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1 Introduction

An SU(Nc) gauge theory with Nf = 2Nc fundamental hypermultiplets, often called super-

QCD, is perhaps the simplest N = 2 superconformal theory. Since its conformal anomaly

does not satisfy a = c, a putative holographic dual must always remain stringy, no matter

how large the ’t Hooft coupling is [1], in contradistinction, for instance, to N = 4 super-

Yang-Mills (SYM). In spite of this striking difference, SQCD and SYM are connected by a

family of superconformal theories, all having weakly-coupled duals. It would be interesting

to understand how the string description breaks down or becomes strongly-coupled at the

SQCD point.

The interpolating theory is obtained by gauging the flavor group of SQCD. The result

is an SU(N) × SU(N) quiver with bi-fundamental matter and two independent couplings

(figure 1). Once flavor gauge fields decouple at λ2 = 0, the quiver becomes equivalent to

SQCD augmented with a free vector multiplet that restores a = c. For equal couplings, the

symmetry is enhanced by an extra Z2. This is not accidental, as at λ1 = λ2 the quiver is

equivalent to the Z2 orbifold of N = 4 SYM [2]. The orbifold and the parent SYM theory

share the same planar diagrams [3] and hence are equivalent at N →∞.

The holographic dual of the quiver is string theory on the AdS5× (S5/Z2) orbifold [4],

where Z2 acts by flipping the four coordinates of S5 in the R6 embedding, reflecting the

2+4 split of the N = 4 scalars between the vector and hypermultiplet of N = 2.
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Figure 1. Two-node quiver.

The vastly different strong-coupling behavior of SYM and SQCD manifests itself in the

expectation value of the circular Wilson loop, which can be computed from first principles

in both cases using localization [5]. The SYM Wilson loop nicely exponentiates [6, 7]:

WSYM =
2√
λ
I1

(√
λ
)
λ→∞'

√
2

π
λ−

3
4 e
√
λ, (1.1)

in agreement with the minimal area law in AdS5. Indeed, the regularized area of the circle

is −2π [8, 9], the string tension is

T =

√
λ

2π
. (1.2)

Together they give
√
λ in the exponent.

The Wilson loop in the quiver CFT also exponentiates, in terms of the effective cou-

pling [10]:
2

λ
=

1

λ1
+

1

λ2
, (1.3)

in accord with expectations from AdS/CFT, as exactly the same coupling controls the

string tension [2, 11, 12], while the minimal surface is unaffected by the orbifold projection.

The notion of effective coupling actually applies to a larger class of N = 2 superconformal

theories and goes beyond the strong-coupling regime [13, 14].

On the contrary, in SQCD the Wilson loop does not exponentiate (we denote the

SQCD ’t Hooft coupling by λ1, keeping in mind its embedding in the quiver) [15]:

WSQCD
λ1→∞' const

λ3
1

(lnλ1)
3
2

. (1.4)

Such a power+log behavior is hardly consistent with a semi-classical string interpretation.

To the leading order the Wilson loop only depends on the average of the inverse

couplings. The difference does not show up in the exponent. In string theory, the difference

defines a theta-angle on the worldsheet [2, 11, 12]:

θ = π − π
1
λ1
− 1

λ2

1
λ1

+ 1
λ2

=
2πλ1

λ1 + λ2
. (1.5)

Proper definition of the corresponding term in the string action requires resolution of the

orbifold singularity. Supersymmetry-preserving resolution involves a non-contractable two-

cycle collapsing to zero size when regularization is removed. The theta-term measures the

wrapping number of the worldsheet around this non-contractable cycle. Interestingly, the
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symmetric point (λ1 = λ2) corresponds to the π-flux (θ = π) and not zero as one could

possibly expect. The theta-term breaks CP such that interchanging the two gauge groups

(λ1 ↔ λ2) entails a parity transformation on the worldsheet: θ → 2π − θ.
This wonderful picture calls for a quantitative test. A first-principles string calculation

would be particularly interesting. This is not what we will do here. Instead we will explore

the circular Wilson loop in the stringy regime, but by purely field-theoretic methods,

namely by solving the localization matrix model [5] to the first order in the strong-coupling

expansion, expending the results in [10] beyond the leading exponential. The leading order

does not carry any theta-dependence and the Wilson loop expectation value is essentially

the same as in SYM. The “one-loop” correction we are going to compute can serve as

a testbed for string theory on the orbifold with the B-flux along with the spectral data

known in quite a detail at any coupling [1, 12, 16].

2 Localization

The field content of the SU(N) × SU(N) quiver consists of two vectors multiplets in the

adjoint:1 (Aaµ,Φa,Φ
′
a), a = 1, 2, and bi-fundamental matter: (X,Y,X†, Y †): DµX =

∂µX +A1µX −XA2µ. We will be interested in the Wilson loop expectation value

Wa =

〈
1

N
P exp

[˛
C
ds (iẋµAaµ + |ẋ|Φa)

]〉
, (2.1)

for the circular contour C.

After the theory is placed on the four-sphere the problem reduces to a finite-dimensional

matrix integral over zero modes of the vector-multiplet scalars. In the eigenvalue represen-

tation, Φa = diag(aa1 . . . aaN ), the localization integral is [5]:

Z =

ˆ 2∏
a=1

∏
i

daai

∏
a

∏
i<j

(aai − aaj)2H2(aai − aaj)∏
ij H

2(a1i − a2j)
e−

∑
a

8π2N
λa

∑
i a

2
ai , (2.2)

where H(x) admits a product representation:

H(x) =

∞∏
n=1

(
1 +

x2

n2

)n
e−

x2

n . (2.3)

The circular Wilson loops correspond to simple exponentials in the localization matrix

model:

Wa =

〈
1

N

∑
i

e 2πaai

〉
. (2.4)

In contradistinction to N = 4 SYM, where the matrix model is Gaussian [6, 7], the quiver

matrix integral is interacting even at the orbifold point λ1 = λ2. This demonstrates

very clearly that the orbifold equivalence is a dynamical phenomenon and only holds in the

strict large-N limit. Even at large-N equivalence to the Gaussian model is not immediately

obvious. It can be formally established by inspecting the large-N saddle-point equations.

