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ARTICLE

Rapid range shifts and megafaunal extinctions
associated with late Pleistocene climate change
Frederik V. Seersholm 1✉, Daniel J. Werndly1, Alicia Grealy1,2, Taryn Johnson3, Erin M. Keenan Early 4,

Ernest L. Lundelius Jr.5, Barbara Winsborough6,7, Grayal Earle Farr8, Rickard Toomey 9, Anders J. Hansen10,

Beth Shapiro 11,12, Michael R. Waters 13, Gregory McDonald14, Anna Linderholm3,

Thomas W. Stafford Jr. 15 & Michael Bunce 1✉

Large-scale changes in global climate at the end of the Pleistocene significantly impacted

ecosystems across North America. However, the pace and scale of biotic turnover in

response to both the Younger Dryas cold period and subsequent Holocene rapid warming

have been challenging to assess because of the scarcity of well dated fossil and pollen

records that covers this period. Here we present an ancient DNA record from Hall’s Cave,

Texas, that documents 100 vertebrate and 45 plant taxa from bulk fossils and sediment. We

show that local plant and animal diversity dropped markedly during Younger Dryas cooling,

but while plant diversity recovered in the early Holocene, animal diversity did not. Instead,

five extant and nine extinct large bodied animals disappeared from the region at the end of

the Pleistocene. Our findings suggest that climate change affected the local ecosystem in

Texas over the Pleistocene-Holocene boundary, but climate change on its own may not

explain the disappearance of the megafauna at the end of the Pleistocene.
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The cause of the late Quaternary extinctions across the globe
has been debated since the beginning of modern science1.
Although many hypotheses have been suggested, including

disease and extraterrestrial impacts, the two main theories
implicate human hunting and climate change as the main drivers
of these extinctions2. In North America, major human immi-
grations and climate changes occur nearly simultaneously, com-
plicating efforts to disentangle their relative contributions. The
situation is particularly challenging, given the rarity of archae-
ological and palaeontological sites dating to the interval of these
extinctions.

Several archaeological sites document that Palaeo-Indian
groups targeted at least six of the 36 megafaunal genera3 in
North America, providing some support for human hunting as a
cause of megafaunal extinctions on the continent4. However,
while people were widespread across the Americas by at least
13,000 cal BP3,5,6, their population sizes were small, and it
remains unresolved how strongly hunting affected megafauna
populations3,7. This has led to the widely accepted “one–two
punch” hypothesis8, whereby the combined effects of climate
change and human impacts led to the extinction of the North
American megafauna by approximately 13.0–12.5 ka cal BP9,10.

Unlike Australia11 and New Zealand12, where human arrivals
and major climate changes are largely decoupled and separated by
thousands of years, major climate changes in North America
occurred coincidentally with human arrival. By 14,700 cal BP
(14.7 ka cal BP)13, rising temperatures during the Bølling–Allerød
warming event caused the continental ice sheets to retreat, ending
the Last Glacial Maximum. Two millennia later, this warming
reversed abruptly during the Younger Dryas Cooling Event
(12.9–11.7 ka cal BP), when temperatures rapidly dropped in the
Northern Hemisphere14. Understanding how these dramatic
changes influenced biodiversity at a local scale could provide new
insights into the causes of the global mass extinction event.

However, current estimates of the amplitude of temperature
fluctuations during the late Quaternary rely on data from ice
cores in Greenland, which are not readily translated to central
North America. For example, the severity of the YD climate
change on the Great Plains is debatable, and the event has been
described both as “near glacial conditions”15 and as a period with
mean annual temperatures no more than ~5 °C cooler than
present16. Furthermore, the effect of seasonality during the
Younger Dryas is not accounted for with traditional proxies for
mean annual temperature, and the apparent cooling during the
YD can represent an increased seasonality with cold winters but
relatively warm summers17.

To investigate the speed and extent to which an entire eco-
system responded to the climatic fluctuations from the Pleisto-
cene to the Holocene, we sequence ancient DNA from vertebrate
fossils and sediment excavated from Hall’s Cave, a limestone
cavern located on the Edwards Plateau, Texas (USA)18. The
Edwards Plateau is a 600–800-m elevation limestone plateau in
north–central Texas that consists of hilly grasslands and open
woodlands19, with current mean annual temperatures ranging
from 17 to 20 °C. Our study site, Hall’s Cave, provides an ideal
location for this work because it contains a well-dated sedimen-
tary record with chemically and physically well-preserved verte-
brate remains deposited from the Last Glacial Maximum through
to the present20. Hall’s Cave is also one of the few cave sites with
finely stratified sediments deposited during the Younger Dryas21.
To study changes in the Hall’s cave assemblage over time, we use
a combination of two ancient DNA approaches: bulk bone
metabarcoding (BBM)22 and sedimentary ancient DNA
(sedaDNA)23. Our data, in combination with existing palaeoe-
cological studies from the Texas region, provide a detailed
chronology of biodiversity turnover against the backdrop of

impacts from both human arrivals and climate shifts in central
North America.

