b

k!

∫ ∞
0

du

(
d

db2

)k (Veff(r, p∞))kr2(k−1)

p2k
∞

, (5.1)

where r2 = u2 + b2, while the effective potential is given by

Veff(r, p∞) = −
∞∑
n=1

GnNf
D
n (p2

∞)

rn(D−3)
, (5.2)

4For an alternative way to relate p2(r,GN ) to the scattering angle, see ref. [14].
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which avoids the need to evaluate rmin. Since p2(r,GN ) = p2
∞ − Veff , one can always read

the fDn coefficients from eq. (4.25).5

At 2PM order the D-dimensional scattering angle is thus provided by

χ2PM
D = χ̃1(b) + χ̃2(b) , (5.3)

where

χ̃1(b) =
2b

p2
∞

∫ +∞

0
du
dVeff

db2
(r, p∞) , (5.4)

χ̃2(b) =
b

p4
∞

∫ +∞

0
du

(
d

db2

)2[
r2V 2

eff(r, p∞)

]
. (5.5)

From eq. (4.25) we can read off the fDn coefficients in terms of the amplitudes, namely

fD1 (p∞) =
2γ(p2

∞)

Ep∞π
D−3
2

Γ

(
D − 3

2

)
(5.6)

and

fD2 (p∞) =
2(m1 +m2)Γ2

(
D−3

2

)
Ep∞π

D−2

(
4(p1 · p2)2 −

4m2
1m

2
2 + (D − 3)p2E2

p

(D − 2)2

)
p=p∞

+
2γ2(p∞)(m1 +m2 − Ep∞)

E3p2
∞π

D−3
Γ2

(
D − 3

2

)
Γ(D − 3)

Γ(D − 4)
.

(5.7)

The integrals in eqs. (5.4)–(5.5) are elementary. The first contribution to the scattering

angle gives

χ̃1(b) =
GNf

D
1 (p∞)

p2
∞

√
π

bD−3

Γ(D−2
2 )

Γ(D−3
2 )

+
G2
Nf

D
2 (p∞)

p2
∞

√
π

b2D−6

Γ(D − 5
2)

Γ(D − 3)
. (5.8)

Inserting eqs. (5.6)–(5.7), this becomes

χ̃1(b) =
2γ(p∞)GN
p2
∞ Ep∞ bD−3

Γ(D2 )

π
D−4
2

+
2G2

NΓ(D − 5
2)Γ2(D−3

2 )

p2
∞ Ep∞ b2D−6πD−

7
2

(m1 +m2)

Γ(D − 3)

(
4(p1 · p2)2 −

4m2
1m

2
2 + (D − 3)p2E2

p

(D − 2)2

)
p=p∞

+
2γ2(p∞)(m1 +m2 − Ep∞)

E3
p∞p

4
∞π

D− 7
2

Γ2

(
D − 3

2

)
Γ(D − 5

2)

Γ(D − 4)

G2
N

b2D−6
. (5.9)

The remaining contribution gives

χ̃2(b) =
bG2

N (fD1 )2

p4
∞

∫ +∞

0
du

(
d

db2

)2

r2

(
1

r2d−4

)
=

2γ2(p∞)

E2
p∞p

4
∞

Γ(D − 5
2)

Γ(D − 4)

Γ2(D−3
2 )

πD−
7
2

G2
N

b2D−6
.

(5.10)

5In certain dimensions particular combinations of fDn terms in the expansion of the scattering angle may

vanish [15]. This phenomenon occurs already at 2PM order in four dimensions, where the expansion of the

scattering angle exceptionally does not involve f2
1 . This is not so in dimensions D > 4.
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Note that this additional term vanishes in four space-time dimensions D = 4. Adding these

pieces together, we find the D-dimensional scattering angle at 2PM order to be

χ2PM
D =

2γ(p∞)GN
p2
∞ Ep∞ bD−3

Γ(D2 )

π
D−4
2

+
2G2

NΓ(D − 5
2)Γ2(D−3

2 )

p2
∞ Ep∞ b2D−6πD−

7
2

(m1 +m2)

Γ(D − 3)

(
4(p1 · p2)2 −

4m2
1m

2
2 + (D − 3)E2

pp
2

(D − 2)2+

)
p=p∞

+
2γ2(p∞)(m1 +m2)

E3
p∞p

4
∞π

D− 7
2

Γ2

(
D − 3

2

)
Γ(D − 5

2)

Γ(D − 4)

G2
N

b2D−6
(5.11)

in complete agreement with the eikonal calculation [50].

It is also interesting to see how this agreement comes about. On the one hand, the

new classical pieces from the box and crossed-box diagrams in D > 4 dimensions yield

a contribution proportional to (m1 + m2 − Ep∞) in the last line of eq. (5.9). On the

other hand, for D > 4 there is a new term in the formula for the scattering angle that is

proportional to Ep∞ (and f2
1 ) in eq. (5.10). Adding these two contributions one gets the

last line of eq. (5.11) where we see that the two terms proportional to Ep∞ have cancelled

each other leaving only the term proportional to m1 +m2.

Finally, let us consider an alternative route to the computation of the scattering angle

which also can be phrased in terms of amplitude evaluations and which has been described

in ref. [34]. As shown there, one can express the change in four-momentum of a particle in

two-body scattering by means of

〈∆pµ1 〉 =
〈
ψ
∣∣∣S†Pµ1S∣∣∣ψ〉− 〈ψ |Pµ1 |ψ〉 (5.12)

where S denotes the S-matrix and the two particle state is given by a suitable |ψ〉. Re-

expressing the S-matrix in terms of the T -operator, one gets [34]

〈∆pµ1 〉 = Iµ(1) + Iµ(2) (5.13)

Iµ(1) ≡ 〈ψ |i [Pµ1 , T ]|ψ〉 , Iµ(2) ≡
〈
ψ
∣∣∣T † [Pµ1 , T ]

∣∣∣ψ〉 (5.14)

In the center-of-mass frame, it is now straightforward to relate the scattering angle θ to

eq. (5.13) by means of

sin θ =
〈∆pµ1 〉 bµ
p∞b

(5.15)

where bµ = (0,~b) denotes the impact parameter as in [34]. In the case of classical General

Relativity and to second Post-Minkwoskian order the scattering angle can be read off from

of eq. (5.15) and (5.13),

θ2PM =
Iµ1 bµ
p∞b

+
Iµ2 bµ
p∞b

, (5.16)

since sin θ ' θ at this level of approximation.