1Only bosonic fields are displayed.
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When written in terms of the eigenvalue densities,

ρa(x) =

〈
1

N

∑
i

δ(x− aai)

〉
, (2.5)

the saddle-point equations [17] become

 µ1

−µ1

dy ρ1(y)

(
1

x− y
−K(x− y)

)
+

ˆ µ2

−µ2

dy ρ2(y)K(x− y) =
8π2

λ1
x (2.6)

 µ2

−µ2

dy ρ2(y)

(
1

x− y
−K(x− y)

)
+

ˆ µ1

−µ1

dy ρ1(y)K(x− y) =
8π2

λ2
x, (2.7)

where

K(x) = −H
′(x)

H(x)
= x (ψ(1 + ix) + ψ(1− ix) + 2γ) . (2.8)

The Wilson loops are given by

Wa =

ˆ µa

−µa
dx ρa(x) e 2πx. (2.9)

This setup has been used to study Wilson loops in SQCD and quiver CFT, mostly at

weak coupling [14, 18–20]. The leading-order strong-coupling solution of the saddle-point

equations was obtained in [10]. We will extend it to the next order in 1/
√
λ.

When λ1 = λ2 = λ, the equations are consistent with the symmetric ansatz ρ1 = ρ2, for

which the K-terms cancels and one is left with the saddle-point equation of the Gaussian

matrix model whose solution is the Wigner semicircle:

ρ(x) =
2

πµ2

√
µ2 − x2 (2.10)

with

µ =

√
λ

2π
. (2.11)

This is how orbifold equivalence operates at large N .

As observed in [10] the semicircular distribution is a good approximation even for

unequal λ1, λ2, provided that both couplings are large and comparable in magnitude. The

argument goes as follows. The saddle-point equations reflect the balance of forces between

eigenvalues. The 1/(x − y) repulsion smoothens the distribution on short scales but dies

out at large distances. The external linear force confines the eigenvalues to a finite interval

but at strong coupling is only operative at very large x. The bulk of the distribution is

thus controlled by the two-body forces mediated by K(x−y). The function K(x) is overall

positive and grows as x lnx at large x. As a result, the like eigenvalues attract, while the

opposite eigenvalues repel with a force that grows with distance. To balance this force and

prevent large terms appearing in the integral equations, the two eigenvalue distributions

“lock” making the densities ρ1,2 approximately equal. The locking cancels large terms with

K(x − y). The cancellation is only approximate in each of the equations (2.6) and (2.7),

but an almost perfect cancellation occurs in their sum [10]. Thus ρ1 ≈ ρ2 implies that both
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Figure 2. The eigenvalue densities ρ1 (purple line) and ρ2 (blue line) obtained by numerically

solving (2.6), (2.7) for λ1 = 5320, λ2 = 2797. The dashed line is the Wigner distribution with the

effective coupling λ = 3667. The density for the gauge group with a larger coupling (ρ1) tends

to spread more because the restoring force is weaker, hence µ1 > µ2, but in spite of considerable

disparity in the coupling strength the difference between ρ1 and ρ2 is very small. This is the locking

effect. The difference is most pronounced near the spectral edge.

densities are given by the Wigner distribution whose width is determined by the effective

coupling (1.3).

This picture agrees very well with numerics (figure 2). The two densities are approxi-

mately the same and deviate from the Wigner distribution only near the spectral edge. But

Wilson loops are controlled precisely by the edge, because of their exponential dependence

on the eigenvalues. We thus need to know the edge behavior of the densities in detail.

Since µ1,2 are large the Wilson loop exponentiates at strong coupling, as in the SYM,

but with a different prefactor determined by the structure of the eigenvalue density near

the endpoint. Exactly the same behavior was found in the N = 2∗ theory [21], where

the leading order solution is approximately Gaussian [22], while the first strong-coupling

correction is determined by a fairly complicated boundary dynamics. We conjecture that

these features are common to all N = 2 theories with weakly-coupled holographic duals.

Wigner density in the bulk is accompanied by O(1) deviations at the edge. As in [21] we

will solve the integral equations in two steps, first in the bulk and then at the boundary,

matching the two solutions in their overlapping regime of validity.

3 Bulk

It does not make sense to plug ρ1 = ρ2 ≡ ρWigner(x) back into the integral equations (2.6),

(2.7). One gets a non-sensical result if λ1, λ2 are different. This is a rather disturbing

feature of the leading-order solution that only relies on the sum of the two equations. To

accommodate the difference, the solution needs to be refined.

Since µa � 1, the kernels in the integral equations can be approximated by their

large-distance asymptotics:

K(x) ' x lnx2 + 2γx+
1

6x
≡ K∞(x). (3.1)

– 5 –
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The Wigner distribution and its cousins have simple convolution with the asymptotic

kernel:

ˆ µ

−µ
dy
√
µ2 − y2K∞(x− y) =

π

3
x3 +

(
πµ2 ln

µ e γ+ 1
2

2
+
π

6

)
x

ˆ µ

−µ
dy

K∞(x− y)√
µ2 − y2

= 2πx ln
µ e γ+1

2ˆ µ

−µ
dy

K∞(x− y)

(µ2 − y2)n+ 1
2

= − 2n(n− 1)!π

(2n− 1)!!µ2n
x, n = 1, 2, . . . (3.2)

This observation suggests the following ansatz:

ρa(x) = A
√
µ2
a − x2 +

2µaABa√
µ2
a − x2

+
4µ2

aACa

(µ2
a − x2)

3
2

+ . . . (3.3)

Each consecutive term adds an extra power of 1/µ, and hence of 1/
√
λ, so this ansatz

naturally represents the strong-coupling expansion of the density. While µ1 = µ2 at the

leading order, due to the locking effect, the two endpoints split at higher orders. On the

contrary, the overall normalization constant A must remain the same to all orders in 1/
√
λ,

as will become clear shortly.

