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Abstract: Sequences of the genomes of all-important bacterial pathogens of man, plants,

and animals have been completed. Still, it is not enough to achieve complete information of

all the mechanisms controlling the biological processes of an organism. Along with all

advances in different proteomics technologies, proteomics has completed our knowledge of

biological processes all around the world. Proteomics is a valuable technique to explain the

complement of proteins in any organism. One of the fields that has been notably benefited

from other systems approaches is bacterial pathogenesis. An emerging field is to use

proteomics to examine the infectious agents in terms of, among many, the response the

host and pathogen to the infection process, which leads to a deeper knowledge of the

mechanisms of bacterial virulence. This trend also enables us to identify quantitative

measurements for proteins extracted from microorganisms. The present review study is an

attempt to summarize a variety of different proteomic techniques and advances. The sig-

nificant applications in bacterial pathogenesis studies are also covered. Moreover, the areas

where proteomics may lead the future studies are introduced.

Keywords: bacterial pathogenesis studies, drug resistance, virulence, pathogen, proteomics

Introduction
Proteins are responsible for the biological functions that are dictated by genes in

most cases.1 The vast protein interaction networks control the strange cellular

functions mainly. It is not possible to elaborate on these networks by merely

relying on a single protein or a few proteins.2 One of the ways to explain the

biological systems of microorganisms in a large scale is proteomics. This

technique provides us with information as to abundances, post-translational

modifications, localization, interactions, and changes.3 The sustained develop-

ment of different proteomic technologies determines the capacity of proteomics

to deal with major issues in the microbial field. There is a need for qualitative

and quantitative studies in this field.4 Other systems approaches have also

notable benefits for microbial pathogenesis. There is an emerging trend of

using proteomics to study infectious agents.5 Using proteomic analysis to

study protein profiles of bacterial pathogenesis is one of the main approaches

to study proteins and interactions of the host-pathogen to find a deeper knowl-

edge of dysregulations in infection disorders,6 reveal bacterial resistance and

virulence mechanisms,7 and significant new targets for future drug discovery.8

The immense potential of proteomic technologies to achieve a deeper insight

into pathogenesis and develop therapeutic techniques is undeniable.
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Pathogenic microorganisms like viruses, bacteria, or

fungi9 are responsible for infectious diseases and represent

serious health risks for man, animals, and plants.10 In spite

of great works to develop new strategies to fight and

prevent infections, the risk of newly emerging infectious

diseases is undeniable.11 The key point of infectious dis-

ease researches is a deeper insight into the functional

interface between pathogenic microbes and their host

cells.12 Still, our knowledge of exact molecular adhesion,

invasion, and replication is quite limited.13 This lack of

knowledge is an obstacle to develop new diagnostic and

therapeutic strategies.14 Additionally, the complicated

interaction between host and pathogens is controlled by

hundreds to thousands of proteins from both sides.15 Most

of the research work in this field has concentrated on

determining the characterization of individual bacterial

virulence factors and their interacting host targets using

traditional genetic and biochemical approaches.16

However, these studies fail to elaborate on the complicated

multifactorial nature of host-pathogen interactions.17 On

the other hand, systems-level analyses give us a panoramic

perspective of the functional host-pathogen interplay,

which is significant improvement progress from the tradi-

tional reductionism-dominant research.18 Therefore, tran-

scriptomic studies have been around for several years and

still, there is a great desire for measuring the final gene

products, proteins. This is because of the poor correlation

between mRNA and protein levels due to extensive post-

transcriptional regulations.

One of the most important and interesting aspects of

life is the ongoing interaction between hosts and

pathogens.19 These interactions take place throughout the

long years of evolution; so that the hosts create defense

mechanisms to handle pathogenic invasions and pathogens

circumvent these new defense mechanisms.20 Thanks to

adaptation processes, some hosts can co-exist with or even

have the benefit of pathogens. However, many pathogens

still function as etiological agents for many life-

threatening human diseases.21 Therefore, having a clear

understanding of host-pathogen interactions has led to the

introduction of different means to prevent and treat infec-

tion-induced diseases. This study discusses the advantages

and drawbacks of a gel-free/label-free proteomic technique

along with introducing the potential application of proteo-

mics in bacterial pathogen studies. In addition, the avail-

ability of proteomics approaches to uncover host-pathogen

protein interaction networks, changes in the composition,

and the organization of the host cell proteome are

explained.

Applications of Proteomic
Techniques in Bacteria
The metabolic aspects of an organism on a global scale are

the subject matter of proteomic studies. Through this,

large-scale proteomic technologies are developed

prosperously.5 Proteomic studies enable us to identify

genome or/and measure proteins from microorganisms in

a quantitative manner.22 Researcher keeps developing pro-

teomic techniques so that there are wide range methods

and applications available.23 Needless to say, proteomic

technologies provide great potential to shed light on patho-

genesis and develop new therapeutic techniques based on

these insights. The latest studies have conducted reference

proteomes for different bacterial pathogens and direct the

future studies that need baseline proteomes for performing

comparison.24 Valuable information is provided by this

technological platform as to signal transduction, adher-

ence, and microbial-host interactions pertinent to bacterial

pathogenesis.

Protein Identification
Measuring protein using the 2D gel electrophoresis

method is the standard way for proteomic analysis.25 The

original separation technology (2-DE) can separate pro-

teins based on their isoelectric point and molecular weight

using SDS-polyacrylamide gel electrophoresis in the first

and second dimensions, respectively.26 In addition, to have

sensitivity, covalent labeling of proteins with fluorescent

Cy-dyes is used before separation. This technique is

known as 2D difference gel electrophoresis (DIGE) can

achieve higher quality and number of protein spots and

gives more reliable gel matching.27,28 On the other hand,

these gel-based techniques are not sensitive enough to

small quantities of proteins and they have limited pro-

teome resolution.29 Another disadvantage of these

approaches is their poor performance in detecting different

types of post-translational modifications of a single protein

that causes crosstalk among signal pathways.30 While one

of the disadvantages of membrane proteomics based on the

gel-free approach is the solubilization of membranous

proteins, which is because of different optimum

condition,31 the volume of data available for membrane

protein repertoire is growing.32 Several bacterial studies

including Mycobacterium tuberculosis,33 Scheffersomyces
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stipitis,34 and Staphylococcus aureus35 have used a gel-

free technique, which further indicates the potential of this

method by the identification of a far larger number of

proteins. Gel-based and gel-free protein quantification,

which are used as complementary approaches, are effec-

tive techniques to analyze the regulatory mechanisms uti-

lized by bacteria. In Klebsiella pneumoniae as a successful

example, the P13K-mediated vesicular transport was iden-

tified by the combination of both approaches.36 Thus, it is

essential for studies on plant stress responses to carefully

select the proteomic approaches and cellular events that

should be resolved by the approach.