To this order the scattering angle arises from two contributions, one linear and one

quadratic in the involved scattering amplitudes. The term quadratic in the amplitude
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plays a role somewhat analogous of the Born subtraction needed to define the potential as

in eq. (3.5). Indeed, the quadratic term removes a classically singular term coming from

Iµ1 [34], thus rendering a well-defined classical observable in the same way as the Born

subtraction of eq. (3.5) removes super-classical pieces, and thus allowing the ~ → 0 limit.

It would be interesting to understand the precise relationship between these two methods,

and in particular to see how the method of ref. [34] leads to the same result as the two

other amplitude methods, also for D > 4.

5.1 Eikonal exponentiation and unitarity

As we have already pointed out in the introduction, the computation of the scattering

angle to a certain fixed order in the expansion parameter GN requires the calculation of an

infinite series of terms of the scattering amplitude, in the eikonal approach. This is needed

in order to ensure the exponentiation of terms in impact-parameter space. In contrast,

the fixed-order calculation that uses the Hamiltonian language needs only the amplitude

computed up to the given order in GN . It is therefore instructive to further explore the

connection between unitarity, as encoded in eq. (A.4) and the eikonal exponentiation.

To analyze this issue, let us consider again the identity (3.13) for two-to-two scattering

in the center-of-mass frame, which we may recast as

ImM1−loop(~p, ~p ′) = − π

2Ep

∫
dd~k

(2π~)d
δ(~p 2 − ~k2)Mtree(~p,~k )Mtree(~k, ~p

′) , (5.17)

(note that we are dealing here with the invariant amplitude M instead of M̃) or

ImM1−loop(~p, ~p ′) =
1

2Ep
Im

∫
dd~k

(2π~)d
Mtree(~p,~k )Mtree(~k, ~p

′)

~p 2 − ~k2 + iε
. (5.18)

The integral appearing on the right-hand side is the same as that in the first line of eq. (3.8),

thus immediately giving us

ImM1−loop(~p, ~p ′) =
G2
Nc

2
1(p2)π1−D

2

2D+1pEp

Γ
(

6−D
2

)
Γ2(D−4

2 )

Γ(D − 4)

(
q2

~2

)D−6
2

. (5.19)

Transforming to impact parameter space b by means of a Fourier transform in D − 2

dimensions yields

ImM1−loop(b) =
1

2

G2
Nc

2
1(p2)

64Epp

Γ2(D−4
2 )

(b2)D−4
π2−D , (5.20)

while the same Fourier transform for the tree level amplitude (3.7) gives

Mtree(b) =
GNc1(p2)

4

Γ(D−4
2 )

bD−4
π

2−D
2 (5.21)

and hence, dividing by the normalization factor 4Epp as in [50] (see also eq. (A.21)), we find

Im
M1−loop(b)

4Epp
=

1

2

(
Mtree(b)

4Epp

)2

. (5.22)
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This is the first identity needed to ensure exponentiation of the tree-level amplitude in the

eikonal limit and we see that it follows from unitarity alone.

We interpret this as further evidence that, even at higher orders, unitarity indeed lies

behind the eikonal exponentiation. A remarkable phenomenon is that in this approach

super-classical terms of increasingly high inverse of powers of ~ are needed to achieve the

exponentiation in impact-parameter space that eventually, at the saddle point, leads to the

classical scattering angle.

6 Simple expressions for the deflection angle

In this section we show that, if the potential is just given by the contribution of the tree

diagram, then we can obtain a closed expression for the deflection angle in D dimensions.

Let us now assume that the effective potential in D dimensions is only given by the tree-

level contribution:

Veff(r) = −GNf
D
1

rD−3
, fD1 (p∞) =

2γ(p2
∞)

Ep∞π
D−3
2

Γ

(
D − 3

2

)
, (6.1)

where fD1 is given in eq. (5.6). The deflection angle is computed from eq. (5.1) which, for

the potential in eq. (6.1), implies

χDtree =

∞∑
k=1

2b

k!

(
− GNf

D
1

p2
∞

)k ∫ +∞

0
du ∂

(k)
b2

[
(u2 + b2)k

(5−D)
2
−1

]

=
∞∑
k=1

2b

k!

(
−GNfD1
p2
∞

)k k−1∏
l=0

(
k

(5−D)

2
− 1− l

)∫ +∞

0
du

1

(u2 + b2)1+
k(D−3)

2

.

(6.2)

The integral over the variable u can be easily computed and one gets

χDtree =
∞∑
k=1

2b

k!

(
−GNfD1
p2
∞

)k k−1∏
l=0

(
k

(5−D)

2
−1−l

) √
π

bk(D−3)+1

1

k(D − 3)

Γ(k(D−3)+1
2 )

Γ(k(D−3)
2 )

, (6.3)

which we may finally recast in the form

χDtree =
√
π

∞∑
k=1

αk

k!

Γ(k(D−3)+1
2 )

Γ(k(D−5)
2 + 1)

(6.4)

with

αD =
GNf

D
1

p2
∞b

D−3
. (6.5)

In some particular case, such as D = 4, 5, the sum of the series (6.4) evaluates to simple

functions. For D = 4 one gets6

χ4 = 2 arctan

(
α4

2

)
=⇒ tan

χ4

2
=
α4

2
, (6.6)

6A closed expression for the scattering angle in D = 4 up to 2PM included has been given in [12, 14].
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while for D = 5 one finds

χ5 =
π√

1− α5
− π . (6.7)

The two previous deflection angles have the same form as the deflection angles in eq. (4.5)

of ref. [51] corresponding to the scattering of a massless scalar particle on a maximally

supersymmetric D6-brane and on a D5-brane, respectively. For D = 7 we get

χ7 =
2K

(
4
√
α7

2
√
α7+1

)
√

2
√
α7 + 1

− π , (6.8)

where K is the complete elliptic integral of first kind. Also this expression agrees with the

one in eq. (4.6) of ref. [51] for the D3-brane. Finally, for D = 6, 8, 9 and D = 10 we can

write the deflection angle in terms of hypergeometric functions:

χ6 = 2α6 3F2

(
2

3
, 1,

4

3
;

3

2
,

3

2
;

27α2
6

4

)
+ π 2F1

(
1

6
,

5

6
; 1;

27α2
6

4

)
− π , (6.9)

χ8 = π 4F3

(
1

10
,

3

10
,

7

10
,

9

10
;

1

3
,

2

3
, 1;

3125α2
8

108

)
(6.10)

+
8

3
α8 5F4

(
3

5
,

4

5
, 1,

6

5
,
7

5
;
5

6
,

7

6
,
3

2
,
3

2
;
3125α2

8

108

)
− π , (6.11)

χ9 = π 2F1

(
1

6
,
5

6
; 1;

27α9

4

)
− π , (6.12)