The asymptotic integral operators generate only cubic and linear terms in x at each

order in 1/µ. Moreover, the cubic terms only arise from the Wigner function. Cancellation

of the cubic terms is precisely the condition that the overall constant A is the same for the

two densities. But the linear terms do not cancel automatically. Matching them gives two

scalar equations:

1− µ2
1,2 ln

µ1,2 e γ+ 1
2

2
+ µ2

2,1 ln
µ2,1 e γ+ 1

2

2
− 4B1,2µ1,2 ln

µ1,2 e γ+1

2

+ 4B2,1µ2,1 ln
µ2,1 e γ+1

2
+ 8C1,2 − 8C2,1 =

8π

Aλ1,2
. (3.4)

The unit normalization of the densities gives another two conditions that can be used

to eliminate Ba:

Ba =
1

2πAµa
− µa

4
. (3.5)

When (3.5) is substituted in (3.4) the latter considerably simplifies:

1 +
µ2

1,2

2
−
µ2

2,1

2
− 2

πA
ln
µ1,2

µ2,1
+ 8C1,2 − 8C2,1 =

8π

Aλ1,2
. (3.6)

The sum of the two equations determines A:

A =
4π

λ1
+

4π

λ2
=

8π

λ
, (3.7)

while their difference gives:

µ2
1 − µ2

2 −
λ

2π2
ln
µ1

µ2
+ 16(C1 − C2) = λ

(
1

λ1
− 1

λ2

)
. (3.8)
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Figure 3. The endpoint structure of the eigenvalue distribution: ∆ is the gap between µ1 and

µ2, while α is the offset of the midpoint from the Gaussian-model prediction µ =
√
λ/2π (see also

figure 2).

The constants Ba should stay finite in the large-λ limit, which requires cancellation

between the two terms in (3.5), nominally of order O(
√
λ) each. This requirement fixes

µa =
√
λ/2π+O(1). If we parameterize the endpoints of the eigenvalue distributions as in

figure 3:

µ1,2 =

√
λ

2π
+ α± ∆

2
, (3.9)

the normalization condition (3.5) boils down to

B1,2 = −α
2
∓ ∆

4
. (3.10)

All terms of order O(λ) in (3.8) also neatly cancel leaving behind one more equation:

α∆ + 4(C1 − C2) =
1

2
− θ

2π
, (3.11)

with the θ-parameter introduced in (1.5).

All in all, the saddle-point equations and normalization conditions fix A and Ba and

impose one constraint on the four remaining variables, µa and Ca, or α, ∆ and Ca. It

seems that the ansatz (3.3) introduces more unknowns than the equations can fix. At the

same time, general theorems [23] guarantee uniqueness of the solution to (2.6), (2.7). We

found a three-parametric family. Why do general theorems fail? An apparent contradiction

is resolved if we recall that the general theorems rely on the boundary conditions at the

endpoints in a crucial way [23], while the correct boundary behavior breaks down for

the ansatz (3.3). The density explodes at the endpoints starting with the second order,

allowing the ansatz to evade the uniqueness theorems. This also means that the ansatz is

not applicable for x very close to ±µa, and indeed at x ± µa ∼ O(1) all the terms in the

expansion are of the same order signaling the breakdown of the strong-coupling expansion.

The equations have to be solved separately near the boundary. It will become clear later

that matching to the bulk will eventually fix all the remaining ambiguities.

– 7 –
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4 Boundary

The bulk solution suggests the following behavior near the endpoints:

ρa(x) ' A
√

2µa fa(µa − x), (4.1)

where f1,2(ξ) are some order-one scaling functions. Their large-distance asymptotics is

fixed by matching to the bulk solution (3.3):

fa(ξ)
ξ→∞
'

√
ξ +

Ba√
ξ

+
Ca

ξ
3
2

≡ f∞a (ξ). (4.2)

Integral equations for the scaling functions can be derived in two steps. The difficulty

lies in the non-locality of the original, exact saddle-point equations. Even if we zoom in

onto the spectral edge, the integrals would receive contributions from the whole eigenvalue

interval. To isolate the boundary region we can use the following trick [21]. Consider exact

saddle-point equations, schematically written as

Rab ∗ ρb =
8π2

λa
x, (4.3)

where ∗ represents convolution. The perturbative bulk solution satisfies

R∞ab ∗ ρ∞b =
8π2

λa
x, (4.4)

where R∞ is R with K replaced by K∞. This equation is actually exact, inspite of all

approximations made. Hence,

R ∗ ρ = R∞ ∗ ρ∞. (4.5)

Subtracting R ∗ ρ∞ from both sides we get:

R ∗ (ρ− ρ∞) = (R∞ −R) ∗ ρ∞. (4.6)

These formal manipulations achieve our goal. Now taking x = µ − ξ with ξ = O(1),

we find that only y = µ− η with η = O(1) contribute to the convolution integrals. Indeed,

R(ξ − η) grows as (η − ξ) ln(η − ξ), but ρ− ρ∞ decays as η−5/2 away from the boundary.

The convolution integral in R ∗ (ρ − ρ∞) thus converges and can be extended to infinity.