Quantitative Proteomics
Both relative and absolute protein quantification are sup-

ported by mass spectrometry (MS)-based quantification

strategy.37 Metabolic in vivo labeling techniques like

SILAC (stable isotope labeling with amino acids in cell

culture) and15 N labeling makes it possible to measure smal-

ler measurement bias.38 A chemical in vitro labeling methods

like the ICAT (isotope-coded affinity tag),18 O labeling, TMT

(tandemmass tags) and iTRAQ (isobaric tags for relative and

absolute quantification) can be used for static samples such

as clinical samples.39,40 Another identical strategy called

isotope-coded protein label (ICPL) labels both N-termini

and lysine side chains and is used at the protein level.41

Currently, TMT and iTRAQ are the most commonly used

techniques for labeling as it can be used for differential

quantification of different protein post-translational

modifications.42 The iTRAQ-based differential proteomics

of total proteins using a Rhodococcus sp. BAP-1induced by

fluoranthene showed a decrease in the abundance of

cytochrome ubiquinol oxidase subunit, NAD(P) transhydro-

genase subunit alpha, 5-methyltetrahydropteroyltrigluta-

mate-homocysteine methyltransferase; still, there was an

increase in the abundance of NADPH-dependent FMN

reductase, 30S ribosomal protein S2, and

S-ribosylhomocysteinase.43–45 A technique to find differen-

tial bacterial proteomic profiling of Staphylococcus aureus46

is the iTRAQ-based strategy; still, limitations of label-based

techniques create problems in experimental design to com-

pare samples so that only a few studies have used iTRAQ-

based strategy in bacteria. These studies have beenmainly on

the stress response, which needs comparison among multiple

conditions.47 The use of the iTRAQ-based technique to sub-

cellular compartments has the limitation of expensive

reagents and the complicated process of preparing

samples.48 On the other hand, label-free quantitation is free

of any limitations as to the number of samples for

analysis.49,50 With label-free quantitation based on MS/MS,

liquid chromatography (LC) is used to separate the digested

peptides and transferred to a first mass spectrometer (MS1)

where the chromatograms depicting signal intensities are

obtained to measure the abundance of each peptide.51 The

peptide ions are adopted for deeper fragmentation in MS2

and determine the parent ion.52 Label-free LC-MS/MS gives

us the chance for wide quantification of proteins.53 Thanks to

advantages like easy sample preparation that is done faster in

gel-free, label-free quantification allows accumulation of

large volume of data in S. aureus proteomics, revealing

central responses of S. aureus exposure to cold stress. In

the case of subcellular proteomics in S. aureus, changes in

the specific factors indicate the importance of citric acid-

related signal transduction,54 which controls the early stage

of the bacteria’s response to stress. Still, the unsolved pro-

blem in this method is how to optimize LC-MS chromato-

gram alignment for accurate quantification.55 Many

platforms use MS/MS scan times or base peak information

to align chromatograms.56 The merit of gel-free, label-free

proteomics is in the ease of sample preparation and the

acceptance for data production.57 That to the large-scale

data analysis of accumulated data on protein abundance58 it

is possible to elucidate biological processes that aremissed in

small-scale experiments (Table 1).

Proteomics Methods to Provide
Mechanistic Insights in Infectious
Diseases
Infection by different pathogens that are intrinsic to our

ecosystem is the main reason for human disease and

death worldwide.59 An interesting aspect of life is the

ongoing interaction between hosts and pathogens.20

Researchers have concentrated on creating a molecular

picture of pathogen infection and spread in an attempt to

control the prevalence of infectious disease and develop

better treatments for diseases.60 Therefore, to find more

about pathogen-host interactions is a driving force for

the event of suggests that to stop and treat infection-

induced diseases.61 Over the past years, omic

approaches have been introduced as effective tools in

basic, translational, and clinical analysis to examine

biological pathways effective in pathogen replication,

host response, and disease progression. Proteomics

tries to study the protein complement of biological sys-

tems and it has managed to show the discovery and
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Table 1 Different Techniques in Quantitative Proteomic with the Associated Strengths and Limitations

Techniques Methods Strengths Limitations Representative

References

2DE Separation on a gel of the protein

content of a sample in two

dimensions according to mass and

charge, gels are stained and spot

intensities in samples are compared

among different gels

Simple Involves large amount of

sample

[131]

Robust Low throughput

Suitable for MS analysis Poor recovery of hydrophobic

proteins

High inter-gel variability

2-DIGE Measuring three samples per gels,

each of them is labelled with a

different fluorescent dye, and the

intensities of each gel spot for each

sample are measured at a

wavelength specific for the label

Multiplexing Expensive Cy dyes [28]

Better quantitation Poor recovery of hydrophobic

proteins

Minimal gel to gel variation Difficulty in separating low

molecular weight compounds

Gel-free methods

SILAC Direct isotope labeling of cells High throughput Only suitable for tissue

culture models

[38]

Differential expression pattern Robust Costly reagents

A vital technique for secreted

pathways and secreted proteins in

cell culture Comprising labeling of

the N-terminus and side chain amine

groups of proteins

Sensitive and simple Not applicable to tissue

sample

ICAT Chemical isotope labeling for

quantitative proteomics comparing

relative protein abundance between

two samples.

Selectively isolates peptide Post-translational

modification information is

frequently lost; cannot

identify proteins with less

than eight cysteines

[39]

Compatible with any amount of

protein

Complexity of the peptide mixture

is reduced

Large ICAT label (≈500 Da)

Protein

microarrays

Binding of a targeted protein in one Hight throughput Synthesis of many different

probes

[44]

Sample to spotted probes on a

“forward” microarray; conversely,

binding of specific probes to a

targeted protein in spotted samples

on a “reverse” microarray;

detection of bound proteins by

direct labelling or by labelled

secondary antibodies

Biomarker identity Necessary; Identity or class of

targeted proteins must be

known Limited to detection

of proteins targeted by the

probes

ITRAQ Isobaric tagging of peptides Applicable to versatile samples Expensive reagents [42]

4 or 8 analysis samples can be

quantified

Better quantitation Incomplete labeling

Simultaneously; The method is

based on the covalent labeling of the

N-terminus and sidechain amines of

peptides from protein digestions

with tags of varying mass

Multiplexing Involves high amount of

sample

(Continued)
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understanding of pathogen-host interactions.6 This is the

outcome of every improved proteomic technology that

gives us sensitive protein detection and quantification

tools. In addition, it increases awareness inside the bio-

logical science community and promotes using these

approaches in innovative ways.

Table 1 (Continued).

Techniques Methods Strengths Limitations Representative

References

SELDI-TOF Selected part of a protein mixture is

Bound to a specific chromatographic

surface and the rest washed away

High throughput Unsuitable for high molecular

weight

[51]

MS Direct application of whole sample Proteins; Limited to detection

of bound proteins; Lower

resolution and mass accuracy

Small amount of starting material

MALDI-TOF Application of a protein mixture

onto

High throughput Need for sample fractionation

of complex

[50]

MS A gold plate; desorption of proteins

from the plate by laser energy and

measurement of the protein masses;

comparison of peak intensities

between multiple samples

Samples; More starting

material needed for sample

fractionation; Unsuitable for

high molecular weight

proteins

LC-MS/MS Separation of a mixture of peptides

(resulting from protein digestion

with trypsin) by one-, two- or three-

dimensional LC and measurement of

peptide masses by MS-MS

Direct identification of several

hundred proteins per sample by MS-

MS of peptides

Low throughput [53]

Time consuming

Detection by MS-MS often

not comprehensive;

Complicating comparison of

different samples

ICPL After labeling of up to four different

proteome states the samples can be

combined and the complexity

reduced by any separation method

currently employed in protein

chemistry

High-throughput quantitative

proteome profiling on a global scale;

able to detect to detect post-

translational modifications and

protein isoforms; applicable to

Isotopic effect of deuterated

tags interferes with retention

time of the peptides

[41]

Protein like tissue extracts or body

fluids

SRM A powerful tandem mass

spectrometry method that can be

used to monitor target peptides

within a complex protein digest with

capability to multiplex the

measurement of many analytes in

parallel

Highly sensitive, quantitatively

accurate and highly reproducible

Detection and quantification

of non- abundant proteins;