χ10 = π 6F5

(
1

14
,

3

14
,

5

14
,

9

14
,

11

14
,

13

14
;
1

5
,
2

5
,
3

5
,
4

5
, 1;

823543α2
10

12500

)
(6.13)

+
16

5
α10 7F6

(
4

7
,

5

7
,
6

7
, 1,

8

7
,

9

7
,

10

7
;

7

10
,

9

10
,

11

10
,

13

10
,

3

2
,
3

2
;
823543α2

10

12500

)
− π . (6.14)

The power-series expansions of these results (up to order α2
D) again agree with eq. (4.8)

of ref. [51] with the following identification of the variables involved in the two cases:

αD ⇐⇒
(
Rp
b

)7−p
, p+D = 10 . (6.15)

An alternative way to show the equivalence between our approach with only the tree

diagram potential and that of ref. [51] is using eq. (4.3). In fact in this case p2(r,GN ) in

eq. (4.16) contains only the term with n = 1 and taking into account eq. (4.2) one gets the

following expression for the deflection angle in eq. (4.3):

χD(b) = 2

∫ ∞
rmin

dr

r2

b√
1 +

(
RD
r

)D−3
− b2

r2

− π (6.16)

with

b ≡ L

p∞
, RD−3

D ≡ GNf
D
1

p2
∞

=
2GNγ(p2

∞)

Ep∞p
2
∞

Γ(D−3
2 )

π
D−3
2

, (6.17)
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where in the last step we have used eq. (6.1). On the other hand eq. (4.4) of ref. [51] can

be easily rewritten as follows,

χp(b) = 2

∫ ∞
rmin

dr

r2

b√
1 +

(
Rp
r

)7−p
− b2

r2

− π , (6.18)

where Rp is a quantity defined in ref. [51]. The two equations give the same deflection

angle if we make the following identification:

R7−p
p ⇐⇒ RD−3

D , p+D = 10 . (6.19)

7 Conclusions

Starting from the elastic scattering amplitude of two scalar particles with arbitrary masses

in Einstein gravity in an arbitrary number D of space-time dimensions, we isolated the

terms that contribute in the classical limit by the method of regions. We then extracted

from them the long-range classical effective potential between the two scalar particles

for arbitrary D by means of the Lippmann-Schwinger equation or, equivalently, by the

technique of EFT matching.

We then used the Hamiltonian consisting of the sum of the relativistic kinetic terms

for the two particles and the potential to determine the conjugate momentum p2(r,GN ).

It turns out that, unlike the case D = 4, for arbitrary D this relation contains an extra

term proportional to the square of the tree scattering amplitude that, of course, vanishes

for D = 4. We then used it to compute the deflection angle, finding complete agreement

with the one obtained using the eikonal approach [50].

The approach of this paper is not only different from the one of ref. [50] because here

we use the Hamiltonian approach to derive the deflection angle, while ref. [50] was based

on the eikonal approach, but also because the box and crossed box integrals are computed

using two different methods. It turns out that, if we use the method of the regions directly

on the fully relativistic expression for the box and crossed box diagrams, as explained in

appendix B.2, we get the same result for the subleading term as in ref. [50], while, if we first

go to the potential region and then compute the subleading term, we get the same result

only in the nonrelativistic limit, where the energy of the two particles becomes equal to

their mass. Since we use the fully relativistic expression for the sum of the box and crossed

box diagrams in the underlying fundamental theory, while the nonrelativistic expression

for those diagrams emerges in the EFT, from the matching between the two theories we

get the important result that, for D > 4, these diagrams leave a nonzero contribution to

the potential that, of course, vanishes for D = 4.

Note added: while this paper was under review a new way to perform the integrals of

the potential region appeared [58]. The authors confirm our D-dimensional calculation of

the amplitude.
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A Normalization of the amplitude

In this appendix we fix the conventions that we adopt for the normalization of scattering

amplitudes. We decompose the S-matrix according to

S = 1− i

~
T . (A.1)

The operator T has therefore the dimension of an action, EL, where E stands for an energy

scale and L for a length scale. Its matrix elements Tba = 〈b|T |a〉 between asymptotic states

|b〉 and |a〉 define the standard scattering amplitudes Mba according to

Tba = (2π~)Dδ(Pa − Pb)Mab , (A.2)

where Pb and Pa denote the total outgoing and incoming D-momenta. The unitarity of

the S-matrix SS† = 1 = S†S also implies the following identity among T -matrix elements

involving the sum over a complete set of intermediate asymptotic states

Tba − (T †)ba = − i
~
∑
c

Tbc(T
†)ca , (A.3)

or, at the level of scattering amplitudes,

Mab −Mba = −i2π
∑
c

(2π~)D−1δ(Pa − Pc)McaMcb (A.4)

for states such that Pa = Pb.

We are interested in asymptotic states containing two kinds of scalar particles with

masses m1 and m2 although we shall suppress the subscripts 1, 2 for simplicity. The

associated free Hermitian scalar fields ϕ(x) are described by the action

Sfree = −1

2

∫
dDx

(
~2∂µϕ∂µϕ+m2ϕ2

)
. (A.5)

The Fock expansion for ϕ(x) can be taken as

ϕ(x) =

∫
dDp

(2π~)D−1
δ(p2 +m2)ϕ̃(p)e

ip·x
~ , (A.6)
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where ϕ̃(p) = a(~p ) and ϕ̃(−p) = a†(~p ) for p = (p0, ~p ) and p0 > 0, while the canonical

commutation relations read

[a(~p), a†(~p ′)] = 2E(p)(2π~)D−1δ(~p− ~p ′) , (A.7)

with E(p) =
√
~p 2 +m2 denoting the single-particle energy. The field ϕ(x) has dimension

E−
1
2L

1−D
2 and the creation/annihilation operators ϕ̃(p) have dimension E

1
2L

D−1
2 . Single-

particle states are obtained acting with the creation operator a†(~p ) on the Fock vacuum |0〉,

a(~p )|0〉 = 0 , |~p 〉 = a†(~p )|0〉 , 〈~p |~p ′〉 = 2E(p)(2π~)D−1δ(D−1)(~p− ~p ′) , (A.8)

so that their normalization is Lorentz invariant. The completeness relation for asymptotic

states reads

∞∑
n=1

∫
dD−1~p1

(2π~)D−1

1

2E(p1)
· · · d

D−1~pn
(2π~)D−1

1

2E(pn)
|~pn, . . . , ~p1〉〈~pn, . . . , ~p1| = 1 . (A.9)

The invariant amplitude M(~p1, . . . , ~pM , ~p1
′, . . . , ~pN

′) for the scattering of M incoming and

N outgoing massive scalars is then given by the relation

〈~pN ′, . . . , ~p1
′|T |~pM , . . . , ~p1〉 = (2π~)Dδ(P − P ′)M(~p1, . . . , ~pM , ~p1

′, . . . , ~pN
′) (A.10)

with

P =

M∑
i=1

pi , P ′ =

N∑
i=1

pi
′ (A.11)

and has the physical dimension EL1−D(ELD−1)
M+N

2 . This is a direct consequence of the

fact that the creation and annihilation operators have dimension E
1
2L

D−1
2 .