Likewise, ρ∞ grows as η1/2, but R−R∞ decays as 1/(η− ξ)2, so all integrals converge and

the upper limit of integration can be safely removed:

ˆ ∞
0

Rab(ξ − η) (fb(η)− f∞b (η)) =

ˆ ∞
0

(R∞ab(ξ − η)−Rab(ξ − η)) f∞b (η). (4.7)

The explicit form of the kernel in the last equation is

Rab(ξ) =

(
1
ξ −K(ξ) K(ξ −∆)

K(ξ + ∆) 1
ξ −K(ξ)

)
, (4.8)

– 8 –
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and the same for R∞ with K → K∞. The shift by ∆ in the off-diagonal terms occurs

because of the gap between the endpoints of ρ1 and ρ2 (figure 3) and the way we have

defined the scaling functions in (4.1).

The resulting equation is of the Wiener-Hopf type and can be solved by Fourier

transform

fa(ξ) =

ˆ +∞

−∞

dω

2π
e−iωξfa(ω). (4.9)

Since fa(ξ) = 0 for ξ < 0, its Fourier image is analytic in the upper half plane of ω.

The integral equation cannot be straightforwardly Fourier transformed, because it

holds only for positive ξ. The equation can be extended to the whole real line at the

expense of introducing another unknown function, different from zero at negative ξ. After

that the equation can be integrated and becomes algebraic in the Fourier space:

R(f − f∞) = (R∞ −R)f∞ +X−. (4.10)

The subscript indicates that X− vanishes for ξ > 0 and is therefore negative-half-plane

analytic function of ω.

The Wiener-Hopf method is based on the analytic factorization of the kernel:

G−R = G+, (4.11)

where G± are matrix functions analytic in the upper/lower half-planes. Multiplying the

two sides of (4.10) by G−, we get:

G+(f − f∞) = (G−R
∞ −G+)f∞ +G−X−. (4.12)

This equation contains two unknown functions, f and X−, but they are analytic in differ-

ent halves of the complex plane and can be disentangled with the help of the projection

operators:

F±(ω) = ±
ˆ +∞

−∞

dν

2πi

F(ν)

ν − ω ∓ iε
, (4.13)

that singles out a half-plane analytic part of F .

The + projection of (4.12) gives:

G+(f − f∞) = [(G−R
∞ −G+)f∞]+ . (4.14)

Linearity of the projection and upper-half-plane analyticity of f∞ then give:

f = G−1
+ [G−R

∞f∞]+ . (4.15)

This equation constitutes a formal solution of the boundary problem. It still remains to

analytically factorize the kernel.

– 9 –
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The Fourier images of the functions appearing in the construction are

R(ω) = 2πi signω coth
ω

2

[
cothω − e i∆ω

sinhω

− e −i∆ω

sinhω cothω

]
(4.16)

R∞(ω) =
4πi signω

ω2

 1 + 5ω2

12

(
−1 + ω2

12

)
e i∆ω(

−1 + ω2

12

)
e−i∆ω 1 + 5ω2

12

 (4.17)

f∞a (ω) =

√
π i

3
2

2(ω + iε)
3
2

(
1− 2iωBa + 4ω2Ca

)
. (4.18)

The analytic form of signω is implied here:

signω = lim
ε→0

√
ω + iε√
ω − iε

, (4.19)

where the branch cut of
√
ω ∓ iε extends into the upper/lower half-plane.

Incidentally, the fractional powers of ω + iε cancel in the product R∞f∞, leaving a

triple pole ω = −iε as the only singularity in the lower half-plane. Closing the contour of

the + projection in the lower half-plane picks the residue:

f(ω) = G−1
+ (ω) res

ν=0

G−(ν)R∞(ν)f∞(ν)

ω − ν
. (4.20)

This equation expresses the scaling functions fa through the Wiener-Hopf factors of the ker-

nel. The problem reduces to analytic factorization of the matrix function (4.16) according

to (4.11).

Analytic matrix factorization is known as the Riemann-Hilbert problem and has nu-

merous applications in the theory of solitons [24] and in algebraic geometry. For a scalar

function (1×1 matrix), the problem can be solved in quadratures by taking the logarithm,

applying the projection (4.13) and exponentiating back. This procedure does not work

for matrices due to non-commutativity of matrix multiplication. Matrix factorization is a

substantially more complicated problem (see [25] for a review) for which there is no simple

plug-in solution. Fortunately, for the particular case of (4.16) the Riemann-Hilbert factor-

ization has been carried out explicitly [26]. The Wiener-Hopf factors were found in [26] by

exploiting analytic properties of the hypergeometric functions and linear identities among

them. In principle, an explicit formula is all we need, but we would like to present a

derivation that highlights connections to the inverse scattering problem. This perspective

can be useful in view of possible generalizations and may hint on the links to integrability

of the dual string theory [27, 28].

4.1 Matrix factorization

Consider Schrödinger equation with the Pöschl-Teller potential:

− d2ψ

dx2
+

1

4 cosh2 x
ψ = k2ψ. (4.21)

– 10 –
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Its scattering theory is conveniently formulated in terms of the Jost functions characterized

by purely exponential asymptotics at infinity:

ψ±L ' e∓ikx (x→ −∞), ψ±R ' e±ikx (x→ +∞). (4.22)

The Jost functions ψ−L,R describe in-type scattering states with the incident wave moving

left or right and the amplitude of the transmitted wave normalized to one, while ψ+
L,R are

the T -conjugate out-states. The four Jost functions are related by parity and complex

conjugation.

The Jost functions admit analytic continuation into the complex momentum plane.