Sensitivity is not comparable

to immunological assays;

[45]

Quantification of post-translational

modifications;

Limited broad scale

application because of

difficulty in generating high-

quality

Protein detection is relatively rapid

Enables detection of non-abundant

proteins

SRM assay

Label-free Measuring the relative

concentrations of peptide analytes

within two or more samples;

require the least sample

preparation; as a tool to validate

preliminary quantitative proteomics

experiments

Avoids labeling Not suitable for low abundant

proteins

[49]

Involves less amount of sample Incomplete digestion may

introduce error

Higher proteome coverage Multiplexed analysis not

possible in one experiment;

High throughput

instrumentation
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Intracellular Host-Pathogen Protein–
Protein Interactions
The past ten years have witnessed a great contribution to

comprehending host-pathogen interaction in the cellular

life cycle of a pathogen by proteomic techniques.62

Notably, the hyphenation of traditional analytical and bio-

chemical techniques based on mass spectrometry has led

to proteomic approaches that examine different aspects of

the host-pathogen relationship.11 Given that before repro-

ducing to propagate, intracellular pathogens should pass

through the host defenses, pathogen proteins interact with

host proteins to either suppress or hijack the normal host

protein functions.6 Identification of those protein–protein

interactions (PPIs) is essential, among many, for under-

standing the biology of infection; in addition, it can be

used for new targets in treatments against human patho-

gens. In this study, the proteomics strategies that can be

used to discover pathogen-host interaction networks, intact

protein complexes, or direct interactions are reviewed.

Furthermore, their strengths, limitations, and future pro-

mising directions in the context of finding out infectious

diseases are discussed.

Building Host-Pathogen Protein Interaction

Networks

Immunoaffinity purification along with mass spectrometry

(IP-MS) are of the methods that have received the widest

attention in pathogen-host interaction studies.6 To isolate

a protein in IP-MS, an antibody raised against the endo-

genous protein or epitope-tagging the protein of interest

and using an antibody against that epitope are the

options.63 Therefore, the protein of interest and co-

isolated interacting proteins are identified using MS. As

to host-pathogen associations, the main advantages of IP-

MS are the fact that experiments can be done in pertinent

cellular model systems and the context of viral infection so

that unbiased detection of PPIs is possible.64 In the case of

bacteria, IP-MS is utilized to detect interactions between

effector proteins secreted by intracellular Salmonella and

host proteins. Also, SILAC quantification is used to exam-

ine the specificity of interactions.65 The multiplexing cap-

ability of TMT is not used in host-pathogen PPI studies

yet; still, it allows for the simultaneous measurement of

different infection time points along with negative controls

to examine the specificity of the interactions detected.20

Specific interactions of histone deacetylases by label-free

methods and the relative stability of these interactions by

SILAC were both determined using the combined

analysis.66 Thus, these approaches can be expanded to

find valuable information as to dynamic host-pathogen

interactions.

The fact that infections can cause significant changes in

protein abundances in a cell and that the background of non-

specific associations can differ completely from the one

observed in an uninfected cell are key issues in pathogen-

host interaction studies.67 Thus, controlling isolations should

be done in the same biological context under study. There are

many computer algorithms available that utilize the data

provided by control and experimental isolations to filter

false-positive PPIs.68 One of them is the significance analysis

of interactome (SAINT).69 This algorithm allocates interac-

tion specificity scores to filter low-confidence interactions.

Informatics approaches can also be employed to achieve

a more refine identified interactions. For example, by creat-

ing extra controls for non-specific associations, like the con-

taminant repository for affinity purification (CRAPome).70

A recently developed database for HSV-1 interactions,

HVint, creates an integrated resource of HSV-1 protein inter-

actions. It uses using evolutionary conservation of herpes-

virus proteins to further predict additional interactions.71

Thus, once a list of interactions is ready, these PPIs can be

visualized within a functional network. This facilitates iden-

tifying the underlying biology in host-pathogen interactions.

These results are indicative of the fact that further studies can

improve the use of quantitative proteomics for comprehend-

ing infectious diseases.

Analysis of Intact Protein Complexes

To perform fully different functions, proteins usually exist

simultaneously in distinct protein complexes. Though IP-

MS gives us inventories of protein interactions, it averages

together several protein complexes that host the same

protein of interest.72 Moreover, information about the

ratio of associations in a complex is lost in the absence

of fractionation and analysis. Top-down MS analyses

where proteolytic digestion is not needed for analyzing

proteins, can facilitate obtaining information about an

intact macromolecule or multiprotein advanced.73

Additionally, it protects each of the non-covalent interac-

tions and consequently the post-translational state of the

proteins inside the complex. Moreover, the technique is

mostly used to individual infective agent proteins, like the

hepatitis c virus pore protein p7,74 and pathogenic com-

plexes reconstituted in vitro (eg the Norwalk virus-like

particles).75 Still, top-down MS is not used to study host-

pathogen complexes. Moreover, Top-down MS was
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combined with ion mobility separation to find more about

different forms of a multiprotein complex.76 Therefore,

top-down MS appears to be a reliable tool for studying

host-pathogen protein complexes.

Detecting Direct Interactions

The yeast two-hybrid (Y2H) assay is one of the

classic techniques for detecting direct PPIs.77 The

Enterohemorrhagic E. coli (EHEC) is not an intracellular

pathogen; however, it has a close intracellular interaction

with the host, as it injects 39 proteins into the host cytosol

at least. The Y2H was also used to explain direct PPIs

between EHEC and thus the human host cells.78

A drawback of Y2H is that it has a relatively high false-

positive rate, which is due to the non- physiological

expression of proteins in cellular compartments where

they are not commonly expressed. Moreover, because

pathogen proteins are expressed beyond the context of an

infection, many potentially relevant interactions might be

missed. Along with MS, Hydrogen/deuterium exchange is

another in vitro method to find the interacting regions of

two proteins.79 Besides, progresses made in search algo-

rithms designed for cross-linking MS studies have added

to their simple use.80 Along with the identification of

direct PPIs, crosslinkers are capable of stabilizing weaker

or transient interactions and improving their identification;

still, this increases non-specific associations. A study used

those cross-linking tools and computational development

to create a large dataset of direct interactions between

human lung cells and Acinetobacter baumannii. Results

have shown that a subset of that was useful for bacterial

invasion.81 Thereby, the examination of RNA-protein

interactions by MS can improve our knowledge of post-

transcriptional regulation processes that may have an

important pathogenic infection.

Pathogen-Induced Proteome Alterations

in Time and Space
A central role is played by the production, degradation,

and spatial reorganization of proteins for the replication of

pathogens.82 Usually, the pathogen causes changes in the

levels of specific host proteins required for replication. By

global alterations in the proteome organization, the host

also reacts to the pathogen invasion, which is critical for

mounting effective defenses.83 Thereby, these studies give

us a deeper insight into the control of specific time points

of infection and the required subcellular compartment

reorganization.