For the specific case of two-to-two scattering of particles with mass m1 and m2, which

we describe at the beginning of section 2, one has

〈~p4, ~p3|S|~p2, ~p1〉 = 2E1(p1)(2π~)D−1δ(~p1 − ~p3)2E2(p2)(2π~)D−1δ(~p2 − ~p4)

− i2π(2π~)D−1δ(p1 + p2 − p3 − p4)M(~p1, ~p2, ~p3, ~p4) ,
(A.12)

and we adopt a simplified notation for the invariant amplitude evaluated in the center-of-

mass frame

M(~p, ~p ′) =M(~p1, ~p2, ~p3, ~p4) , (A.13)

which has dimension E3LD−1. We also consider a reduced S-matrix, s, which relates to

the standard S-matrix by

〈~p4, ~p3|S|~p2, ~p1〉 = 4E1(p1)E2(p2)(2π~)D−1δ(~p1 + ~p2 − ~p3 − ~p4)〈~p ′|s|~p 〉 , (A.14)

with

~p =
m2~p1 −m1~p2

m1 +m2
, ~p ′ =

m2~p3 −m1~p4

m1 +m2
, (A.15)

and reads

〈~p ′|s|~p 〉 = (2π~)D−1δ(~p− ~p ′)− i2πδ(Ep − Ep′)M̃(~p, ~p ′) (A.16)
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in the center-of-mass frame. Therefore the reduced amplitude in the center-of-mass frame

M̃(~p, ~p ′) is related to the invariant amplitude by

M̃(~p, ~p ′) =
M(~p, ~p ′)

4E1(p)E2(p)
(A.17)

and has dimension ELD−1. eq. (A.16) for the reduced S-matrix can be also written as

〈~p ′|s|~p 〉 = (2π~)D−1δ(~p− ~p ′)− i2πδ(p2 − p′2)M̃eff(~p, ~p ′) (A.18)

with

M̃eff(~p, ~p ′) = 2Epξ(p)M̃(~p, ~p ′) , (A.19)

or as

〈~p ′|s|~p 〉 = (2π~)D−1δ(~p− ~p ′)− i2πδ(p− p′)M̃eik(~p, ~p ′) , (A.20)

with

Meik(~p, ~p ′) =
M(~p, ~p ′)

4Epp
. (A.21)

We should also mention that the T matrix is often defined in the following alterna-

tive way:

S = 1 + i T . (A.22)

In this case one would get a scattering amplitude that differs from the previous one by a

factor −~. This alternative normalization was employed in [50] to retrace the dependence

on ~ of the eikonal factor that one extracts from the scattering amplitude.

B One-loop integrals in the ~ → 0 limit

In this appendix we explicitly discuss the evaluation of triangle and box integrals in the

classical limit ~→ 0, i.e. the limit of small transferred momentum q. We employ a technique

that can be used to extract the asymptotic expansion of Feynman integrals in certain limits

known as the method of regions [57], which consists in splitting the domain of integration

into sectors defined by suitable scaling relations.

In the examples we shall consider, the asymptotic expansions of Feynman integrals

will emerge in particular from the soft region, in which the integrated momentum k scales

as k ∼ O(q), and from the hard region, k ∼ O(1). The non-analytic contributions in

momentum space giving rise to long-range effects in position space, on which we focus in

the main body of the paper, are those obtained from the soft region. We will then comment

on the relation between the results obtained from these regions and the potential region.

This region involves both the classical limit of small q and the nonrelativistic limit of small

v, where v is the relative velocity in the center-of-mass frame, and can be characterized by

the scaling relations k0 ∼ O(qv) and ~k ∼ O(q).
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B.1 Triangle integrals

Let us first consider the scalar triangle integral (2.13)

I. =

∫
dDk

(2π~)D
~5

(k2 − iε) ((q − k)2 − iε)) (k2 − 2p1 · k − iε)
, (B.1)

which we may recast as

I. =

∫
dDk

(2π~)D
~5

(k2 − iε) ((q − k)2 − iε) (k2 − (q⊥ + q) · k − iε)
(B.2)

introducing, together with the momentum transfer q = p1 − p3, the additional variable

q⊥ = p1 + p3 . (B.3)

Note in particular that q · q⊥ = 0.

The classical limit consists in letting ~→ 0 in such a way that the momentum transfer

q vanishes, while the transferred wave-vector 1
~ q and the average momentum 1

2 q⊥ of the

massive particle are kept fixed. We schematically identify this situation by writing

q ∼ O(~) , q⊥ ∼ O(1) , q � q⊥ . (B.4)

We note that this limit requires the mass m1 to be nonzero, in view of the relation

− q2
⊥ = 4m2

1 + q2 . (B.5)

We shall now employ the expansion by regions to obtain an asymptotic approximation

of the integral (B.2) in the classical limit. This method consists in splitting the integration

over the loop momentum k into a soft region, characterized by the scaling k ∼ O(~) and

hence k ∼ q � q⊥, and a hard region, in which k ∼ O(1) and hence k ∼ q⊥ � q, namely

I. = I
(s)
. + I

(h)
. , (B.6)

with

I
(s)
. =

∫
k∼q

dDk

(2π~)D
~5

(k2 − iε) ((q − k)2 − iε) (k2 − (q⊥ + q) · k − iε)
, (B.7)

I
(h)
. =

∫
k∼q⊥

dDk

(2π~)D
~5

(k2 − iε) ((q − k)2 − iε) (k2 − (q⊥ + q) · k − iε)
. (B.8)

One then considers the Taylor expansion of the integrands according to the appropriate

scaling relations, thus obtaining two asymptotic series for I(s) and I(h),

I(s) = I(1s) + I(2s) + · · · ,

I(h) = I(1h) + I(2h) + · · · .
(B.9)

The first two contributions to the soft region thus read

I
(1s)
. =

∫
k∼q

dDk

(2π~)D
~5

(k2 − iε)((q − k)2 − iε)(−q⊥ · k − iε)
, (B.10)

I
(2s)
. =

∫
k∼q

dDk

(2π~)D
~5(−k2 + q · k)