Moreover, ψ+
L,R are analytic in the upper half-plane and ψ−L,R are analytic in the lower

half-plane, after oscillating exponentials are knocked off:

χ+
L,R = e±ikxψ+

L,R, χ−L,R = e∓ikxψ−L,R. (4.23)

These functions are faithfully half-plane analytic in k.

For the Pöschl-Teller potential the Jost functions can be found explicitly:

ψ±R = e±ikx
√

1 + e−2x
2F1

(
1

2
∓ ik, 1

2
; 1∓ ik;− e−2x

)
ψ±L = e∓ikx

√
1 + e 2x

2F1

(
1

2
∓ ik, 1

2
; 1∓ ik;− e 2x

)
.

The four Jost functions are linearly dependent, because they are solutions of a second-order

differential equation, and all of them can be expressed through any two chosen as the basis.

In the case at hand, the linear relations follow from transformation rules of the hy-

pergeometric function under argument inversion. For example, applying the x → −x
transformation to ψ±R , we get:

ψ±R = ∓ i

sinhπk
ψ±L ± i cothπk

B
(

1
2 ± ik,

1
2

)
B
(

1
2 ∓ ik,

1
2

) ψ∓L . (4.24)

More conventionally, the in-states are chosen as the basis. The out-states are then

related to them by the S-matrix. Reshuffling (4.24) we find:

[
ψ+
L ψ+

R

]
= i

B
(

1
2 + ik, 1

2

)
B
(

1
2 − ik,

1
2

) [ψ−R ψ−L

] [tanhπk − i
coshπk

− i
coshπk tanhπk

]
. (4.25)

The same relation holds for the derivatives of the Jost functions and hence for their Wron-

skians

W+ =

[
ψ+
L ψ+

R
dψ+

L
dx

dψ+
R

dx

]
, W− =

[
ψ−R ψ−L
dψ−

R
dx

dψ−
L

dx

]
. (4.26)

Namely,

W+ = W−S. (4.27)
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This is already close to what we need. One can say that Wronskians factorize the S-

matrix, but Wronskians by themselves are not yet analytic. The oscillating factors in the

Jost functions have to be offset by a similarity transformation:

W± →W±Ω, S → Ω−1SΩ (4.28)

with

Ω = diag( e ikx+x
2 , e−ikx−

x
2 ).

The truly analytic factorization formula is slightly more complicated:

B

(
1

2
− ik, 1

2

)[
ψ+
L e ikx+x

2 ψ+
R e−ikx−

x
2

dψ+
L

dx e ikx+x
2
dψ+

R
dx e−ikx−

x
2

]

= iB

(
1

2
+ ik,

1

2

)[
ψ−R e ikx+x

2 ψ−L e−ikx−
x
2

dψ−
R

dx e ikx+x
2
dψ−

L
dx e−ikx−

x
2

][
tanhπk − i e −2ikx−x

coshπk

− i e 2ikx+x

coshπk tanhπk

]
.

Remarkably, the similarity transformation not only rendered all wavefunction half-plane

analytic, but also brought the S-matrix into the form very similar to (4.16). In fact, Ω−1SΩ

coincides with R(ω) up to an overall scalar factor after the following change of variables:

k → ω

π
+
i

2
, x→ −π∆

2
. (4.29)

The scalar factor is easily factorizable by itself:

1

2π2
signω coth

ω

2
=

1√
ω + iεB

(
1
2 −

iω
2π ,

1
2

) · 1√
ω − iεB

(
1
2 + iω

2π ,
1
2

) . (4.30)

The solution of the Riemann-Hilbert problem thus follows from the scattering theory of

the Pöschl-Teller potential!

The final result is rather bulky, and is best written in the shorthand notation:

Q(α, β; q) = B(α, β)2F1(α, β;α+ β;−q). (4.31)

The salient properties of this function are summarized in the appendix. The solution of

the Riemann-Hilbert problem (4.11) takes the following form:

G+ =
4π2

√
ω + iε B

(
1
2 −

iω
2π ,

1
2

) [a+ b+
c+ d+

][
e−

π∆
2 0

0 e
π∆
2

]
(4.32)

G− =
1

π

√
ω − iεB

(
1

2
+
iω

2π
,

1

2

)[
a− b−
c− d−

]
(4.33)
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with

a+ = Q

(
1− iω

π
,

1

2
; e−π∆

)
b+ = Q

(
1− iω

π
,

1

2
; e π∆

)
c+ =

(
1

2
− iω

π

)
Q

(
1− iω

π
,

1

2
; e−π∆

)
+

1

1 + e π∆
Q

(
1− iω

π
,

3

2
; e−π∆

)
d+ = −

(
1

2
− iω

π

)
Q

(
1− iω

π
,

1

2
; e π∆

)
− 1

1 + e−π∆
Q

(
1− iω

π
,

3

2
; e π∆

)
a− = Q

(
iω

π
,

1

2
; e π∆

)
b− = Q

(
iω

π
,

1

2
; e−π∆

)
c− =

(
1

2
− iω

π

)
Q

(
iω

π
,

1

2
; e π∆

)
− 1

1 + e−π∆
Q

(
iω

π
,

3

2
; e π∆

)
d− = −

(
1

2
− iω

π

)
Q

(
iω

π
,

1

2
; e−π∆

)
+

1

1 + e π∆
Q

(
iω

π
,

3

2
; e−π∆

)
. (4.34)

We also need the inverse of G+. The standard Wronskian identity appears useful in

that regard: [
ψ+
L ψ+

R
dψ+

L
dx

dψ+
R

dx

]−1

=
1

2ik

[
dψ+

R
dx −ψ+

R

−dψ+
L

dx ψ+
L

]
. (4.35)

Using this identity we get:

G−1
+ =

√
ω + iε

8π3
B

(
1

2
− iω

2π
,

1

2

)[
1 + e π∆ 0

0 1 + e−π∆

][
−d+ b+
c+ −a+

]
(4.36)

Checking that G−1
+ G+ = 1 by a direct calculation is a really fun exercise.