Results
Sample collection and sequencing. We excavated bulk-bone
samples from strata dating from the Last Glacial Maximum to the
early Holocene at Hall’s Cave (Fig. 1). We used DNA meta-
barcoding (Methods) to characterise the faunal assemblage across
30 newly excavated bulk-bone samples of approximately
100 small non-diagnostic bones each, as well as from six bulk-
bone samples made from large fragmentary fossils excavated by
Toomey in 199318 (Fig. 1, Supplementary Table 1). We targeted
short mitochondrial barcoding regions of 12S rRNA24 and 16S
rRNA25 (Supplementary Table 2), and sequenced a total of
2,313,843 reads from 12S and 2,315,462 reads from 16S (Sup-
plementary Tables 3 and 4). We also excavated 32 sediment
samples to characterise the floral assemblage across the
Pleistocene–Holocene boundary (Fig. 1, Supplementary Table 4),
from which we amplified two short chloroplast loci: the P6 loop
of trnL26 and a fragment of rbcL27(Supplementary Table 2). We
generated 2,066,643 reads representing 828,118 and 1,111,635
reads from the trnL and rbcL genes, respectively (Supplementary
Table 5). We explored aDNA preservation throughout the
chronological sequence (see Supplementary Note 1, Supplemen-
tary Figs. 1 and 2) and found no evidence of systematic changes
in DNA preservation over time. Hence, we concluded that our
aDNA-derived assemblages reflect temporal shifts in the com-
position of the community surrounding Hall’s Cave rather than
DNA preservation bias, while acknowledging that all fossil
deposits can be influenced by taphonomy (see Supplementary
Note 1).

Similar to many North American geoarchaeological sites, the
profile in Hall’s Cave has a clearly visible “rancholabrean mat” or
organic-rich layer associated with the Younger Dryas (Supple-
mentary Fig. 3)15. We define the base of this layer (151-cm BDT)
as the onset of the YD. Based on the current age-depth model
(Supplementary Fig. 4), 151-cm BDT dates to 12.6 ka cal BP
(12,692–12,396 ka cal BP)—slightly younger than the conven-
tional dates for the onset of the YD at 12.9 ka cal BP. This
apparent time lag between the cooling over Greenland and a
biological response in North America was also reported for
several pollen records in the Great Lakes region28,29. However,
the difference could also be explained by uncertainties in the age-
depth model, or contamination with humic acids from younger
overlying layers.

We grouped samples based on four distinct climate intervals
for comparative analyses: (1) Last Glacial Maximum (ca. 20–14.7
ka cal BP), a period of cold glacial-era conditions; (2)
Bølling–Allerød (14.7–12.6 ka cal BP), a warmer interstadial with
oscillating temperatures; (3) Younger Dryas (12.6–11.7 ka cal BP),
a short and abrupt cooling in the Northern Hemisphere; (4) Early
Holocene (11.7–8.0 ka cal BP), a progressively warming period30

(see Fig. 1). We processed sediment samples from the latter three
time periods (Bølling–Allerød, Younger Dryas and Early
Holocene) and bulk-bone samples from throughout the profile
(see Fig. 1).

Overall biodiversity at Hall’s Cave. In agreement with the
osteological record18, we identified a high level of vertebrate
animal diversity at Hall’s Cave using bulk-bone metabarcoding.
In total, we detected at least 100 different vertebrate species: 50
mammals, 36 birds, 9 amphibians, 3 reptiles and two fishes
(Fig. 2, Supplementary Tables 6–8). Lagomorphs, rodents and
bats are ubiquitous throughout the assemblage (Supplementary
Table 6). The deer mouse (Peromyscus spp.) was the most
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commonly identified species, followed by cottontail rabbit (Syl-
vilagus spp.), and eastern woodrat (Neotoma floridana). Large-
bodied herbivores, such as bison (Bison spp.) and deer (Odocoi-
leus spp.) were also detected frequently, albeit primarily in
Pleistocene layers.

Despite sampling only a fraction (2957 bone fragments) of
what was screened by Toomey (hundreds of thousands of
identifiable subfossils), we report an assemblage that is largely
consistent with his results. Using aDNA, we detected 36 of the 56
mammal genera that Toomey reported at Hall’s Cave18, plus
seven mammal genera not previously identified (see Supplemen-
tary Fig. 5). For some genera, such as Neotoma, genomic data
improved the taxonomic resolution by identifying taxa to species
level. In addition, because the main focus of previous morpho-
logical analyses was mammal diversity, most records for birds,
amphibians, reptiles and fish species reported here are new
additions to the faunal assemblage at Hall’s cave.