(k2 − iε)((q − k)2 − iε)(−q⊥ · k − iε)2
, (B.11)
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while for the hard contribution one has

I
(1h)
. =

∫
k∼q⊥

dDk

(2π~)D
~5

(k2 − iε)2(k2 − q⊥ · k − iε)
, (B.12)

I
(2h)
. =

∫
k∼q⊥

dDk

(2π~)D
~5q · k(3k2 − 2q⊥ · k)

(k2 − iε)3(k2 − q⊥ · k − iε)2
. (B.13)

The integration can be then extended to the whole D-dimensional space in both regions

in view of the fact that the error R. thus introduced always takes the form of a scaleless

integral and is therefore identically vanishing in dimensional regularization: to leading

order, for instance,

R. =

∫
dDk

(2π~)D
~5

(k2 − iε)2(−q⊥ · k − iε)
= 0 . (B.14)

By means of the above expansion we have reduced the problem to the evaluation of sim-

pler Feynman integrals, which can be directly calculated introducing Feynman parameters

and exploiting the orthogonality between q and q⊥, as detailed in section B.4 below. The

leading contribution (B.10) to the soft region can be read from the general integral (B.70)

and takes the form

I
(1s)
. =

i
√
π

m1(4π)
D
2

Γ
(
D−3

2

)2
Γ
(

5−D
2

)
2Γ(D − 3)

(
q2

~2

)D−5
2

, (B.15)

since −q2
⊥ = 4m2

1+O(~2) thanks to (B.5), while the leading hard contribution (B.12) reads,

by (B.62),

I
(1h)
. =

iΓ
(

6−D
2

)
(4−D)(5−D)(4π)

D
2 ~

(
m2

1

~2

)D−6
2

. (B.16)

We note that the leading soft term behaves as O(1) as ~ → 0 and is therefore classical,

while the hard term scales like ~
5−D
2 . Furthermore, the latter is analytic (in fact, constant)

in the transferred momentum and therefore corresponds to a local term in position space,

while the former gives rise to a power-law dependence on r via (3.16). Actually, the whole

hard asymptotic expansion is just a power series expansion in q2 and this leads us to focus

on the terms arising from the soft region in the discussion of the long-range potential.

Considering now the subleading soft integral (B.11), we note that the first term in

the numerator gives rise to a scaleless integral, after sending k → q − k, and thus can be

discarded. The remaining integral is then given by (B.71), namely

I
(2s)
. = − i~

m2
1(4π)

D
2

Γ
(
D−2

2

)2
Γ
(

4−D
2

)
2Γ(D − 3)

(
q2

~2

)D−4
2

, (B.17)

which is O(~) and hence quantum. Interestingly, we note that this term of the expansion

is divergent as D → 4, despite the fact that the original integral (B.2) is clearly finite in

four dimensions. The appearance of such spurious divergences is a standard feature of the

expansion by regions and indicates the presence of cancellations between the soft and the
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hard series. In this case, the pole at ε = 0 for D = 4− 2ε cancels in the sum of the leading

hard term (B.16) and subleading soft term (B.17), leaving behind the finite contribution(
I

(1h)
. + I

(2s)
.

) ∣∣
D=4

=
i~

2m2
1(4π)2

(
log

q2

m2
1

− 2

)
. (B.18)

This can be regarded as a quantum contribution since it contains terms scaling as O(~ log ~)

and O(~) in the classical limit.

A similar strategy also applies to tensor integrals associated to the triangle diagram,

such as

Iµ. =

∫
dDk

(2π~)D
~4kµ

(k2 − iε) [(q − k)2 − iε] (k2 − (q⊥ + q) · k − iε)
(B.19)

and the one appearing in (2.14),

Iµν. =

∫
dDk

(2π~)D
~3kµkν

(k2 − iε) [(q − k)2 − iε] (k2 − (q⊥ + q) · k − iε)
. (B.20)

After performing a tensor decomposition in terms of qµ, qµ⊥ and ηµν , these inte-

grals can be evaluated directly in the soft region by means of Feynman parameters,

(see (B.63), (B.70), (B.71), (B.72)). To leading order as ~→ 0, one finds

I
(s)µ
. =

i
√
π

(4π)
D
2

Γ
(

5−D
2

)
Γ
(
D−1

2

)
Γ
(
D−3

2

)
2Γ(D − 2)

qµ

~m1

(
q2

~2

)D−5
2

+
i

(4π)
D
2

Γ
(

4−D
2

)
Γ
(
D−2

2

)2
2Γ(D − 2)

pµ1
m2

1

(
q2

~2

)D−4
2

(B.21)

and

I
(s)µν
. =

i

4m1(4π)
D
2 Γ(D − 1)

×

[(
ηµν+

pµ1p
ν
1

m2
1

− (D−1)
qµqν

q2

)(
q2

~2

)D−3
2 √

π Γ

(
3−D

2

)
Γ

(
D − 1

2

)2

+
2(qµpν1 + qνpµ1 )

~m1

(
q2

~2

)D−4
2

Γ

(
4−D

2

)
Γ

(
D − 2

2

)
Γ

(
D

2

)]
.

(B.22)

The analogous results for I/, I
µ
/ , Iµν/ can be obtained by replacing m1 ↔ m2 in the above

expressions (B.15), (B.17), (B.21) and (B.22).

B.2 Box integrals

Let us now turn to the scalar box integral (2.15), leaving the −iε prescription implicit for

the time being,

I�,s =

∫
dDk

(2π~)D
~5

k2(k − q)2(k2 − 2p1 · k)(k2 + 2p2 · k)
. (B.23)
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Introducing the variables

q⊥ = p1 + p3 , Q = p1 + p2 (B.24)

allows us to recast the desired integral as follows

I
(1s)
�,s =

∫
dDk

(2π~)D
~5

k2(k − q)2(k2 + (2Q− q⊥ − q) · k)(k2 − (q⊥ + q) · k)
. (B.25)

These new variables satisfy in particular

q · q⊥ = 0 = q ·Q , q⊥ ·Q = Q2 − (m2
1 −m2

2) . (B.26)

We are interested in the classical limit described by the scaling

q ∼ O(~) , q⊥, Q ∼ O(1) , q � q⊥, Q , (B.27)

as ~→ 0, which implicitly requires a nonzero mass because

− q2
⊥ = 4m2

1 + q2 . (B.28)