4.2 Solving the boundary problem

With all the ingredients at hand, we can now find the scaling functions from (4.20). Eval-

uating the residue with the help of (A.3) we get:

f(ω) =
2π

5
2 i

3
2

ω2
G−1

+ (ω)

(
u+

iω

π
v

)
, (4.37)

with

u =

[
1

−1
2 tanh π∆

2

]

v =

(
πα− ln cosh

π∆

2

)[
1

−1
2 tanh π∆

2

]
+

[
0

tanh π∆
2

]
, (4.38)

where the explicit form of B1,2 from (3.10) has been used.
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The densities should vanish as a square root at the boundary and so should the scaling

functions fa(ξ). The right behavior at ξ = 0 is not at all guaranteed for the solution

obtained above and has to be imposed by hand as an extra condition. The endpoint

behavior in the coordinate space is determined by the dependence of the Fourier image on

large imaginary frequencies. The square root maps to ω−3/2 in the Fourier space, and the

right boundary conditions correspond to

fa(iπκ)
κ→+∞' Za

κ
3
2

(4.39)

with some constant Za.

The general solution as given above is not consistent with this requirement. An ex-

pansion of G−1
+ at large imaginary frequencies follows from (A.2), and starts with κ1/2:

G−1
+ (iπκ)

κ→+∞
=

√
iκ

4
√

2π2

[ √
1 + e π∆ 0√

1 + e−π∆ 0

]
+O

(
1√
κ

)
, (4.40)

which means that in general f(iπκ) will scale as κ−1/2 because of the v-term in (4.37).

In the coordinate space 1/
√
κ translates to 1/

√
ξ, an expected asymptotics of a generic

solution to the integral equation [23]. But we are seeking a special solution where this

leading asymptotic cancels leaving behind the desired
√
ξ behavior. This happens if[ √

1 + e π∆ 0√
1 + e−π∆ 0

]
v = 0. (4.41)

The next term scales as κ−3/2 and if this condition is imposed the solution has the right

boundary asymptotics.

One may expect that the boundary conditions impose two constraints for each of the

two independent functions, but G−1
+ (iπκ) degenerates as a matrix at κ → +∞ and, as

a result, only one condition survives. The condition is actually very simple, it basically

requires the top component of v to vanish. From the explicit formula (4.38) we find that

this is equivalent to

α =
1

π
ln cosh

π∆

2
. (4.42)

We get an extra constraint, invisible in the bulk, that relates two of the remaining four

parameters of the solution.

Interestingly, α appears to be always positive. This implies the following inequality:

µ1 + µ2

2
> µ, (4.43)

illustrated in figure 3. The density for the weaker coupling (ρ2) squeezes compared to the

Wigner semicircle, while the density for the larger coupling (ρ1) expands. This is intuitively

clear, because the extent of the density is controlled by the overall linear force inversely

proportional to the coupling. What is less obvious is that the expansion of ρ1 is always

more pronounced than the squeezing of ρ2. It would be interesting to understand this

behavior at a qualitative level.
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The boundary solution really simplifies once the condition (4.42) is imposed. The

scaling functions (4.37) become

f1,2(ω) =
i

3
2B
(

1
2 −

iω
2π ,

1
2

)
4
√
π (ω + iε)

3
2

[(
1− 2iω

π

)
Q

(
1− iω

π
,

1

2
; e±π∆

)

+ e±π∆Q

(
1− iω

π
,

3

2
; e±π∆

)]
. (4.44)

They admit an integral representation

f1,2(ω) =
i

3
2B
(

1
2 −

iω
2π ,

1
2

)
2
√
π (ω + iε)

3
2

ˆ 1

0
du

(
1 + e±π∆u2

1− u2

) iω
π
(

1− 2iω

π

1

1 + e±π∆u2

)
, (4.45)

that follows from (A.1) upon a change of variables t = u2. This form is particularly

convenient for Taylor expansion at small ω.

The scaling functions should match with the bulk solution at large ξ. In practice,

matching means that the Taylor expansion at small ω coincides with (4.18). The first

three orders can be easily found from the integral representation:

f1,2(ω)
ω→0
=

√
π i

3
2

2ω
3
2

[
1 +

iω

π
ln

1 + e±π∆

2

+
ω2

π2

(
π2

8
− 2 arctan2 e±

π∆
2 − 1

2
ln2 1 + e±π∆

2

)
+ . . .

]
. (4.46)

Comparing to (4.18) we find that

B1,2 = − 1

2π
ln cosh

π∆

2
± ∆

4
. (4.47)

Taking into account (4.42), this gives the same expression (3.10) that was inferred from

the bulk normalization condition. We get nothing new, this is not even a consistency check

because the first two orders are guaranteed to match by construction.

New data is contained in the next term. Reading off its coefficient and comparing

to (4.18) we find:

C1,2 =
1

32
− 1

2π2
arctan2 e±

π∆
2 − 1

8π2

(
ln cosh

π∆

2
± π∆

2

)2

. (4.48)

This determines the two remaining unknowns and fixes all the parameters of the bulk

solution.

5 Wilson loops

We can now complete the circle and use the remaining bulk condition (3.11) to find ∆. To

this end, we infer from (4.48) that

C1 − C2 =
1

8
− 1

2π
arctan e

π∆
2 − ∆

4π
ln cosh

π∆

2
.
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Figure 4. The endpoint positions relative to the mean-field value µ =
√
λ/2π, as functions of the

θ-parameter. The dots are obtained by picking λ1, λ2 randomly between 0 and 8000 and numerically

solving the integral equations. Certain scatter in the numerical data is due to unaccounted 1/
√
λ

corrections which are different for different points.