Temporal Analysis of the Infected Cellular Proteome

Thanks to the provision of perfectly established protocols

and the latest MS instrumentation, temporal proteome

alterations are now accepted approaches.84,85 A reliable

was to characterize pathways controlled by the infectious

agent and key protein effective in pathogenicity is temporal

protein analyses.85 Depended on cellular metabolism,

viruses have attained several mechanisms such as control-

ling energy production and lipid synthesis.86 Several studies

have been performed on broad alterations in proteins meta-

bolism regulation of human-relevant viruses, like the

recently re-emerged Chikungunya virus,87 human cytome-

galovirus (HCMV),88 flaviviruses,89 and hepatitis C virus

(HCV).90 Additionally, some of these changes are tempo-

rally controlled; for instance, HCV regulation of glycolysis

proteins happened only early in infection, whereas proteins

used in lipid metabolism were increased continuously.90

These proteome alterations are also capable of correlating

with pathogenicity as it was reported by temporal proteomic

studies on different influenza strains.91 Notably, there is

a relationship between regulation of specific proteins by

the emerging and extremely virulent H7N9 influenza virus

and its increased cytopathic effects.92 Because infections

cause a wide range of proteome alterations, further studies

have focused on individual pathogenic proteins.

According to proteomic studies that introduce the RTA

protein coded by Kaposi’s sarcoma-associated virus

(KHSV), which triggers lytic reactivation, known

ARID3B as a number protein vital to initiate lytic

replication.93 Based on this knowledge, which was used

by cell culture systems, temporal proteomic analyses of

the infection process have been successfully used for

in vivo studies in animal models challenged with viruses

and bacterium.94 Based on these findings, this technology

makes it possible to carry out the in-depth characterization

of specific organelles when infection appears so that there

would be no need to eliminate the necessity of doing

organelle enrichment and fractionation.

Spatial Cellular Proteome Organization During

Infection

It is possible to determine infection-induced changes in

protein abundances using proteome analyses on entire

cells; however, the spatial information needed to under-

stand proteome organization and characterize molecular

mechanisms of pathogen infection is not provided.95,96

To measure protein abundances in different parts of

infected and clean cells we can tag cells by SILAC and

Dovepress Khodadadi et al

Infection and Drug Resistance 2020:13 submit your manuscript | www.dovepress.com

DovePress
1791

 
In

fe
ct

io
n 

an
d 

D
ru

g 
R

es
is

ta
nc

e 
do

w
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.d

ov
ep

re
ss

.c
om

/ b
y 

13
0.

22
6.

23
0.

20
0 

on
 0

3-
A

ug
-2

02
0

F
or

 p
er

so
na

l u
se

 o
nl

y.

Powered by TCPDF (www.tcpdf.org)

                               1 / 1

http://www.dovepress.com
http://www.dovepress.com


fractionated technique, which minimizes technical varia-

bility in the fractionation steps.97 Another option is to keep

the uninfected and infected samples separate throughout

fractionation so that quantification can be done through

label-free approaches or isobaric tags.98 These alternatives

bring the advantage of less limitation in the variety of

samples so that analyzing multiple fractions and infection

time points becomes possible. Changes that are induced by

infection on the cell surface proteome prove the dynamic

role of the plasma membrane proteome in the transport of

metabolites with the extracellular space,100 intracellular

and living thing signaling,99 and cell attachment during

infection.101 According to proteomic studies, viral-induced

alterations play a role in the mitochondria biogenesis,

oxidative phosphorylation, and the electron transport

chain in return.102 By integrating quantitative proteomics

and live-cell microscopy, the present study introduces

a wide range of alterations in organelle composition and

form and distinct protein translocations between secretory

organelles needed for the production of infectious particles

are mentioned.88 Moreover, the integration of strategies to

follow the dynamic localization of proteins inside the

cell103 gives us more information about the spatial reorga-

nization of the cell proteome when an infection takes

place.

Pathogen-Induced Regulation of Protein

Post-Translational Modifications
By altering protein interactions, stability, activity, and sub-

cellular localization, post-translational modifications

(PTMs) controls protein functions. Thereby, PTM regula-

tion has a key role in the progression and results of infec-

tion on either host or pathogen proteins.104 Cellular

landscape studies on PTMs and their pathogen-induced

regulation have yielded valuable insights into host-

pathogen interactions.

Diverse Forms of Post-Translational Modifications

are Relevant in the Context of Infection

Different PTMs are efficient means of controlling signal

transduction, virulence and regulatory processes on bacter-

ial proteins like phosphorylation, acetylation, methylation,

and deamidation.105 The PTMs are a key process in the

life cycle of bacteria so that they can modulate main

virulence factors and they are attractive targets for novel

therapies.106 Finding these PTMs in bacteria is a technical

challenge as they are not easy to discover given that the

modifications usually exist at low levels of abundance.107

To compensate this, specific enrichment strategies that

target certain PTMs are used to lower peptide complexity

and increase the chance of finding and characterizing; for

instance, immunoaffinity enrichment is a standard way for

lysine-acetylated peptides.108 In addition, identical enrich-

ment strategies are used to find phosphorylation events on

serine, threonine, and tyrosine (S/T/Y) amino acid

residues.109

Novel lysine-acetylation events in virulence factors help

host immune response evasions like chitin-binding protein,

a serine protease, exotoxin A, and hemolysin. This means

that lysine acetylation events in Pseudomonas aeruginosa

affect the mechanisms pertinent to virulence.110 Results

have shown that cysteine phosphorylation in S. aureus

help in controlling bacterial virulence and vancomycin

resistance.111 The authors used high-resolution MS to

explain in a site-specific fashion, that cysteine phosphoryla-

tion events took place in different proteins so that many of

them are global regulators that control important biological

processes.

MS as a Tool to Study Host and Pathogen Protein

PTMs

Post-translational modifications can be observed in cells,

and many of them are dynamically regulated when an

infection occurs. Therefore, global PTM analyses can be

done using proteomic methods.112 Selected global PTM

mapping is concentrated on specific types of modifications

and it has been done for various pathogenic agents such as

bacteria,112 fungi,113 protozoa,114 and viruses115 to detect

and measure SUMOylations, phosphorylations, acetyla-

tions, and histone modifications.116 The main tool for

PTM discovery experiments is the selective enrichment

of specific proteins or PTMs and then identifying the

modified peptides.117 Normally, this enrichment is done

by antibodies against the PTM or protein or by a resin that

can enrich a class of PTMs using the chemical

properties.118 Along with these discovery-driven experi-

ments, targeted MS/MS methods including selected reac-

tion monitoring (SRM) or parallel reaction monitoring

(PRM) are tools for sensitive monitoring of PTMs on

proteins of interest.119 Despite their well-recognized

value that makes accurate quantification of low abundance

PTMs possible,120 pathogen infection studies have not

used these approaches frequently; still, they can be used

more commonly in the future to widen our knowledge of

proteome regulation during infection. Moreover, there is

a lack of systematic examination of different types of
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PTMs and regulation of them as to time and space in

infectious contexts.121 This is true for PTMs that are

critical regulators of protein functions like phosphoryla-

tion, ubiquitination, and acetylation along with emerging

PTMs of which our knowledge about their impact on

protein functions like malonylation, succinylation, and

lipoylation is limited.122 Moreover, for the identified

PTMs, the detailed effect of many of these modifications

either in uninfected or infected cells is unclear.

Multi-Omics Integration for the Study of

Host-Pathogen Interactions
There are several uses forMulti-omic approaches like deter-

mining the coding capability of pathogens, identifying key

virulence factors, and outlining the responsibilities of the

host to pathogenic infection.123 Proteomics is also added to

transcriptomic analyses to have a better annotation of infec-

tious agent genomes,124 provide experimental proof for

genes, delineate intergenic events, and purify the limits of

available gene models of pathogens.125 Although, it is not

easy to analyze the data of these varieties of experiments,

there are procedural platforms to facilitate future proteoge-

nomic analysis in pathogens.126 Proteomics, glycopeptido-

mics, and glycomics were used to find glycosylation sites

and glycoform distribution in different influenza strains.127

This approach has enabled us to determine the glycosyla-

tion patterns of selective pressure obligatory by host

immune factors, that influence the strain antigenicity and

virulence.