The leading soft term then reads

I
(1s)
�,s =

∫
dDk

(2π~)D
~5

k2(k − q)2((2Q− q⊥) · k)(−(q⊥ · k))
, (B.29)

where, following the same strategy detailed for the triangle diagram, we have performed

a Taylor expansion of the integrand of (B.25) to leading order for k ∼ O(~), namely

k ∼ q � q⊥, Q. Introducing a Feynman parameter x for the two linear factors in the

denominator, we then have

I
(1s)
�,s =

∫ 1

0
dx

∫
dDk

(2π~)D
~5

k2(k − q)2((2xQ− q⊥) · k)2
. (B.30)

Since 2xQ− q⊥ is orthogonal to q, we can apply (B.70), which thus yields

I
(1s)
�,s =

iΓ
(
D−4

2

)2
Γ
(

6−D
2

)
2(4π)

D
2 Γ(D − 4)

1

~

(
q2

~2

)D−6
2
∫ 1

0

dx

−
(
xQ− 1

2q⊥
)2 − iε , (B.31)

where we have reinstated the −iε prescription. The roots of the polynomial

−
(
xQ− q⊥

2

)2
− iε (B.32)

appearing in the denominator are given up to O(~2) by

x± =
m2

1 − p1 · p2 ±
√

(p1 · p2)2 − (m1m2)2

m2
1 +m2

2 − 2p1 · p2
± iε (B.33)

and their real parts both lie in the integration interval, namely between 0 and 1. We thus

obtain7

I
(1s)
�,s =

iΓ
(
D−4

2

)2
Γ
(

6−D
2

)
2~(4π)

D
2 Γ(D − 4)

iπ − cosh−1
(
− p1·p2
m1m2

)
√

(p1 · p2)2 −m2
1m

2
2

(
q2

~2

)D−6
2

. (B.34)

7cosh−1(x) = log(x +
√
x2 − 1).
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The crossed box diagram is related to the one we just discussed by p1 7→ −p3, which

corresponds to exchanging p1 · p2 ↔ −p1 · p2 up to O(~2). The real parts of the roots

analogous to (B.33) then no longer fall between 0 and 1 and the resulting integral gives

I
(1s)
�,u =

iΓ
(
D−4

2

)2
Γ
(

6−D
2

)
2~(4π)

D
2 Γ(D − 4)

cosh−1
(
− p1·p2
m1m2

)
√

(p1 · p2)2 −m2
1m

2
2

(
q2

~2

)D−6
2

. (B.35)

The sum of the leading box and crossed box diagrams finally reads

I
(1s)
�,s + I

(1s)
�,u =

Γ
(
D−4

2

)2
Γ
(

6−D
2

)
2~(4π)

D
2 Γ(D − 4)

−π√
(p1 · p2)2 −m2

1m
2
2

(
q2

~2

)D−6
2

. (B.36)

The subleading term in the soft expansion for the box integral is instead

I
(2s)
�,s = 2~5

∫ 1

0
dx

∫
dDk

(2π~)D
q · k − k2

k2(q − k)2 [(2xQ− q⊥) · k]3
, (B.37)

where we have considered the second term in the Taylor expansion of the integrand of (B.25)

for k ∼ O(~), namely k ∼ q � q⊥, Q. Recognizing that the second term in the numer-

ator gives rise to a scaleless integral, this expression can be evaluated by the help of

formula (B.71) to

I
(2s)
�,s = −

i
√
π Γ
(

5−D
2

)
Γ
(
D−3

2

)2
4(4π)

D
2 Γ(D − 4)

(
q2

~2

)D−5
2
∫ 1

0

dx[
−
(
xQ− q⊥

2

)2 − iε] 3
2

. (B.38)

Performing the integral over x then yields, to leading order in ~,

I
(2s)
�,s =

i
√
π Γ
(

5−D
2

)
Γ
(
D−3

2

)2
8(4π)

D
2 Γ(D − 4)

(
q2

~2

)D−5
2

[
s
(

1
m1

+ 1
m2

)
+ (m2

1 −m2
2)
(

1
m1
− 1

m2

)]
(p1 · p2)2 −m2

1m
2
2

,

(B.39)

where s = −(p1 + p2)2. Adding this expression, corresponding to the s-channel, to the one

obtained from the u-channel yields in particular

I
(2s)
�,s + I

(2s)
�,u =

i
√
π Γ
(

5−D
2

)
Γ
(
D−3

2

)2
2(4π)

D
2 Γ(D − 4)

(
q2

~2

)D−5
2 m1 +m2

(p1 · p2)2 −m2
1m

2
2

. (B.40)

As mentioned for the case of triangle integrals, we have focused on the soft-region

expansion of box diagrams because it is the one containing terms with a non-analytic

dependence on q2 for generic D. The hard region, obtained expanding the original inte-

gral (B.25) for k ∼ O(1), namely k ∼ q⊥, Q� q, gives rise instead to terms with positive

integer powers of q2. For instance, the leading hard term for the box integral is given by

I
(1h)
� =

∫
dDk

(2π~)D
~5

(k2)2(k2 + (2Q− q⊥) · k)(k2 − q⊥ · k)
(B.41)
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so that, employing again Feynman parameters to rewrite the linear factors in the denomi-

nator in terms of a single one and using (B.62),

I
(1h)
� =

iΓ
(

8−D
2

)
Γ (D − 6)

(4π)
D
2 Γ(D − 4)

∫ 1

0

~5−Ddx[
−
(
xQ− q⊥

2

)2 − iε] 8−D
2

. (B.42)

This contribution is thus analytic in q2 and finite in four dimensions. However, it is infrared

divergent in, say, D = 5. The box integral (B.25) is however finite in five dimensions and

this means that such a divergence must cancel out when adding the soft and the hard

contributions: indeed, comparing (B.42) with the subleading soft term (B.38) we see that

the two divergent contributions cancel as D → 5 leading to a finite limit for I
(1h)
� + I

(2s)
� .

B.3 The potential region

Another region which can be useful for the expansion of Feynman integrals in the classical

limit is the so-called potential region, as also argued in [9, 13]. To describe it, let us again

consider the scalar triangle (B.1), which we write in the center-of-mass frame as

I. =

∫
dDk

(2π~)D
~5

(−(k0)2 + |~k |2 − iε)(−(k0)2 + |~k + ~q |2 − iε)
1

(−(k0)2 + |~k|2 − 2E1(p)k0 + 2~p · ~k − iε)
,

(B.43)

where we have sent k → −k and adopted the same notation as in section 2.