To compare the DNA assemblage obtained from bulk-bone
samples with the sedimentary genetic record, we also analysed
10 sedimentary samples using the vertebrate assays employed for
bulk-bone metabarcoding (Supplementary Table 9). In agreement
with both the morphological and the bulk-bone record, we found
rodents to be abundant. However, we detected DNA from felids
in 7 of the 10 sediment samples analysed, whereas we only
detected felid DNA (jaguar and saber-toothed cat) in two out of
36 bulk bone samples. Jaguar (Panthera onca) is the most

abundant felid in the sediment samples (present in five samples),
followed by bobcat (Lynx rufus) in two samples. This discrepancy
could suggest that felids deposited significant amounts of DNA
from sources other than bone, such as faeces, urine and the
shedding of hair, and may indicate that felids resided in the cave
towards the end of the Pleistocene.

Our analysis of plant aDNA in the sediment samples revealed a
diverse floral record dominated by hackberry (Celtis spp.) and
oak (Quercus spp.). These two taxa represent the two most
abundant ASVs (amplicon sequence variant) detected in each
assay (Supplementary Fig. 6), and were present in almost all
samples analysed (Supplementary Table 10). However, the high
abundance of Celtis does not necessarily reflect a dominance of
hackberry in the local flora. The abundance could reflect that
hackberry trees were growing in the entrance of Hall’s Cave as
they do today18. The abundance of oak in the record, on the other
hand, most likely reflects the vegetation in the area. Similar to
hackberry and oak, mulberry (Morus) and currant (Ribes) occur
uniformly throughout the entire sequence, and their abundances
do not change substantively over time. Other arboreal taxa, e.g.,
juniper (Juniperus), walnut (Juglans) and ash (Fraxinus) have
disjunct occurrences over time. Our sedaDNA plant record
generally agrees with previous palynological results from the
site31 when comparing the most abundant taxa from both
approaches. However, the absence of Pinus DNA directly
contradicts the pollen record, where Pinus is the most abundant
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Fig. 1 Sampling location and stratigraphy. a Location of Hall’s Cave in North America, with the continental ice sheets and mountain glaciers shown at
18,000 and 9000 cal BP65. b Left panel, sample ages at Hall’s Cave for bulk-bone samples (circles) and sediment samples (triangles) based on calibrated
ages (ka cal BP). Middle panel, ambient temperature over Greenland based on δ18O values, dated by counting annual accumulation layers (years before
Y2k; Greenland Ice Sheet Project 2—GISP214). Right panel, time period sectioning.
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taxa. As sedaDNA is local in origin compared with pollen that can
be transported over long distances32, this could suggest that Pinus
was not present in the local area around Hall’s Cave, despite
displaying a strong signal from pollen.

Community composition shifts during the Younger Dryas.
Non-metric multidimensional scaling (NMDS) analysis revealed
that both the plant and animal assemblages at Hall’s Cave
changed significantly across the transition from the Late Pleis-
tocene to the early Holocene. NMDS based on taxa revealed that
the vertebrate data formed clusters based on time period (Fig. 3,
P < 0.001, anova.cca, 999 permutations). This pattern persisted
even after taking a taxonomy-independent approach based on
ASV diversity, which controls for uneven representation of spe-
cies in the genomic reference database used (see Methods; Sup-
plementary Fig. 7). For the plants, the Bølling–Allerød time
period formed a distinct cluster, while the Younger Dryas and
Early Holocene taxa clustered closer together (P < 0.001, anova.
cca, 999 permutations). However, when taking a taxonomy-
independent approach, only the trnL assay, which is more vari-
able than rbcL, separated the three time periods. The more con-
served rbcL assay is not able to reliably resolve the different time
periods primarily due to the limited taxonomic resolution of the
assay (Supplementary Fig. 7).

The alpha-diversity of plants and animals within each layer
displayed different patterns of species loss and recovery over time
(Figs. 3c and 4c). For vertebrates, diversity significantly declined
(t test, P= 1.739e−09) from the LGM and Bølling–Allerød time
periods (mean= 20.0, SD= 3.8) to the YD and Early Holocene

(mean= 9.8, SD= 2.0; Supplementary Fig. 8). This pattern of
species loss is also present when characterising different
taxonomic subgroups separately. Alpha-diversity loss over the
B–A/YD boundary is present in birds, reptiles and frogs,
mammalian carnivores and large mammalian herbivores, but is
absent in small mammals (Supplementary Fig. 9). Similarly, for
plant species, diversity significantly declined (t test, P= 0.0005)
from the Bølling–Allerød (mean= 21.7, SD= 7.9) to the Younger
Dryas (mean= 10.1, SD= 6.8). However, plant diversity
increased at the end of the Younger Dryas to the Early Holocene
(mean= 15.5, SD= 8.2; Supplementary Fig. 10). This post-
Younger Dryas increase in diversity is due to a combination of
some species returning as temperatures rose and the appearance
of new immigrants, including dayflowers (Commelina) and red
bud (Cercis, Fig. 4).