While new omics methods are being introduced

every day, it is important to integrate them with alternative

omics approaches to achieve higher levels of data that

might improve pathogenic research, like as integrating

host and infectious agent PTMs128 or subcellular location

data.88 A key point in multi-omics studies is that access to

informatics platforms that may be accustomed to access

and visualize the data such as Immunet.129 Thereby, pro-

viding these resources is essential for generating data-

driven hypotheses for future pathogenic. While IP-MS is

designed for studying protein complexes within

bacteria,130 its use has remained limited to study in vivo

pathogen-host cell protein interactions and their dynamic

regulation throughout infection.131 Proteomic approaches

that support protein microarrays, complement IP-MS

approaches and demonstrate interesting opportunities for

high-throughput screening of infectious agent interactions.

By recognizing protein-encoding plasmid DNA and then

translating it into exploitation noncellular expression sys-

tems merely before using the sample, the nucleic acid

Programmable Protein Array (NAPPA) technology outper-

forms the common pitfalls that influence microarrays

imprinted with purified proteins.132 When used together,

there would be no need to use antibodies or generate

recombinant pathogenic strains. This can be specifically

advantageous for basic analysis investigation into the

molecular networks of infectious agent interactions.

Proteomics Methods to Provide
Mechanistic Insights in Bacterial
Antibiotic Resistance
Human health is growingly threatened by bacterial patho-

gens as the number and distribution of antibiotic-resistant

bacterium and the rate of discovery of recent antimicro-

bials dwindles is increasing.133 Since using antibiotics to

fight infectious diseases, microorganisms have started to

fight back. Using resistance mechanisms microbes can by-

pass and survive the action of antibiotic drugs.134 There

are several strategies to find these mechanisms and asso-

ciated in-progress efforts to lower the steady increase in

the number of treatment failures due to multi-drug-

resistant microbes.135 Proteomics is one of the key tools

in this area of research. They have key roles in realizing

the molecular mechanisms of bacterial pathogenesis and in

distinctive disease outcome determinants.136 The physical

associations find by proteomics lead to tools to develop

pathogen-specific treatment strategies that lower the

spread of antibiotic resistance.137 After the recent fast

advances in whole-genome sequencing, proteomic tech-

nologies are used extensively to examine microbial gene

expression.138 Therefore, proteomics has emerged as

a reliable tool to review bacteria. There are many com-

parative proteomic studies on bacteria-resistant to develop

different antibiotics and some are mentioned in the follow-

ing sections (Figure 1; Table 2).

Cell Wall-Acting Antibiotics
Beta-Lactams

Beta-lactams antibiotics are generally categorized as penicil-

lin, cephalosporin, carbapenems, monobactam, beta-

lactamase inhibitors, and other minor categories.139 The

beta-lactams halt the synthesis and/or stability of the cell

envelope, which results in the biogenesis of cell-wall and

loss of selective permeability and osmotic integrity in return

and finally bacterial cell death.140 Beta-lactam antibiotics
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resistance is one of the commonly studied resistance based

on proteomics methods.141 Antibiotic hydrolyzing proteins is

the main resistance mechanisms to beta-lactam antibiotics,

which is also known as beta-lactamases.142 There are other

major mechanisms like imbalance in transport proteins such

as efflux pumps and porins and alteration in the penicillin-

binding protein targets.143 The growing trend of using anti-

biotics has resulted in the rate of some key resistance strains

like methicillin-resistant Staphylococcus aureus, penicillin-

resistant Streptococcus pneumoniae, and extended-spectrum

beta-lactamase (ESBL),144 as well as carbapenemase-

producing Enterobacteriaceae, Pseudomonas aeruginosa,

and Acinetobacter baummanni.145 The findings by proteomic

researchers give us deep insights into ampicillin-resistant

Pseudomonas aeruginosa, where novel porins are involved

in resistance.146 Studies on the resistance to piperacillin/

tazobactam in Escherichia coli have shown that the expres-

sion of porin OmpX was lowered and the expression of TolC

increased.147 Wither regard to the penicillin-tolerant Gram-

positive Streptococcus pyogenes, overexpression of murein

metabolism proteins and general alteration of bacterial phy-

siology are reported.148 Studies on methicillin-resistant

S. aureus have revealed changes in cell physiology and

overexpression of catalase and superoxide dismutase.149

Alanine dehydrogenase has been found effective in antibiotic

resistance.150 Studies on inner membrane fraction

of carbapenem-resistant A. baumanni have revealed

a relationship with beta-lactamase AmpC and OXA-51 pro-

duction along with metabolic enzymes, elongation factor Tu,

and ribosomal proteins.151

Glycopeptide

Glycopeptide vancomycin functions through stopping pep-

tidoglycan synthesis. It binds to the DAla-DAla terminus

of the nascent peptidoglycan and therefore blocks the

correct synthesis.152 Substitution of the DAla residue

from peptidoglycan termini by D-lactose or D-Serine, in

Enterococcus spp., was found to be the key mechanism of

resistance to vancomycin.153 In addition, in S. aureus,

a more complicated scenario was proposed with diverse

enzymes and gene clusters implicated in vancomycin-

resistance. Resistant strains like vancomycin-resistant

Staphylococcus aureus (VRSA) and vancomycin-resistant

enterococci (VRE) are of main clinical concern.154

Wang et al155 studied vancomycin-resistant Enterococcus

faecalis and investigated a reference strain (V583) and

a clinical isolate (V309) with and without vancomycin.

The results supported the regulation of the proteins

involved in vancomycin resistance functions, virulence

factors, stress, metabolism, translation, and conjunction.

Ramos et al156 determined the proteomic profiles of van-

comycin-resistant E. faecium SU18 strain treated and not

Figure 1 Overview of bacterial antibiotic resistance mechanisms. Antibiotics target essential bacterial processes and structures to inhibit cell growth and/or causing cell

death. The major cellular targets for antibiotics include DNA replication (eg, fluoroquinolones), protein synthesis (eg aminoglycosides), cell wall integrity (eg, penicillins) and

folic acid metabolism (eg, sulfonamides).
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Table 2 Proteomic Studies of Bacterial Antibiotic Resistance Mechanisms

Antibiotic Pathogens Physiological effects Proteome Analysis Representative

References

Cell wall

Vancomycin Enterococcus

faecium

Vancomycin resistance proteins increased;

metabolism-related proteins decreased

2-DE and LC-MS/MS [156]

Piperacillin/

tazobactam

Escherichia coli Bacterial virulence, antibiotic resistance, DNA

protection, and multidrug efflux pump expression

associated with resistance

2D-flurorescence difference

gel and electrophoresis (2D-

DIGE)

[147]

Carbapenem Acinetobacter

baumannii

Beta-lactamases, energy, and protein production

enzymes are upregulated;

2D-DIGE [151]

OmpW and surface antigen downregulated

Penicillin Streptococcus

pyogenes

Growth phase, stress, and fatty acid biosynthesis

(FAB) proteins expression altered

Two dimensional gel

electrophoresis (2-DE) and

tandem mass spectrometry

[148]

Cell membrane

Colistin Escherichia coli Outer membrane proteins, chaperones, protein

biosynthesis factors and metabolic enzymes

2-DE and LC-MS/MS [167]

Daptomycin Staphylococcus

aureus

Differences in biofilm formation proteins, cell wall-

associated targets

iTRAQ and IPG-isoelectric

focusing with LC-MS

[161]

Protein synthesis

Kanamycin Escherichia coli Outer membrane protein expression altered.