As before, we are interested in the limit in which the transferred momentum ~q is of

order ~ and is hence small with respect to the mass. We also consider the nonrelativistic

limit, i.e. the regime |~p | � m1 in which the relative velocity v is much smaller than the

speed of light. The potential region is then defined by the following scaling relations

k0 ∼ qv , ~k ∼ q , (B.44)

which break Lorentz invariance as they prescribe the time-component k0 of the loop mo-

mentum to be negligible with respect to its spatial components ~k. The leading potential

term is then obtained by simply neglecting the (k0)2 terms in the propagators,

I
(1p)
. =

∫
dD−1~k

(2π~)D−1

~4

|~k|2|~k + ~q |2

∫
dk0

2π

1

(−2E1(p)k0 + |~k|2 + 2~p · ~k − iε)
. (B.45)

The resulting integral over dk0 is in principle ill defined, but can be evaluated by prescribing

the application of the standard formula for the passage near a simple pole 1
x−iε = PV 1

x +

iπδ(x). We thus obtain

I
(1p)
. =

i

4E1(p)

∫
dD−1~k

(2π~)D−1

~4

|~k|2|~k + ~q |2
. (B.46)

The remaining integral is elementary and can be evaluated by means of Feynman param-

eters, yielding

I
(1p)
. =

i
√
π

E1(p)(4π)
D
2

Γ
(
D−3

2

)2
Γ
(

5−D
2

)
2Γ(D − 3)

(
q2

~2

)D−5
2

. (B.47)
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Taking into account the fact that E1(p) ≈ m1 up to terms of order v2 in the nonrelativistic

limit, this is the same as the leading soft result (B.15).

It would be interesting to reproduce the subleading soft term (B.17) from the sublead-

ing potential expansion, which is obtained from the higher-order terms in Taylor series of

the integrand in (B.43) for small (k0)2. However, the resulting integral in dk0 presents

further difficulties, in particular due to appearance of a double pole.

Let us now turn to the potential-region expansion of the massive box (B.23). We go

to the center-of-mass frame, adopting the same conventions as in section 2, so that

I� =

∫
dDk

(2π~)D
~5

(−(k0)2 + ~k 2 − iε)(−(k0)2 + |~k − ~q |2 − iε)

× 1

(−(k0)2 + ~k2 + 2E1k0 − 2~p · ~k − iε)(−(k0)2 + ~k2 − 2E2k0 − 2~p · ~k − iε)
.

(B.48)

In addition to the classical limit, which consists here in sending ~→ 0 in such a way that

~q ∼ O(~) , ~q⊥ ∼ O(1) , (B.49)

where ~q⊥ = ~p + ~p ′, we also consider the nonrelativistic limit of small v, as we did for the

triangle. We then adopt the scaling relations

k0 ∼ qv ~k ∼ q , (B.50)

which characterize the potential region for the loop momentum. We are thus justified in

neglecting the (k0)2 appearing in the denominator, to leading order,

I
(1p)
� =

∫
dDk

(2π~)D
~5

~k 2|~k − ~q |2(2E1k0 + ~k2 − 2~p · ~k − iε)(−2E2k0 + ~k2 − 2~p · ~k − iε)
.

(B.51)

The integral in dk0 can be performed with the help of the residue theorem, leading to

I
(1p)
� =

i

2Ep

∫
dD−1~k

(2π~)D−1

~4

~k2|~k − ~q |2(~k2 − 2~p · ~k − iε)
. (B.52)

Letting ~k → ~p− ~k, we have

I
(1p)
� =

i

2Ep

∫
dD−1~k

(2π~)D−1

~4

|~k − ~p |2|~k − ~p ′|2(~k2 − |~p |2 − iε)
, (B.53)

so that we have reduced the problem to the evaluation of a Euclidan version of the triangle

integral with an effective “squared mass” m2 = −|~p |2 − iε. Indeed, with an appropri-

ate choice of routing for the loop momentum, the triangle integral (B.1) can be written

as follows

I. = i

∫
dDkE

(2π~)D
~5

(kE − p1E)2(kE − p3E)2
(
k2
E + m2

~2

) , (B.54)

after Wick rotation, and therefore the above integral can be obtained from this one by the

identifications

D → D − 1 , m→ −i~|~p | . (B.55)
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Consequently, thanks to (B.15) and (B.17), we find∫
dD−1~k

(2π~)d
~4

|~k − ~p |2|~k − ~p ′|2(~k2 − ~p 2 − iε)
=

iπ

~ (4π)
D
2 |~p|

Γ
(

6−D
2

)
Γ2(D−4

2 )

Γ(D − 4)

(
q2

~2

)D−6
2

+
1

2|~p |2(4π)
D−1
2

Γ
(

5−D
2

)
Γ2(D−3

2 )

Γ(D − 4)

(
q2

~2

)D−5
2

+ · · · . (B.56)

We thus have, retaining the first two nontrivial orders for the soft-region expansion

of (B.53),

I
(1p)
� = − π

~|~p |Ep
Γ
(
D−4

2

)2
Γ
(

6−D
2

)
2(4π)

D
2 Γ(D − 4)

(
q2

~2

)D−6
2

+
i
√
π

|~p |2Ep
Γ
(
D−3

2

)2
Γ
(

5−D
2

)
2(4π)

D
2 Γ(D − 4)

(
q2

~2

)D−5
2

+ · · · .

(B.57)

Note that the first line coincides with the leading order (B.36) for the soft expansion

of the sum of box and crossed box diagrams written in the center-of-mass frame, where

|~p |Ep =
√

(p1 · p2)2 −m2
1m

2
2. Indeed, in the potential region, the crossed box diagram

gives zero to leading order since the poles in k0 both lie in the upper half plane.

However, the subleading order does not coincide with (B.40). It is in fact proportional

to it, but instead of the total mass m1 + m2 it displays a factor Ep, the center-of-mass

energy, so that the two results do agree in the nonrelativistic limit v � 1. This is in general

to be expected, since the leading potential contribution I
(1p)
� is only reliable to first order

in the nonrelativistic limit.

A more complete comparison between the results coming from the potential region and

the ones obtained from the soft region for generic velocities, i.e. beyond the nonrelativistic

regime, should be performed after resumming the potential series to all orders in v. How-

ever, the evaluation of subleading potential integrals is quite complicated due to the fact

that they are in principle ill defined, as we have already seen for the triangle integral. A

viable alternative to the evaluation of such integrals could be provided by an extension of

the nonrelativistic integration techniques discussed in [13] to the case of generic dimensions.

In conclusion the potential region provides an expression for the non-analytic terms in

the small-q expansion of the relevant Feynman integrals that agrees with the one furnished

by the soft region at least to leading order in the nonrelativistic limit. In contrast, the

soft region directly provides the non-analytic terms in the small-q expansion in a fully

relativistic manner. Let us also mention once more that the soft region gives rise to the

needed cancellation of the spurious divergences appearing in the hard region, again without

involving the nonrelativistic limit, as for instance between (B.38) and (B.42) as D → 5.