Upon substitution of this formula along with (4.42) into (3.11) many terms cancel, the

relationship between ∆ and θ simplifies and can be inverted, and at the end we find a

simple analytic expression

∆ =
2

π
ln tan

θ

4
. (5.1)

The other parameter that characterizes the eigenvalue distribution, α, can be found

from (4.42):

α = − 1

π
ln sin

θ

2
. (5.2)

The endpoints are determined by the definition (3.9):

µ1 =

√
λ

2π
− 1

π
ln

(
2 cos2 θ

4

)
+O

(
1√
λ

)
µ2 =

√
λ

2π
− 1

π
ln

(
2 sin2 θ

4

)
+O

(
1√
λ

)
(5.3)

This result is plotted in figure 4. The picture is symmetric under θ → 2π − θ, µ1 ↔ µ2, as

expected.

The main contribution to the Wilson loop average (2.9) comes from the largest eigen-

values located near the edge of the distribution. The density under the integral in (2.9)

can thus be replaced by its scaling form (4.1). Since the exponential weight guarantees fast

convergence, the integration can be safely extended to infinity:

Wa ' A
√

2µa e 2πµa

ˆ ∞
0

dξ fa(ξ) e−2πξ. (5.4)

The integral is the Fourier image of the scaling function at pure imaginary frequency:

W1,2 ' 8
√
πλ−

3
4 e
√
λ+2πα±π∆f1,2(2πi). (5.5)
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Figure 5. The circular Wilson loops in the quiver theory normalized by that in the N = 4 SYM,

plotted as a function of the θ-parameter. The dots represent the same data as in figure 4.

Using the explicit solution (4.45) and substituting (4.42) for α we find:

W1,2 = cosh2 π∆

2

(
1± 2 sin

π∆

2
arctan e±

π∆
2

)√
2

π
λ−

3
4 e
√
λ. (5.6)

Finally, expressing ∆ as a function of θ with the help of (5.1), we obtain

W1 = w(θ)

√
2

π
λ−

3
4 e
√
λ, W2 = w(2π − θ)

√
2

π
λ−

3
4 e
√
λ, (5.7)

where

w(θ) =
1− θ

2 cot θ2
sin2 θ

2

. (5.8)

This is the main result of the paper.

The function w(θ), shown in figure 5, encodes the difference between the quiver CFT

and N = 4 SYM. Indeed, the asymptotic strong-coupling expectation value in the SYM

is given by (1.1). Comparing to (5.7) we see that w(θ) is an extra factor that arises in the

quiver theory:

lim
λ→∞

W1

WSYM
= w(θ), lim

λ→∞

W2

WSYM
= w(2π − θ). (5.9)

The ratio of Wilson loops is much easier to compute in string theory than a separate Wilson

loop on its own. The disc amplitude for the circular loop in AdS5×S5 has been known for

a long time [29] as a formal ratio of potentially divergent determinants. But in the ratio

all divergences cancel making the Wilson loop normalized by its SYM counterpart an ideal

playground for studying quantum string effects in holography [30, 31].

Observables better suited for comparison to string theory are the twisted and untwisted

loop correlators:

w± =
W1 ±W2

2WSYM
. (5.10)
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Figure 6. The untwisted Wilson loop.

The disc amplitude, normalized by the undeformed AdS5 × S5 counterpart, maps directly

to w+, while w− describes the disc with the twist operator inserted. Localization gives the

following predictions at strong coupling:

w+(θ) =
1 + π−θ

2 cot θ2
sin2 θ

2

, w−(θ) = −π
2

cos θ2
sin3 θ

2

. (5.11)

It would be very interesting to test these predictions by an explicit string-theory calculation.

The Wilson loops depend on θ almost trigonometrically, in accord with expectations

that θ is a periodic variable in the dual string picture. However, the dependence on θ

is not entirely analytic, for instance the untwisted Wilson loop diverges as 1/|θ|3 when

θ approaches zero, or any integer multiple of 2π (figure 6). The singularity signals the

breakdown of the string description and happens precisely where the gauge theory becomes

weakly coupled.

5.1 Decoupling limit

We can explore the vicinity of the singular point by considering the limiting case of λ1 � λ2,

still assuming λ2 � 1. This can be called the supergravity decoupling limit to distinguish

it from the true decoupling where λ2 → 0. All the above formulas then apply with θ

approaching 2π. The effective coupling in this limit coincides with the smaller one:

λ ' 2λ2, θ ' 2π

(
1− λ2

λ1

)
. (5.12)

The Wilson loop of the weaker-coupled gauge group stays finite:

W2 '
e
√

2λ2

3 · 2
1
4π

1
2λ

3
4
2

, (5.13)

while the stronger-coupled one diverges as λ3
1:

W1 '
e
√

2λ2

2
1
4π

5
2λ

15
4

2

λ3
1. (5.14)
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The limiting expression for W1 resembles the SQCD Wilson loop (1.4) but does not

coincide with it in all the detail. The cubic scaling with λ1 is reproduced, but the log-

suppression is missing and the coefficient of proportionality still depends on λ2. The

limit λ1,2 → ∞, λ2/λ1 → 0, accessible from supergravity, is thus different from the true

decoupling where λ1 is fixed and λ2 → 0 (it is enough to take λ2 ∼ 1).

It is actually easy to understand why the limits do not commute. The endpoints of

the eigenvalue distributions in the supergravity limit behave as

µ1 '
√

2λ2

2π
+

2

π
lnλ1 −

2

π
ln
π2

2

µ2 '
√

2λ2

2π
− 1

λ
ln 2. (5.15)

Upon true decoupling (in SQCD), one gets [15]

µSQCD '
2

π
lnλ1 −

1

π
ln lnλ1 + const , (5.16)

again very similar to µ1, but different in detail.