Identification of novel membrane MipA protein

involved in antibiotic resistance

2-DE and LC-MS/MS [197]

Tetracycline Acinetobacter

baumannii

Outer membrane proteins decreased expression in

membrane and increased secretion

2-DE/MS-MS and 1-DE/LC/MS-

MS

[190]

Linezolid Streptococcus

pneumoniae

Metabolism and transport of carbohydrates involved

in resistance to linezolid

2-DE and iTRAQ [187]

Protein synthesis

Chloramphenicol Burkholderia

thailandensis

Overexpression of efflux pump systems associated

with resistance

SDS-PAGE electrophoresis and

LC-MS/MS

[183]

Erythromycin Streptococcus

pneumoniae

Glyceraldehyde-3-phosphate dehydrogenase

upregulation in resistant strain

2-DE and LC-MS/MS [201]

DNA synthesis

Fluoroquinolones Pseudomonas

aeruginosa

Overexpression of ATP-binding component of ATP

binding cassette (ABC)

2-DE and LC-MS/MS [206]

Metronidazole Clostridium

difficile

RecA, ferric uptake regulator (Fur), putative nitro

reductases and altered expression of stress-related

proteins

iTRAQ and 2D-LC-MS/MS [212]

RNA synthesis

Rifampicin Brucella

abortus

Alterations in several metabolic processes and

secretion mechanisms

2-DE and LC-MS/MS [217]
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treated with vancomycin. 14 proteins are differentially

expressed in SU18. Proteins that played a role in the

vancomycin resistance mechanisms demonstrated an

increase in the presence of vancomycin; while there was

a decrease in metabolism-related proteins, which results in

compensatory effects. Notably, the proteomic profile of

a group of heterogeneous vancomycin-intermediate

Staphylococcus aureus (hVISA) vancomycin susceptible

S. aureus has been compared.157 At first, five upregulated

proteins in hVISA were detected and only one of them

supported by real-time quantitative reverse transcription

PCR (qRT-PCR) – ie the protein encoded by the isaA

gene involved in cell wall biogenesis.

Cell Membrane-Acting Antibiotics
Daptomycin

A new mechanism of action that is demonstrated by

daptomycin is a cyclic lipopeptide antibiotic.158 This

agent functions on the cell wall membrane structure

and it is synthesized through binding to the cell mem-

brane using a calcium-dependent mechanism. This

results in the efflux of potassium ions of the bacterial

cells.159 This process results in bacterial cell death in.160

Daptomycin is active against Gram-positive bacteria and

it is clinically used to treat intense infections by these

organisms (MRSA bacteremia, skin and soft tissue

infections, endocarditis, and VRE infections,).7 Based

on comparative proteomics profiles in the daptomycin-

susceptible S. aureus strain and the daptomycin-resistant

S. aureus strain 701, there is a differential abundance of

proteins in different functional categories, such as

cell wall-associated targets and biofilm formation

proteins.161 In addition, LiaI and LiaH proteins caused

(429-fold) by daptomycin, using the proteomic approach

of a daptomycin-susceptible B. subtilis strain W168 in

presence of daptomycin treatment of sublethal amount

(1 μg/mL).162 The removal of the response regulator

LiaR controls the expression of liaIH in daptomycin-

resistant E. faecalis and reversed resistance to daptomy-

cin. This leads to hypersusceptibility to daptomycin.163

Thereby, it can be concluded that LiaR is the main

regulator that protects cell membranes against diverse

antimicrobial agents, by regulating the expression of

different genes like liaH gene. Thus, the study showed

that several proteins of different functional categories,

including cell wall-associated targets, had different

expressions.

Colistin

As an antimicrobial peptide, Colistin interacts with the

bacterial outer membrane, by replacing bacterial counter

ions in the lipopolysaccharide (LPS).164 Hydrophobic

and hydrophilic regions interact with the cytoplasmic

membrane as a detergent and make the membrane

solubilized.165 The main common mechanisms of resis-

tance to colistin are modifications to LPS.166 Li et al167

studied proteins in mcr-1-mediated colistin-resistant and -

susceptible Escherichia coli to achieve a deeper insight

into the colistin resistance mechanism. They showed that

the substrate phosphoethanolamine (PEA) for mcr-1 that

mediated colistin resistance was accumulated in colistin-

resistant E. coli. It is notable that along with PEA mod-

ification of the bacterial cell membrane lipid A, mcr-1 has

an effect on the biosynthesis and transport of lipoprotein in

colistin resistance through disrupting the expression of

efflux pump proteins that play a role in the resistance

pathway of cationic antimicrobial peptide (CAMP).

There is an association between the low intracellular c-di-

GMP level in dispersed cells of a P. aeruginosa strain and

a higher abundance of proteins required by the virulence

and development of antimicrobial peptide resistance in

P. aeruginosa.168 Therefore, P. aeruginosa cells with low

c-di-GMP levels act as an extra immunity to colistin than

P. aeruginosa cells with high c-di-GMP levels.

Antimicrobial

A polypeptide known as antimicrobial peptides (AMPs) is

generated endogenously to defend the host against micro-

bial invasion. Also, they function actively against a wide

range of microorganisms such as MDR bacteria.169 The

bacterium, in Vibrio parahaemolyticus, reacts to AMPs by

up-regulating the efflux channel, increasing the energy

consumption performance, repairing damaged membranes

effectively, and down-regulating of carbohydrate and

nucleotide metabolism to preserve energy.170 In the case

of Mycoplasma pulmonis, we know that the activation of

the stress response, which also triggers mutations in the

hrcA gene, can improve the development of resistance to

AMPs like melittin or gramicidin D.171 Furthermore, 2-DE

analyses, in M. pulmonis, indicated the up-regulation of

enzymes playing a role in energy metabolism as a feasible

outcome of the increased energy demand of the resistant

strains.172 Proteins that are effective in Vibrio parahaemo-

lyticus AMP resistance were indicated by Shen et al.173 In

addition, subculture of V.parahaemolyticus strains exposed

to four different AMPs demonstrated resistant strains.
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Additionally, two OMPs (TolC, flagellin) and five IMPs

(transcription termination factor NusA, EF-Tu, ATP

synthase α subunit, dihydrolipoamide dehydrogenase,

long-chain FA transport protein, FadL) were spotted by

analyses, which had changed the expression between the

WT and AMP-resistant strain significantly. Moreover, it is

believed that up-regulation of the energy-dependent MDR

efflux transporter (TolC and F1-ATPa), repair of damaged

membranes effectively (DLD) and AMPs cellular penetra-

tion (down-regulation of FadL)174 mediate AMP resis-

tance. These findings showed that the upregulation of the

TolC pump is a form of probable resistance mechanism

described with different antibiotics.