B.4 Auxiliary integrals

In this subsection we collect a number of useful standard techniques and results that

allow one to explicitly evaluate the Feynman integrals presented above. To simplify the
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presentation, all quantities appearing in this section are understood to be dimensionless.

We first recall that, in D-dimensional Euclidean space, we have the general formula∫
dD`E
(2π)D

(`2E)β

(`2E + ∆2
E)α

=
Γ
(
β + D

2

)
Γ
(
α− β − D

2

)
(4π)

D
2 Γ (α) Γ

(
D
2

) (∆2
E)

D
2
−α+β . (B.58)

Let us consider

I(p2) =

∫
dD`

(`2 − iε)λ1(`2 − 2p · `− iε)λ2
, (B.59)

where pµ is a time-like vector, (−p2) > 0. Introducing Feynman parameters we have

I(p2) =
Γ(λ1 + λ2)

Γ(λ1)Γ(λ2)

∫ 1

0
dx (1− x)λ1−1xλ2−1

∫
dD`

(`2 − 2xp · `− iε)λ1+λ2
. (B.60)

Shifting ` by xp so as to complete the square in the denominator, performing the Wick

rotation (`0, ~̀ ) = (i`0E ,
~̀
E) and employing equation (B.58), one then obtains

I(p2) = iπ
D
2

Γ(λ1 + λ2 − D
2 )

Γ(λ1)Γ(λ2)

∫ 1

0
(1− x)λ1−1xD−2λ1−λ2−1dx (−p2)

D
2
−λ1−λ2 . (B.61)

Finally, recognizing the Beta function appearing in the last equation, we get the formula

(cf. [57, eq. (A.13)])∫
dD`

(`2 − iε)λ1(`2 − 2p · `− iε)λ2
= iπ

D
2

Γ(λ1 + λ2 − D
2 )Γ(D − 2λ1 − λ2)

Γ(λ2)Γ(D − λ1 − λ2)(−p2)λ1+λ2−D2
. (B.62)

In a very similar way, one can also derive (cf. [57, eq. (A.7)])∫
dD`

(`2 − iε)λ1 ((`− q)2 − iε)λ2
= iπ

D
2

Γ
(
λ1 + λ2 − D

2

)
Γ
(
D
2 − λ1

)
Γ
(
D
2 − λ2

)
Γ(λ1)Γ(λ2)Γ(D − λ1 − λ2)(q2)λ1+λ2−D2

. (B.63)

Let us now consider the following integral

I⊥(q2, r2) =

∫
dD`

(`2 − iε)λ1((q − `)2 − iε)λ2(2r · `− iε)λ3
, (B.64)

where rµ is time-like, (−r2) > 0, and q · r = 0, so that qµ is space-like, q2 > 0. Proceeding

as in the previous case, we obtain

I⊥(q2, r2) = iπ
D
2

Γ(λ1 + λ2 + λ3 − D
2 )

Γ(λ1)Γ(λ2)Γ(λ3)

∫ ∞
0

dxxλ1−1

∫ ∞
0

dy yλ2−1

∫ ∞
0

dz zλ3−1

× δ(1− x− y − z)
(z2(−r2) + xy q2)

D
2
−λ1−λ2−λ3

(x+ y)D−λ1−λ2−λ3
,

(B.65)

where x, y and z are Feynman parameters. We change variables according to

x = λx1

√
(−r2)

q2
, y = λx2

√
(−r2)

q2
, z = λ , (B.66)

– 37 –



J
H
E
P
0
7
(
2
0
2
0
)
1
2
2

which simplifies the integral to

I⊥(r2, q2) = iπ
D
2

Γ(λ1 + λ2 + λ3 − D
2 )

Γ(λ1)Γ(λ2)Γ(λ3)

I ′

(q2)λ1+λ2+
λ3−D

2 (−r2)
λ3
2

, (B.67)

where I ′ is an integral which does not depend on q2 nor on r2,

I ′ =

∫ ∞
0

dx1 x
λ1−1
1

∫ ∞
0

dx2 x
λ2−1
2

(1 + x1x2)
D
2
−λ1−λ2−λ3

(x1 + x2)D−λ1−λ2−λ3
. (B.68)

This can be evaluated performing the substitution x1 = uv and x2 = u
v , which factorizes

it into two integrals of the type∫ ∞
0

uα(1 + u2)βdu =
Γ(−α+2β+1

2 )Γ(α+1
2 )

2Γ(−β)
, (B.69)

conveniently evaluated letting x = 1
1+u2

.

In conclusion, for the two orthogonal vectors q · r = 0, we obtain (cf. [57, eq. (A.27)])

I⊥(q2, r2) =

∫
dD`

(`2 − iε)λ1((q − `)2 − iε)λ2(2r · `− iε)λ3

= iπ
D
2

Γ(λ1 + λ2 + λ3−D
2 )Γ(λ32 )

2Γ(λ1)Γ(λ2)Γ(λ3)Γ(D − λ1 − λ2 − λ3)

Γ(D−λ32 − λ1)Γ(D−λ32 − λ2)

(q2)λ1+λ2+
λ3−D

2 (−r2)
λ3
2

.

(B.70)

Variants of the above integral that can be evaluated in a similar fashion, still under the

assumption q · r = 0, are

I
(1)
⊥ (q2, r2) =

∫
(q · `) dD`

(`2 − iε)λ1((q − `)2 − iε)λ2(2r · `− iε)λ3

= iπ
D
2

Γ(λ1 + λ2 + λ3−D
2 )Γ(λ32 )

2Γ(λ1)Γ(λ2)Γ(λ3)Γ(D − λ1 − λ2 − λ3 + 1)

×
Γ(D−λ32 − λ2)Γ(D−λ32 − λ1 + 1)

(q2)λ1+λ2+
λ3−D

2
−1(−r2)

λ3
2

(B.71)

and

I
(2)
⊥ (q2, r2) =

∫
(q · `)2 dD`

(`2 − iε)λ1((q − `)2 − iε)λ2(2r · `− iε)λ3

= iπ
D
2

Γ(λ1 + λ2 + λ3−D
2 )Γ(λ32 )

2Γ(λ1)Γ(λ2)Γ(λ3)Γ(D − λ1 − λ2 − λ3 + 2)

×
Γ(D−λ32 − λ1 + 1)Γ(D−λ32 − λ2 + 1)

(q2)λ1+λ2+
λ3−D

2
−2(−r2)

λ3
2

×
(
D − 2λ1 − λ3 + 2

D − 2λ2 − λ3
− 1

D + 2− 2λ1 − 2λ2 − λ3

)
.

(B.72)
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