The logarithmic growth with λ1 in the supergravity limit is an endpoint effect, we still

assume that the background, bulk density is a Wigner distribution with a parametrically

large width of order
√
λ2, and in particular

√
λ2 � lnλ1. Likewise, W1 in (5.14) depends on

λ1 through a prefactor, on the background of the leading exponential behavior controlled

by
√
λ2. In SQCD, on the contrary, ln λ1 is the largest scale. As λ2 decreases, both W1

and µ1 decrease and should settle to their SQCD values at λ2 ∼ 1. Large logs, lnλ1 and

ln lnλ1, should arise as a remnant of the transitory regime where
√
λ2 and lnλ1 are equally

important.

It is instructive to see what happens to the densities in the decoupling limit. The gap

between the endpoints µ1 and µ2 grows large when λ1 � λ2. Indeed ∆ → ∞ as θ → 2π,

which means that ρ1 acquires a long tail extending parametrically far beyond the Wigner

distribution. The functional shape of the tail is given by (4.45) with ∆→∞:

f1(ω)
∆→∞'

i
3
2B
(

1
2 −

iω
2π ,

1
2

)
B
(
1− iω

π ,
1
2 + iω

π

)
4
√
π ω

3
2

e iω∆. (5.17)

The last factor is the Fourier image of a shift operator, as a result f1 becomes effectively

a function of ∆− ξ extending over large distances ξ ∼ ∆ ∼ lnλ1/λ2.

In the coordinate representation the tail is exponential:

f1(ξ) '
2Γ2

(
3
4

)
π

3
2

e−
π
2

(∆−ξ), (5.18)

or, for the original density,

ρ1(x) '
2

11
4 Γ2

(
3
4

)
πλ

3
4
2

e

√
λ2
8
−πx

2 . (5.19)
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This is similar but not identical to the asymptotic eigenvalue distribution in SQCD, which

at infinite coupling approaches [15]:

ρSQCD(x)
λ1=∞

=
1

2 cosh πx
2

' e−
πx
2 . (5.20)

The SQCD eigenvalue density has the same exponential tail but with a different prefactor.

Importantly, the behavior at x ∼ 1 is markedly different: in SQCD the density has a

coupling-independent universal shape, while the ρ1 merges with the Wigner distribution

at x ∼ µ1 ∼
√
λ2.

6 Conclusions

We have studied the expectation value of the circular Wilson loop in the superconfor-

mal quiver CFT at strong coupling, starting with the localized partition function on S4.

The circular loop is not the only observable accessible via localization. Other marked ex-

amples are Wilson loops in higher representations [32, 33], correlation functions of local

operators [34–38], correlators between local operators and a Wilson loop [19, 39] and the

Bremsstrahlung function [14, 40, 41], all potentially calculable by similar methods.

The results for the circular loop are qualitatively consistent with the dual string picture.

The coupling constant dependence comes out mostly trigonometric, in line with interpre-

tation of θ as a theta-angle in the string sigma-model, the b-flux through the vanishing

cycle of the AdS5 × (S5/Z2) orbifold. In view of the recent progress on similar problem

in AdS5 × S5 [30, 31, 42–44], a more precise, quantitative comparison may actually be

within reach. We will not attempt to set up the string calculation here, but will make

some general remarks on its salient features.

One can envisage expanding around the minimal surface for the circle, which is an

AdS2 hemi-sphere embedded in AdS5 and sitting at a single point on S5 exactly on the

orbifold locus. Quantum fluctuations of the string explore the tangent plane to S5 which in

the quiver theory becomes the R× C2/Z2 orbifold. The effective string description of the

circular Wilson loop is thus a partially massive theory on AdS2 whose massless sector is the

R × C2/Z2 orbifold. Massive modes originate from fluctuations in AdS5 and presumably

cancel once the Wilson loop is normalized to its N = 4 value. In all the likelihood the

normalized expectation value (5.10) is the ratio of the orbifold partition functions on AdS2

at different values of the b-flux:

w+(θ) = lim
ε→0

Z(C2/Z2)ε,θ

Z(C2/Z2)ε,π

, (6.1)

where ε is the blowup parameter that regularized the orbifold geometry.

The orbifold partition function is naturally represented by an instanton sum:

Z(C2/Z2)ε,θ =
∑
k

Ak e−
√
λ ε|k|+ikθ. (6.2)

At finite resolution the instantons are exponentially suppressed but the suppression disap-

pears in the orbifold limit, in accord with our findings. However, an attempt to extract
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individual instanton amplitudes from (5.10) runs into problems because of the divergences

at θ = 0 and 2π. While we understand the origin of these divergences, it is unclear how to

regularize them. The principal value prescription does not work, for example.2 The theory

at θ = 2π has λ2 ∼ O(1) and is no longer strongly coupled, even if λ1 � 1. It would be

very interesting to make the above arguments more precise and to see how the divergences

are resolved (or how they arise) in string theory.
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A Function Q

The function defined in (4.31) admits an integral representation:

Q(α, β; q) =

ˆ 1

0
dt tβ−1(1− t)α−1(1 + qt)−α. (A.1)

The only singularities of Q in the finite part of the complex plane are simple poles at

non-positive integer α. Analyticity in α for Reα > 0 easily follows from the integral

representation.

It is also easy to develop asymptotic expansions at small and large α. At large

positive α,

Q(α, β; q)
α→+∞

=
Γ(β)

αβ(1 + q)β
+O

(
1

αβ+1

)
. (A.2)

At small α,

Q(α, β; q)
α→0
=

1

α
− ln(1 + q)− ψ(β)− γ +O(α). (A.3)
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