Biotic shifts in response to temperature fluctuations. Changes
in small-mammal diversity detected in our data closely mirror
Greenland temperature fluctuations during the Pleistocene–
Holocene transition. For example, we detect northern species
such as bog lemming (Synaptomys cooperi) and least weasel
(Mustela frenata) in LGM layers. Furthermore, the cold-adapted
northern grasshopper mouse (Onychomys leucogaster), is present
in the LGM, disappears temporarily during the Bølling–Allerød
warming, returns during the cold Younger Dryas and then dis-
appears permanently as the early Holocene warming begins
(Fig. 3). Similarly, the warm-adapted black-tailed jackrabbit
(Lepus californicus) is present during the warm Bølling–Allerød
and early Holocene periods, but is absent during the Younger

Fig. 2 Overall vertebrate diversity derived from bulk-bone metabarcoding (BBM). Dendrogram of genera detected by BBM at Hall’s Cave (Texas), with
silhouettes illustrative of some of the detected taxa. Bar heights represent the number of bulk-bone layers (n= 36) in which each genus was detected. See
Supplementary Tables 6–8 for a complete list of taxa detected. Daggers highlight extinct species.
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Dryas. These range shifts illustrate the patterns of oscillating
geographical distributions that many species exhibited during the
glacial and interglacial cycles of the Quaternary33.

Based on the current realised climatic niches of species present
in each time period, we are able to infer past temperatures around
Hall’s Cave. In LGM strata, the presence of cold-adapted species,
such as northern grasshopper mouse (Onychomys leucogaster)
and white-tailed jackrabbit (Lepus towsendii), suggests a sig-
nificantly colder climate than today’s 17–20 °C mean annual
temperature on the Edwards Plateau. Based on the current range
of the white-tailed jackrabbit, we estimate an upper temperature
limit of 10.6 °C for this species (Supplementary Fig. 11). This
suggests that the mean annual temperature in central Texas was
below this level during the LGM. The disappearance of the big
brown bat (Eptesicus fuscus) at the beginning of the
Bølling–Allerød, on the other hand, suggests a substantial
warming in central Texas because big brown bat colonies require
an ambient cave temperature of <5 °C to hibernate34. In addition,
the warm-adapted Mearns’s grasshopper mouse (Onychomys
Arenicola; Supplementary Fig. 12) and cotton rat (Sigmodon spp.;
Supplementary Fig. 13) move into the region for the first time at
the onset of Holocene warming. Given the present-day
temperature niche limits of cotton rat (>10.9 °C) and Mearns’s
grasshopper mouse (>11.8 °C), this indicates that the mean
annual temperature in Texas had risen to above 11 °C in the early
Holocene35.

Decreasing rainfall and the denudation of Central Texas. The
disappearance of wetland and burrowing taxa after the LGM
suggests that the climate of the Edwards Plateau changed from
wet conditions during the LGM to drier conditions in the
Holocene. One of the strongest drivers separating LGM and
Bølling–Allerød strata from YD and early Holocene layers in our
ordination analyses (Fig. 3b) is the abundance of burrowing
mammals during the LGM and B–A. These fossorial taxa com-
prise pocket gophers (Geomys texensis and Thomomys bottae) and
prairie dog (Cynomys sp.), which are found exclusively in LGM

layers, and additional species that persist into the Bølling–Allerød
time period, including thirteen-lined ground squirrel (Ictidomys
tridecemlineatus) and marmot (Marmota spp.). Of particular
interest for palaeoenvironmental reconstruction is the prairie dog,
which disappears at the onset of the Bølling–Allerød (Fig. 3a).
With a present-day mean burrowing depth of 140 cm36, the
presence of prairie dog indicates that soil thicknesses in central
Texas was dramatically deeper than today (probably >100 cm) up
until ca. 14,700 years cal BP, but decreased soon after. In addition,
the disappearance of marmot, which requires soil depths of
40–140 cm36, approximately a thousand years later, indicates
further decreases in soil thickness. Lastly, by the onset of the
Younger Dryas, the eastern mole (Scalopus aquaticus) dis-
appeared from the region, indicating that soil depth was <25 cm18

by this time. These soil-depth decreases are consistent with pre-
vious estimates based on strontium isotope studies at Hall’s
Cave20. By the end of the Younger Dryas in Central Texas, soils
were very thin and similar to today’s few-centimetre thick
pedogenic horizons. This trend of decreasing soil cover and
regional drying is also reflected by the aDNA record of birds and
amphibians, which details the disappearance of wetland-adapted
species such as ducks, swans and geese (Anatidae sp.) and mole
salamander (Ambystoma sp.) at the end of the LGM (Supple-
mentary Tables 7 and 8).

Ancient plant DNA compared with other palaeoecological
records. Our sedaDNA plant record generally agrees with pre-
vious palynological results from Hall’s Cave31 when comparing
the most abundant taxa from both approaches. All of the taxa
detected by the most common ASVs in this study (Supplementary
Fig. 6) were also detected by pollen, although at different taxo-
nomic levels. Stenaria, for example, which was commonly
detected in our study, was identified at family level (Rubiaceae) in
the pollen data. Similarly, of the ten most abundant taxa identi-
fied by pollen, only Pinus and Chenopodiaceae were not identi-
fied in the DNA data (Supplementary Table 10). However, the
abundances of taxa identified vary widely between the two
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approaches. Hackberry (Celtis), for example, is identified as the
most common read in all sedaDNA samples, but is rare in the
pollen record. In addition, the absence of Pinus DNA contradicts
the pollen record, where Pinus is the most abundant taxa. This
discrepancy is likely a result of the different nature of the proxies
examined. Pinus pollen is known for being overrepresented in
fossil pollen records due to its high pollen productivity and dis-
persability37, while sedaDNA is local in origin32. Furthermore,
previous results have demonstrated that pollen is essentially
devoid of chloroplast DNA23, explaining the absence of Pinus
DNA, despite the presence of its pollen. Hence, although pollen
records from Hall’s Cave and other parts of central Texas suggest
that the region was covered in conifer forests during full-glacial
times, the lack of conifer aDNA in our samples suggests that
coniferous taxa were not present in the local area, but were
aeolian-derived from distant sources. Nevertheless, as discussed
below, the overall patterns of vegetational change from the
Pleistocene to the Holocene are consistent between the two
approaches.

Vegetational change on the Edwards Plateau. Turnover in fauna
detected in our bulk-bone record supports a change in vegetation
around Hall’s Cave from a prairie grassland to an open woodland
by the end of the LGM. One of the most notable species changes is
in prairie chickens, which are ubiquitous during LGM (detected in
13 of 17 LGM layers), but disappear during the Bølling–Allerød
warming (Supplementary Table 7). Present-day prairie chickens
are known to actively avoid trees38; therefore, their disappearance
suggests an increase in woody plant cover. This aligns with the
appearance of two open woodland-adapted species, the northern
bobwhite (Colinus virginianus) and wild turkey (Meleagris gallo-
pavo), both of which appear in the Bølling–Allerød strata as prairie
chickens disappear. Other grassland-adapted species such as
horned lark (Eremophila alpestris), upland sandpiper (Bartramia
longicauda) and plover (Pluvialis sp.) are also abundant in LGM
layers, but disappear from the record during the Bølling–Allerød
warming. In the amphibian community, this vegetational change is
supported by an increase in the relative abundance of barking frog

(Craugastor augustii) from LGM layers (2/17 layers) to the
Bølling–Allerød period (4/5 layers). The barking frog depends on
trees, as they typically inhabit leaf litter, where they feed on insects
and use moisture trapped in the humus39.

The change in vegetation inferred from the bulk-bone aDNA
record is consistent with that reconstructed using sedaDNA,
which indicates that mesic open woodland during the
Bølling–Allerød period changed progressively into dry vegetation
with a decrease in tree cover during the Younger Dryas. In the
Bølling–Allerød, ash (Fraxinus) and walnut (Juglans) are more
common, which, together with the higher abundance of grasses
(e.g., Triticeae and Stipeae) and sumac shrubs (Toxicodendron),
indicate a live oak woodland. The Younger Dryas is characterised
by the absence of many key warm-climate species such as
sagebrush (Anthemideae), bedstraw (Galium) and walnut. These
three species disappear during the Younger Dryas, but reappear
in the Early Holocene as temperatures increased (Fig. 4a). Loss of
diversity during the Younger Dryas is also reflected in the alpha-
diversity for both plants and animals, which decreases during the
Younger Dryas (Figs. 3c and 4c). The Holocene is characterised
by an increase in abundance of juniper (Juniperus spp.) and
diamond flowers (Stenaria spp.), which, in combination with the
absence of many grasses (e.g., Stipeae, Carex and Hordeinae)
suggests a slight change in habitat type to a drier live oak–juniper
woodland, with an increase in tree cover.

Despite differences in proxies analysed, our ancient DNA
results generally agree with the trends observed in other
palaeovegetational records from Hall’s Cave (e.g., faunal
remains18, pollen31, phytoliths40 and strontium isotopes20). The
pollen record from Hall’s Cave indicate that the vegetation during
full-glacial conditions was characterised by scattered trees with
herbaceous vegetation dominated by C3 grasses. The pattern of
increased woody plant cover during the Bølling–Allerød dis-
cussed above is also reflected in the pollen record with a peak in
arboreal pollen at 14 ka cal BP followed by a sharp drop at the
beginning of the Younger Dryas31. In agreement with these
results, Joines (2011)40 found evidence of open woodlands or
savannahs during the LGM that transitioned into forests during
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the Bølling–Allerød. Lastly, although not precisely dated, Boriack
bog and Gause Bog41 in central Texas show a similar trend of
decreasing arboreal pollen during the end of the Pleistocene. As
noted by Cordova and Johnson, these patterns of a landscape
transitioning from an open grassland to a vegetation with an
increase in broadleaf trees, suggest an increase in effective
moisture during the Bølling–Allerød42.

In the pollen data, the YD is characterised by an increase in
sagebrush (Artemisia) and a decrease in arboreal pollen. In our
data, the decrease in arboreal taxa is reflected by the
disappearance of Fraxinus and Juglans during this period.
However, the increased abundance of sagebrush contradicts the
DNA record, where sagebrush disappears in the YD. Never-
theless, the general trend of increased denudation on the Edwards
plateau during this period is evident using both proxies. For
example, Cordova and Johnson31 suggested that the disappear-
ance of Juglans sp. that grows in deep soil, could reflect increased
erosion in the area at the onset of the YD, in agreement with our
interpretation of soil cover thickness.

For large mammals (>30 kg), the transition of the landscape
into woodland and the loss of grasslands is accompanied by the
disappearance of both extant taxa such as horse (Equus lambei/
scotti/caballus) and pronghorn (Antilocapra americana), and
extinct taxa, such as camel (Camelops sp.) and flat-headed
peccary (Platygonus compressus). The disappearance of large
herbivores is accompanied by the loss of their predators, e.g.,
saber-toothed cat (Smilodon spp.) and short-faced bear (Arctodus
simus). These patterns suggest that central Texas experienced a
trophic collapse towards the end of the Pleistocene that altered
the entire ecosystem. Similar collapses have been documented in
modern ecosystems43,44. In central Texas, the disappearance of
grassland by the end of full-glacial conditions could be explained
by the disappearance of the large grazers that maintained this
type of vegetation44,45.

Further supporting an ecosystem collapse by the end of the
Younger Dryas is the detection of non-analogous faunas in
Pleistocene strata45–47. This suggests that the flora and fauna in
the Pleistocene were not just shifted ecosystems compared with
the present day, but instead different ecosystems containing
communities of species that are not found together today. This is
exemplified in our data by detection of pairs of species that do not
co-occur in any present fauna of North America, e.g., desert
woodrat (Neotoma lepida) and shrew (Blarina sp.), white-toothed
woodrat (Neotoma leucodon) and eastern woodrat (Neotoma
floridana) and white-tailed jackrabbit (Lepus townsendii) with
barking frog (Craugastor augustii).

Discussion
By comparing bulk-bone metabarcoding with sedaDNA exca-
vated from Hall’s Cave, we find multiple lines of evidence sup-
porting dramatic ecological change in central Texas between the
LGM and Holocene. Our data indicate that, during the LGM, the
Edwards Plateau was a mesic grassland with few to no trees and
with thick soils that sustained a diverse population of burrowing
mammals (Supplementary Fig. 14). This habitat was maintained
by large grazers including bison, helmeted muskox, horses and
camels, and the climate was significantly colder than today, with
a mean annual temperature below 10.6 °C. With increasing
temperatures and changing fauna during the Bølling–Allerød,
the grassland transformed into open woodland dominated by
live oak, ash and an understory of walnut and sumac shrubs. The
loss of grassland habitat in the area at this time coincides with
the disappearance of many of the largest grazers from the region,
including camel, helmeted muskox and caballine horses. At
~12.6 ka cal BP, the abrupt change in climate to dry and cool

conditions during the Younger Dryas coincides with a decline in
both plant and animal diversity. Many animal species, such as
burrowing mammals, wetland taxa and large mammals dis-
appeared permanently from the area during this time, and the
last of the now extinct species to disappear from the record
(Haringtonhippus francisci) was detected at 153 cm (12.7 ka cal
BP), at the onset of the YD. As temperatures rose at the begin-
ning of the Holocene (mean annual temperature > 10.9 °C), plant
diversity recovered, and the vegetation transitioned to a live
oak–juniper woodland with increased tree cover. The faunal
diversity, decimated by megafaunal extinctions, did not recover.
Although some previously undetected warm-adapted species
appeared in the area in the Holocene, including racoon (Procyon
lotor), barn owl (Tyto alba) and Mearns’s grasshopper mouse,
the rich species diversity of mammals was lost.

The significant differences in community responses between
terrestrial plants and vertebrate animals during the Younger
Dryas have implications for our understanding of megafaunal
extinctions in North America. While 35 genera of large mammals
went extinct during the late Quaternary2, there is only one
documented example of extinction in plants. Similarly, our data
show that plant diversity recovered after the Younger Dryas,
while the diversity in large mammals did not. The fact that plant
diversity recovered after the Younger Dryas, but large vertebrates
did not, suggests that factors other than climate, including the
appearance of humans in the region, may have contributed to the
permanent local loss of large mammal diversity. This hypothesis
is supported by data from rodents, which like plants, were
affected by climate, but not directly by human predation. We
show that populations of rats and mice responded rapidly to the
changing climate. This is best exemplified by the northern
grasshopper mouse population, which disappears, reappears and
then disappears again in concordance with its preferred climate
niche. This suggests that rodent populations, similarly to plants,
adapt to climate changes by migrating with the fluctuating tem-
perature and rainfall regimes. This pattern is not mirrored in the
large mammals, which were exposed to the combined effects of
climate change and human hunting. Hence, these data suggest
that human hunting of large mammals, likely together with cli-
mate change at the end of the Pleistocene, led to the extinction of
megafauna in North America.

The high degree of biomolecular preservation at Hall’s Cave is
rare in North America and contrasts with sites as the Rancho La
Brea tar pits, which have failed to yield aDNA despite numerous
attempts. Moreover, successful recovery of ancient DNA from
sediments in North America has been limited mainly to sites
north of the maximum ice sheet extent (Supplementary Fig. 15).
The resolution of the Hall’s Cave aDNA data provides the
impetus for more expansive follow-up studies using single-bone
(mitogenomes or whole genomes) and bulk-bone aDNA, along-
side light stable isotopes, 14C dating, archaeology, pollen, diatoms
and microstratigraphy. Such multidisciplinary approaches are
increasingly employed to provide suites of complementary
proxies that better quantify our reconstructions of ancient cli-
mates, past biodiversity, extinctions and biotic shifts over cen-
turies to millennia.

Methods
Study site. Hall’s Cave (30°08′06.3″ N, 99°32′16.4 W) is located in the centre of the
Edwards Plateau, a limestone plain in central Texas. Today, the Edwards Plateau
consists of hilly grasslands and open woodlands19, with a climate classified as arid
to semiarid, and mean annual temperatures ranging from 17 to 20 °C (Supple-
mentary Fig. 11). The woody component of the vegetation in the area is dominated
by species such as Texas oak (Quercus texana), live oak (Quercus virginiana), ashe
juniper (Juniperus ashei) and neatleaf hackberry (Celtis reticulata), with a grassland
component dominated by C4 grasses18.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16502-3 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:2770 | https://doi.org/10.1038/s41467-020-16502-3 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Dating. An age-depth model was built using Clam (2.3.2)48 in R with 23 previously
published radiocarbon dates from Hall’s Cave pit 1d/E20 (Supplementary
Table 11). Based on an initial iteration of the age-depth model, two samples were
marked as outliers and removed (TMM 41229-12179 and TMM 41229-12073).
The age-depth model was built using a smooth spline with default smoothing (0.3).
This model (Supplementary Fig. 4) was used to estimate ages of all samples ana-
lysed in this study, except from sample 1C_240_245, which was excavated from pit
1c and not composite pit 1d/E. However, as this sample was excavated from 240 to
245 cm below datum (cm BDT), approximately 100 cm below the onset of the
Younger Dryas, we are confident that this sample is older than 14.7 ka cal BP, and
hence it has been assigned to “Last Glacial Maximum”. All ages reported in this
paper are in calibrated years before present (1950 AD); “ka cal BP” represents 103

calendar years before present (1950 AD).

Sampling. Sediments and bulk-bone samples were excavated from a 4-m-thick
section of the eastern face of composite pit 1d/e (Supplementary Fig. 16) in Hall’s
Cave in August and September 2016. Sample depths were recorded as cm below the
zero datum established by Toomey (cm BDT). To better enable future researchers
to correlate new and old data collected at the cave, we have included absolute
elevation for each sample (Supplementary Tables 1 and 4) from UTM Benchmark
data established by Urban Civil, LLC, in August 2016. Bulk-bone samples were
collected by excavating sediment in approximately 3-cm levels, which were sub-
sequently dry-sieved through 3- and 1.5-mm sieves to obtain bulk-bone material.
In total, 110 levels were excavated for bulk-bone material, yielding from 20 to over
300 bone fragments each. After excavation and sieving, levels yielding fewer than
100 bones were merged, to ensure that all samples could be subsampled to 100
bone fragments (Supplementary Table 1). Sediment samples were collected after
bulk-bone sampling by inserting irradiated 50-mL Falcon tubes into the newly
exposed excavation face. Samples were collected from two sequences: A and B, in 3-
and 1-cm intervals, respectively, both covering the transition between the
Bølling–Allerød warming and the Younger Dryas intervals (Supplementary
Table 4). All the excavation work, and subsequent handling of the samples, was
carried out following ancient DNA guidelines49: gloves, hair net, face mask and
plastic arm sleeves were worn by excavators, and excavation tools were cleaned
with bleach between each excavation unit.

Extractions. Amplification and sequencing were carried out following the work-
flow described in Murray et al.22 and Seersholm et al.50. Briefly, upon import to
Australia, samples were transferred to the TRACE (Trace Research Advanced
Clean Environment) aDNA facility at Curtin University, where all molecular work
on the samples was conducted. First, bulk-bone samples were washed in Invitrogen
ultrapure distilled water to remove surface sediment from the samples. After drying
the samples at room temperature overnight, each bone was weighed and sub-
sampled to less than 100 mg to ensure that all bone fragments were represented
by approximately the same mass of bone material. Next, samples were each split
into two replicates of 50 bone fragments that were ground to a fine bone powder on
a Retsch PM200 planetary ball mill. After grinding, bone powder was extracted
using a modified version of the extraction protocol described by Dabney et al.51,
including extraction blanks for each batch of sample preparation (Supplementary
Table 9, Supplementary Fig. 17 and Supplementary Note 2). Briefly, 100–110 mg of
bone powder was digested overnight at 55 °C in 1 mL of 0.25 mg/mL Proteinase K
in 0.5 M EDTA. Next, samples were centrifuged to pellet undigested debris, and the
supernatant was concentrated to 50 µL in a MWCO 30-kDa Vivaspin 500 column
(Sigma-Aldrich). Lastly, the concentrate was purified using MinElute silica spin
columns (Qiagen) as per the manufacturer’s instructions, except for the use of a
modified binding buffer consisting of 40% isopropanol, 0.05% Tween 20, 90 mM
NaAc and 5M guanidine hydrochloride51.

Sediment samples were extracted using an approach similar to the bulk-bone
extraction protocol described above, but with a few modifications to optimise DNA
yield for sediment. First, 2 × 500 mg of sediment for each sample was incubated
overnight at 55 °C in a digestion buffer of 0.47M EDTA, 20 mM TRIS-HCL, 1%
Triton X-100 and 1 mg/mL Proteinkinase K. Next, samples were centrifuged, and
the supernatant was concentrated to 50 µL in a MWCO 30-kDa Vivaspin 500
column (Sigma-Aldrich). Lastly, subsamples were combined, and the concentrate
was cleaned using Qiagen MinElute columns as described above.

All unique sample materials described above (e.g., bulk-bone power, sediment
samples and DNA extracts) are available upon request.

Amplification and sequencing. Vertebrate mitochondrial DNA was amplified
from all bulk-bone extracts (Supplementary Table 3) and some sediment extracts
(Supplementary Table 9) using the Mam16S and 12SV5 assays (Supplementary
Table 2); plant chloroplast DNA was amplified from all sediment extracts using
rbcL and trnL-gh assays. All amplifications were carried out in duplicate using 2 µL
of DNA extract in a 25-µl reaction containing final concentrations of 2 mM MgCl2,
1× Gold PCR buffer, 0.25 mM dNTPs, 0.4 mg/ml bovine serum albumin, 0.6 µL of
0.12× SYBR green in DMSO, 1 U of AmpliTaq Gold DNA polymerase and 0.4 µM
forward and reverse primers. Each reaction was amplified with the primers
described in Supplementary Table 2, fused to Illumina sequencing adaptors and
tagged with a unique combination of 6–8-bp indexes on each primer. PCR cycling

conditions consisted of an initial denaturation step of 10 min at 95 °C, followed by
50 cycles of 30 s at 95 °C, 30 s at the annealing temperature (Supplementary
Table 2) and 72 °C for 45 s, followed by a final extension step of 72 °C for 10 min.
After amplification, duplicates were combined, and samples were pooled in equi-
molar concentrations and size-selected to 160–450 bp on a Pippin prep (Sage
Sciences). Lastly, libraries were cleaned using the Qiagen PCR purification kit
(Qiagen) following the manufacturer’s instructions and sequenced with custom-
sequencing primers on the Illumina MiSeq platform in single-end mode.

Sequence analysis. Sequence demultiplexing, filtering and denoising were carried
out using a custom-made pipeline based on OBItools52 (http://www.grenoble.prabi.
fr/trac/OBITools), first described in Seersholm et al.50. For the vertebrate assays,
demultiplexed and dereplicated fasta files were filtered with the obigrep command,
only retaining sequences over 80 bp, and represented by more than 10 reads per
sample. Each file was denoised with obiclean using a ratio of 0.2 and an error
distance of 2. Denoised sequences were further cleaned with sumaclust using a ratio
of 0.5 and a similarity of 95%, followed by a second step with a ratio of 0.01 and a
similarity of 93%. Chimeras were filtered out using uchime_denovo from vsearch53.
For taxonomic assignments, filtered unique reads (ASVs) were queried against the
NCBI nt database54 (ftp://ftp.ncbi.nlm.nih.gov/blast/db/nt*gz) downloaded on the
25th of August 2018, using megablast55. Blast files were parsed using the getLCA
blast scripts (https://github.com/frederikseersholm/blast_getLCA) described by
Seersholm et al.56,50, to automatically assign each read to the lowest common
ancestor of the best hit(s) to the database. Automatically assigned taxonomic nodes
were investigated and compared with the literature to account for relevant species
not present in the database (Supplementary Datas 1 and 2).

For the two plant assays, filtering and taxonomic assignments were carried out
as described above, with a few modifications to account for the different nature of
assays targeting the chloroplast genome of plants. Using the obigrep command,
sequences below 20 bp and represented by fewer than 5 reads per sample were
filtered out. Furthermore, we focused on ASVs common across multiple samples by
only retaining ASVs detected in three or more samples after filtering. Sequences
were queried against the reference database using blastn55, and to account for the
lower coverage of plant species in Genbank compared with vertebrates, and the
high similarity between many plant taxa, we limited the database search to genera
present in the contiguous 48 states today (https://plants.sc.egov.usda.gov/
adv_search.html). Lastly, we set the lowest possible taxonomic assignment level
to genus.

Statistical analyses. