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Abstract: In this paper, we discuss the validity of using score plots of component models such as 

partial least squares regression, especially when these models are used for building classification 

models, and models derived from partial least squares regression for discriminant analysis (PLS-

DA). Using examples and simulations, it is shown that the currently accepted practice of showing 

score plots from calibration models may give misleading interpretations. It is suggested and shown 

that the problem can be solved by replacing the currently used calibrated score plots with cross-

validated score plots. 
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1. Introduction 

In areas such as metabolomics and proteomics, the PLS (partial least squares) regression model 

is often used for classification purposes, which is then referred to as PLS-DA. In the following, we 

will use both names, but the data analytic examples all pertain to classification in this paper. Sometimes 

PLS-DA is used for creating predictive models, or for visualizing and perhaps identifying biomarkers. In 

any case, the utility of PLS-DA is apparent. It handles missing data points, correlated variables and 

datasets with more variables than samples. In addition, it provides excellent tools for visualizing the 

relation, for example, between observations using score plots. There are also alternative versions of PLS-

DA such as OPLS-DA (Orthogonal PLS-DA) which we will all group together in this paper as they share 

features in terms of when the visualization is of doubtful quality [1]. 

The quality of the prediction model can be measured by R2, which is the fraction of variance of 

the response that is explained for the calibration model samples. When measured using a test set or 

cross-validation, the number is called Q2. Sometimes, the quality of a given PLS-DA model is 

moderate or maybe even weak. That is, the model has little predictive power. This can be reflected in 

the difference between R2—how well the model predicts the calibration data, and Q2—how well the 

model predicts new data. It is our claim here that when the difference between R2 and Q2 is too large, 

the score plots from calibration models no longer provide a meaningful visualization of the pertinent 

information in the model. We will exemplify this and also provide an alternative solution which will 

obliterate the problem. 

2. Theory 

For descriptions of PLS and OPLS, we will refer to the literature [2,3]. For a description of the 

use of PLS for discriminant analysis, see [4]. In essence, (O)PLS-DA is the same as a standard (O)PLS 

model using a specific response, which is a dummy variable indicating belongingness for each class. 

Both PLS and OPLS provide a model of the data, X (I×J), used to predict the response y (I×1). The 

model of X can be written as: 
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X = TPT + E, (1) 

where T is a (I×F) score matrix and P a (J×F) loading matrix of an F-component model. The model of 

y is given: 

y = Tb + e, (2) 

where b is the so-called inner relation regression vector of size F×1. In the equations, we disregard 

the preprocessing of the data for simplicity and also assume only one dependent variable in y. It is 

the score values in T that are often used for score plots. Often component one and two are plotted 

against each other. This makes particularly sense for the OPLS, where it is known that the first 

component will hold the predictive information. 

Sometimes models are overfitted; for example, if the y-relevant signal in X is very weak or maybe 

even absent. Then, it is common to observe that the predictions of the samples that are part of the 

calibration set that are much better described than new samples e.g., those predicted during cross-

validation. Hence, in these cases, R2 will be much bigger than Q2 (R2 >> Q2). There are ample 

descriptions of this in the literature [5–7]. 

When R2 >> Q2, the parameters of the model can be severely influenced by noise or other 

irrelevant information. Hence, for example, the calibrated scores will tend to reflect the variation of 

y much more than the model predictively will—they will be optimistic. This holds for PLS as for 

OPLS. It is expected that for OPLS this effect can be larger especially for models that have many 

components. For one- or two-component models, it is expected that score plots from PLS and OPLS 

will overfit to the same degree, essentially. 

Instead of using scores from a calibration model known to be overfitted, it is possible to use 

validated scores, obtained for example from cross-validation. These cross-validated scores will not 

suffer from overfitting as is the case with the scores from the calibration model. However, due to the 

rotational freedom of bilinear models, it is necessary to correct the scores for sign and rotational 

ambiguity to avoid overly pessimistic scores. There are several possible approaches to that as 

outlined e.g., in [8]. 

Here, we adopt the following approach. An overall model using all calibration data is obtained 

as given in Equation (1). The loading matrix of this model defines the target configuration. In every 

cross-validation segment, the loading matrix of the PLS model obtained from the smaller dataset is 

rotated towards the loadings of the overall model. This can be done either orthogonally or obliquely 

and as mentioned also in other places, the choice of which to use is debatable [8]. In initial tests, there 

was little difference between the two approaches and both clearly removed the obvious meaningless 

differences related, for example, to sign switches. Hence, the effect of which rotation to use was 

negligible compared to the effect of doing rotation. Oblique rotations are used in the following. The 

rotation matrix obtained from the rotation can be used to counter-rotate the scores of the cross-

validation models. In addition, this counter-rotation can also be applied to the scores of the left-out 

sample(s). This way, we obtain rotated scores for each left-out sample and, after a complete cross-

validation, we have a validated score matrix that can be compared with the calibrated scores matrix. 

3. Data 

All the data and data analysis were performed in MATLAB using the PLS_Toolbox version 8.8.1 

[9]. See the Supplementary Materials for the scripts used to produce plots in the article. To build the 

classification models, PLS-DA and OPLS-DA was used. 

3.1. Simulated Data 

The datasets were simulated by generating two thousand samples. The data were simulated to 

be of rank two, which means that a two-component score plot should be able to reflect all information. 

This was achieved by generating the datasets as a product of two score and two loading vectors. Each 

sample has two scores as indicated in Figure 1. Corresponding loadings were generated such that the 

first score vector, the one indicating the class, only loaded on a few variables. Out of 360 variables, 
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350 had a loading of zero on score 1 and hence only ten variables had a non-zero loading on that 

component. The ten elements were chosen from a random uniform distribution, with elements 

between zero and one. The loading vector for score two (with no class information) was defined by 

drawing the loading elements for all 360 variables from a uniform distribution with elements between 

zero and one. Hence, most information in the data is not indicative of class belongingness. See 

Supplementary Materials for a script generating the data. Two thousand samples were generated and 

every fifty was used for calibration. Hence, the calibration set was size 40 × 360 and the test set was 

1960 × 360. 

In order to assess the variability of the results, the procedure of generating data, the splitting in 

calibration and the test and fitting models were repeated 500 times. 

 

Figure 1. Two scores of two thousand samples from the simulated dataset. Score one indicates the 

class belongingness. 

3.2. Cancer Data 

A cancer dataset was taken from an earlier study [10]. A total of 838 blood samples were 

analyzed. The samples all came from women that were healthy at the time of sampling, but half of 

the women would be diagnosed with cancer within five years from sampling the blood. The samples 

were measured by 1H NMR and these were integrated into 200 quantified peaks. Hence, the dataset 

was of size 838 × 200. 

In the model building, 240 samples were chosen for calibration and the remaining were used as 

a test set. In the calibration set, the two classes were represented equally as much, hence there were 

120 samples from each class. The test set was also balanced in terms of class. The reason for the quite 

large test set was simply to make the calibration set small enough to have overfitting. In the original 

application, the calibration set was much larger and presented no overfitting. The samples were 

chosen randomly for the calibration set within each class and the remaining samples were put in the 

test set. As for the simulated data, the procedure of splitting the data and fitting models were repeated 

500 times to assess the variability of the results. 
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4. Results 

For the simulated data, the rank was two and a two-component PLS-DA model will therefore be 

optimal and was chosen here for building the classification. In Figure 2, the resulting score plots are 

shown. The PLS-DA and OPLS-DA have the same predictive power and for that reason, cross-

validation results are only shown for one of them: PLS-DA. The test set results are from the PLS-DA 

model, too. 

 

Figure 2. Calibrated score plot from PLS-DA (upper left) and the OPLS-DA (orthogonal PLS-DA) 

(upper right) from the simulated data. The cross-validated scores from PLS-DA (lower left) and the 

score plot obtained from the test samples (lower right) are also shown. 