Polymyxins

As well-established antibiotics, Polymyxins have lately

drawn a great deal of attention as a result of the growing

incidence of infections caused by multidrug-resistant

Gram-negative bacteria.175 The polymyxins that are pro-

duced by Bacillus polymyxa are a set of cyclic polypep-

tides that altering the permeability of the cytoplasmic

membrane176 to induce their effect. Based on MALDI-

TOF analysis of the lipid A extracted from RamA-

overexpressing strains of K. pneumoniae, RamA increases

colistin/polymyxin resistance levels.177 This increase was

done by RamA that is directly bound to lipid

A biosynthesis genes like lpxC that modifies the structure

of lipid A. A study showed that overexpression of a pagL-

specific sRNA, Sr006 increased pagL mRNA, lipid

A deacetylation, and polymyxin B resistance in

P. aeruginosa. It also revealed that a pagL knockout led

to a decrease in polymyxin B resistance.178 Thus, the fact

that PagL is upregulated in chlorhexidine-resistant

P. aeruginosa means that the resistance action mechanism

to chlorhexidine might be the same, partially, as of

polymyxins.

Protein Synthesis-Acting Antibiotics
Chloramphenicol

Chloramphenicol is a broad-spectrum antibiotic that plays

a role in the synthesis of mitochondrial protein.179 The

chloramphenicol functions through creating bounds to the

50S bacterial ribosomal subunit and inhibiting the synth-

esis of protein.142 Studies have explained resistance to

chloramphenicol as part of the presence of the chloram-

phenicol acetyltransferase (CAT), which is an enzyme that

inactivates the drug.180 Li et al181 found six outer mem-

brane proteins and one protein of the location was

unknown and in charge of chloramphenicol (CAP)-

resistant Escherichia coli and for survival in medium

with suddenly strong CAP treatment. The study argued

that 4 out of the 7 proteins, including OmpC, TolC,

OmpT, and OmpW, were notably changed and they could

be considered as potential targets for developing new

medicines against CAP-resistant E. coli. Therefore, anti-

bodies that acted against the known OM proteins were

utilized to show antibody-combating bacterial growth.182

As the results showed anti-TolC had highly significant

inhibition on bacterial growth in medium with CAP.

This highlights a potential novel method to treat infection

by antibiotic-resistant bacteria. Antibiotic resistance

mechanisms Burkholderia thailandensis were used to

examine SDS-PAGE coupled with LC nanoelectrospray

MS/MS.183 The resistance induced by the chloramphenicol

was effective with structurally unrelated antibiotics such as

quinolones and tetracyclines.184 In general, the results

showed that there was an association between the multi-

drug resistance phenotype, found in chloramphenicol-

resistant variants and the over-expression of two different

efflux pumps, which were able to expel antibiotics from

several families.

Linezolid

One of the oxazolidinone antibiotics for clinical treatment

of severe infections with resistance against Gram-positive

bacteria is Linezolid.185 Linezolid an oxazolidinone that

binds to the 23S rRNA (Ribosomal ribonucleic acid) and it

demonstrates different resistance mechanisms such as

a higher expression of ABC transporters, mutations in

23S rRNA, mutations in ribosomal proteins L3 and L4,

and mutations in an RNA methyltransferase.7 Voigt et al186

studied expressions of the protein in S. aureus after a short

exposure to MCB3681, a new quinolonyl-oxazolidinone

antibacterial. They tried to answer the question if

MCB3681 can influence the expression of proteins differ-

ent from those influenced by ciprofloxacin or linezolid.

Their findings indicated that the effect of MCB3681 on

the proteome signature of treated S. aureus cells was not

the same as ciprofloxacin or linezolid. Proteomic and

transcriptomic screening of linezolid indicated that it is

feasible to increase the metabolism and transport of carbo-

hydrates in like linezolid-resistant S. pneumoniae

mutants.187 That is, resistant strains overexpressed several

glycolytic proteins, enzymes, and transporters involved in

sugar metabolism.
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Tetracycline

Aaminoacyl tRNA binding to the mRNA-ribosome com-

plex can be inhibited by tetracycline.188 There are at least

three mechanisms that create cell resistance to tetracycline

including enzymatic inactivation of tetracycline, efflux,

and ribosomal protection.189 Yun et al190 utilized proteo-

mic techniques to examine the surface proteome of

A. baumannii DU202 outer membrane vesicles (OMV).

This surface is notable resistant to tetracycline, after imi-

penem treatment. They reported a higher OMV secretion

after exposure to imipenem treatment and an increase

cytotoxicity towards A549 human lung carcinoma cells.

The differential proteome of E. coli K12 BW25113

exposed to chlortetracycline stress was labeled using iso-

baric tags and quantitative proteomics technology for rela-

tive and absolute quantitation of the labeling (Lin et al191).

The role of ribosome protein complexes in the translation

process was improved in general in the presence of chlor-

tetracycline stress, which is a compensatory mechanism

created by the chlortetracycline effect on the ribosome.

Therefore, these findings give us deeper insights to

hypothesize the role of energy to guarantees cell survival.

It appears that they change their metabolism to achieve

a basic level of energy production and ensure their survival

in the presence of the stress caused by a harmful antibiotic

agent. This hypothesis can be the subject to future studies

on proteomics.

Aminoglycoside

Through blocking the small 16S subunit of the bacterial

ribosome, aminoglycoside antibiotic family can stop pro-

tein synthesis.192 We know three aminoglycoside resis-

tance mechanisms including lowered uptake or decreased

cell permeability, modification at the ribosomal binding

sites, and generation of aminoglycoside modifying

enzymes.193 Low levels of NarG and NarH and two ele-

ments of respiratory nitrate reductase (Nar) were found in

streptomycin, gentamicin, ceftazidime, tetracycline, and

nalidixic acid-resistant E. coli strains in a proteomic

study based on native/SDS-PAGE.194 The protein expres-

sion profiles of a high-level spectinomycin-resistant (clin-

ical isolate) and a susceptible (reference strain) Neisseria

gonorrhoeae treated by sub minimal inhibitory concentra-

tions (subMICs) of spectinomycin were compared by

Nabu et al.195 Both strains demonstrated overexpression

of 50S ribosomal protein L7/L12 which is a key element

for ribosomal translocation. This means that compensatory

mechanisms function might be in response to antibiotics

that inhibit protein synthesis. To create the effects of

gentamicin on the proteomes of aerobic and oxygen-

limited E. coli, Proteomics techniques are an options.196

In addition, protein involvement in kanamycin resistance

was reported in a proteomic and Western blotting study of

the E. coli K-12 outer membrane (OM). Zhang et al197

reported an increase of some OM proteins like Tolc, TsX,

and OstA, and a decrease of MipA, OmpA, FadL, and

OmpW OM proteins in the kanamycin-resistant E. coli

K-12 strain. They argued that MipA is a new OM protein

implicated in antibiotic resistance.

Macrolides

Macrolide antibiotics function through creating a reversible

bound to the P site on the subunit 23 S of the bacterial

ribosome.198 The main tool of bacterial to resist against

macrolides is through post-transcriptional methylation of

the 23S bacterial ribosomal RNA.199 Among experimental

types of acquired resistance are a generation of drug-

inactivating enzymes (esterases or kinases) and generation

of active ATP (Adenosine triphosphate)-dependent efflux

proteins that transport the drug outside of the cell.200

Cash et al201 studies the proteins synthesized by erythromy-

cin-susceptible and erythromycin-resistant S. pneumoniae

using peptide mass mapping to find a 38500 Dalton protein

upregulated in resistant strains as glyceraldehyde-3-phos-

phate dehydrogenase (GAPDH). Assuming that this

a probable reason for the resistance against erythromycin,

the authors maintained that was an increase in energy

production for the efflux system. Smiley et al202 conducted

a proteomic study on isolated sarcosine- insoluble outer

membrane protein (OMP) fractions obtained from clarithro-

mycin-susceptible and resistant Helicobacter pylori strains.

They demonstrated a decrease in iron-regulated membrane

protein, UreaseB, EF-Tu, and putative OMP; and an

increase in the HopT (BabB) transmembrane protein,

HofC, and OMP31 in clarithromycin-resistant H. pylori.

These findings indicate changing the outer membrane pro-

tein profile can be considered as a new mechanism effective

in clarithromycin resistance in H. pylori.

DNA Synthesis-Acting Antibiotics
Fluoroquinolones

A commonly used family of quinolones in clinical settings

is Fluoroquinolones.203 Quinolones inhibit the essential bac-

terial enzymes DNA gyrase and DNA topoisomerase IV.204

There are three quinolones resistance mechanism namely

mutations that change the drug targets, mutations that lower
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drug accumulation and plasmids that defend cells against

the lethal effects of quinolones.205 Proteomic studies on

protein expression levels have found 43 proteins with

higher expression in Salmonella enterica serovar

Typhimurium strains when a fluoroquinolone is added to

the bacterial culture.206 This means that the majority of

these proteins were only a physiological reaction to fluor-

oquinolone; still, there was an association between the

identified over-expressed AcrAB/TolC efflux pump and

resistance. Proteomic analyses are conducted to examine

the mechanisms at the protein level that confer resistance

to fluoroquinolones. A comparison between the proteomes

of fluoroquinolone-susceptible Coxiella burnetii and fluor-

oquinolone-resistant samples of the bacterium was done by

Vranakis et al.207 They showed diverse expressions of 15

bacterial proteins that had a role in different cellular pro-

cesses, which indicate the multifaceted feature of the anti-

biotic resistance mechanism in the bacterium. Additionally,

Lin et al208 showed an increase in the OM proteins TolC,

OmpT, OmpC, and OmpW and a decrease in FadL in the

nalidixic acid-resistant E. coli strains. Generally, TolC and

OmpC can have a stronger role in controlling nalidixic acid

resistance comparing with the other identified outer mem-

brane proteins.

Metronidazole

To inhibit nucleic acid synthesis, Metronidazole, as an

antibiotic of the nitroimidazole class, disrupts the DNA of

microbial cells.209 A study on the protein profiles of

a derivative of Helicobacter pylori strain 26695, featured

with resistance to moderate levels of metronidazole, showed

that the mutant strain improved the production of the resis-

tant phenotype of different isoforms of alkyl hydroperoxide

reductase when exposed to metronidazole.210 A study on

a metronidazole-resistant strain derived from B. fragilis

ATCC 25285 indicated that the proteomic changes influ-

enced a wide range of metabolic proteins such as lactate

dehydrogenase and flavodoxin.147 Changes in the metabolic

pathway effective in pyruvate-ferredoxin oxidoreductase

has been also reported by a multidisciplinary analysis of

a non-toxigenic Clostridium difficile strain that was resistive

to metronidazole.211 Moreover, according to proteomic ana-

lysis, DNA repair proteins, putative nitroreductases and the

ferric uptake regulator are regulated in a NAP1 C. difficile

clinical isolate that is resistive to metronidazole.212 The

results mean that there can be an association between

a multi-factorial response and high-level metronidazole-

resistance in C. difficile, such as the probable roles of

altered iron metabolism and/or DNA repair.

RNA Synthesis-Acting Antibiotics
Rifampicin

By inhibiting bacterial DNA-dependent RNA polymerase,

rifampicin can inhibit bacterial DNA-dependent RNA

synthesis.213 Rifampicin resistance is rooted in mutations

that change the residues of the rifampicin binding site on

RNA polymerase, which also leads to a lower affinity for

rifampicin.214 The possible to map resistant mutations to

the rpoB gene, encoding RNA polymerase beta subunit.215

Neri et al216 reported different expressions of 23 proteins

in two rifampicin-resistant and one susceptible meningo-

coccus. Moreover, they report an increase in the proteins

involved in the major metabolic pathways such as pyru-

vate catabolism and the tricarboxylic acid cycle; still, they

showed a decrease in the proteins related to gene regula-

tion in polypeptide folding. Rifampicin-resistant in

a rifampicin resistant strain of Brucella abortus 2308

developed in vitro was analyzed by Sandalakis et al.217

The resistant strain indicated the described mutation

V154F, in the rpoB gene. Among 456 proteins found by

MS/MS, the resistant strain had 39 differentially affected

proteins that play a role in different metabolic pathways.

Moreover, rifampicin resistance in Brucella is mostly

effective in the excitation of many metabolic processes

and possible use of the secretion mechanisms that exist

at a more efficient level.218 In general, these results indi-

cate that rather than an outcome of changes in single

proteins, resistance is the outcome of a complicated cellu-

lar processes network.

Proteomics Methods to Provide
Mechanistic Insights in Bacterial
Virulence
Growingly, proteomic techniques are attracting attention

as key tools for studying bacterial pathogenesis.134 Uses of

these tools are finding of virulence factors and examining

the response of both host and pathogen to infection.

Provenzano et al219 studied the metaproteome of microbial

communities caused by endodontic infections featured

with severe apical abscesses and asymptomatic apical per-

iodontal lesions. They argued that many of the detected

human proteins had a role in cellular processes and meta-

bolism and immune defense. Wang et al220 compared the

proteome profile of the S. enterica subsp. enterica serovar
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Typhimurium and S. typhi. These profiles are in charge of

gastroenteritis and typhoid fever types. The authors first

found a set of proteins with the serovar-specific expression

as a novel biomarkers for finding clinical serotypes. They

also reported that compared with S. typhimurium, the

expression of flagella and chemotaxis proteins was lower

in S. typhi. Mirrashidi et al131 employed affinities purifica-

tion-mass spectroscopy to find Inc-human interactions for

38/58 Incs that plays a role in intracellular life cycles of

the host, including retromer components as sorting nexin.

Observation of inc targets and overlapping of viral pro-

teins indicates common pathogenic mechanisms among

obligate intracellular microbes. In general, the findings

mean that a better understanding of virulence factors and

resistance mechanisms to antibiotics is achievable through

realizing the functionalities of the involved proteins.

Conclusion
Using proteomic analysis gives us a valuable systematic

approach to study the protein complement of bacterial

pathogenesis. However, studies on using proteomic analy-

sis to examine the interactions between bacterial pathogen-

esis and host are at early stages. That is, the new frontline

of studies on pathogens is at the interface between the

pathogen and host and examining the interaction of viru-

lence proteins with cognate host entities, coordination of

their actions, and finally subverting the host cell function

as part of the disease process. However, we can use

systems-level proteomic analyses to examine the intrinsi-

cally delicate balance of host-pathogen interactions. In

addition, the host cells possess many defense strategies

to defend against and kill invading pathogens. These key

aspects of host-pathogen interactions are visible in proteo-

mic differences. Research works on human infectious dis-

eases have been extended notably thanks to proteomic

approaches to pathogenic research. Proteomic tools are

becoming promising ways for clinical studies and diagno-

sis. In another word, these proteomic studies have led to

discoveries about different pathogenic infections by study-

ing pathogenic factors, host anti-pathogen proteins, and

protein complexes and profiling host and pathogen PTM

sites during infection. The convergence of proteomics and

omic technologies provides chances to have a clearer pic-

ture of the dynamics of diseases and find therapeutic

targets. There is an immense potential for proteomic stu-

dies on PTMs to uncover mechanisms that mediate the

progression, spread, and pathogenicity of infection.
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