It is clear that the PLS-DA score plot from the calibration model (upper left in the Figure 2) seems 

to indicate a perfect separation. This is looking even better in the OPLS-DA calibrated score plot 

(upper right in Figure 2) and it is also reflected in the high R2 seen in Figure 3. However, the 

corresponding Q2 for both the cross-validation and the test set are telling a different story. The 

corresponding score plots are consistent with the low Q2 values and show a large overlap of the two 

groups. The similarity of the two Q2 values and the similarity of the score plots (Figure 2 lower left 

and right) shows that the cross-validated score plots provide a much better and scientifically more 

meaningful visualization of the model. In Figure 3 right, the result of re-defining calibration and test 

is shown. The calibration and test sets were defined 500 times and each time, calibration, cross-

validation and test set performance (R2 and Q2) was assessed. 
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Figure 3. Variance described for the model plotted in Figure 2 (left) and repeated 500 times (right). 

The calibrated results of PLS-DA and OPLS-DA will be the same, so only one is shown. 

A similar approach was taken on the cancer data. The rank of the PLS models was chosen to be 

six as in the original publication, and for that reason, a score plot of just components one and two of 

the PLS-DA model was not necessarily expected to show a clear separation. Indeed, this is the case 

as seen in Figure 4 (upper left) but the OPLS (upper right) still indicates an almost perfect separation. 

As for the simulated data, the cross-validation and test sets show a completely different story both in 

terms of the variances explained (Figure 5) and in the score plots (Figure 4). It is again clear that the 

calibrated score plots by no means are indicative of the predictive power. 

 

Figure 4. Score plot from PLS-DA (upper left) and OPLS-DA (upper right) from the cancer data. The 

cross-validated scores (lower left) and the score plot obtained from the test samples (lower right) are 

also shown. 
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Figure 5. Variance described for the model plotted in Figure 4 (left) and repeated 500 times (right). 

5. Conclusions 

We showed that when R2 >> Q2, the score plot of a PLS calibration model can be grossly 

misleading. This holds for PLS and even more so for OPLS. The problem can be solved completely 

by using cross-validated scores and we suggest that papers are not accepted when including 

calibrated scores plots in general, unless the R2 and Q2 are of comparable size. 

Supplementary Materials: The following are available online at www.mdpi.com/2218-1989/10/7/278/s1. 

Author Contributions: R.B. conceived the work and ran some calculation, additionally he wrote a major part of 

the manuscript. M.B. ran some of the calculations as well, contributed with some of the writing and in 

proofreading the manuscript prior to submission.  

Funding: This research received no external funding. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Wold, S.; Sjostrom, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. 

Syst. 2001, 58, 109–130. 

2. Höskuldsson, A. PLS regression methods. J. Chemom. 1988, 2, 211–228. 

3. Wold, S.; Trygg, J.; Berglund, A.; Antti, H. Some recent developments in PLS modeling. Chemom. Intell. 

Lab. Syst. 2001, 58, 131–150. 

4. Barker, M.; Rayens, W. Partial least squares for discrimination. J. Chemom. 2003, 17, 166–173. 

5. Clarke, R.; Ressom, H.W.; Wang, A.; Xuan, J.; Liu, M.C.; Gehan, E.A.; Wang, Y. The properties of high-

dimensional data spaces: Implications for exploring gene and protein expression data. Nat. Rev. Cancer 

2008, 8, 37–49. 

6. Defernez, M.; Kemsley, E.K. The use and misuse of chemometrics for treating classification problems. 

Trends Anal. Chem. 1997, 16, 216–221. 

7. Pretsch, E., Wilkins, C.L. Use and abuse of chemometrics. Trac-Trends Anal. Chem. 2006, 25, 1045–1045. 

8. Martens, H.; Martens, M. Modified Jack-knife estimation of parameter uncertainty in bilinear modelling 

by partial least squares regression (PLSR). Food Qual. Prefer. 2000, 11, 5–16. 

  



Metabolites 2020, 10, 278 7 of 7 

 

9. Eigenvector Research, Inc. PLS_Toolbox, version 8.8.1; Eigenvector Research, Inc.: Manson, WA, USA, 

2020. Available online: http://www.eigenvector.com (accessed on 3 July 2020). 

10. Bro, R.; Kamstrup-Nielsen, M.; Engelsen, S.B.; Savorani, F.; Rasmussen, M.A.; Hansen, L.; Dragsted, 

L.H. Forecasting individual breast cancer risk using plasma metabolomics and biocontours. 

Metabolomics 2015, 11, 1376–1380. 

 

©  2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


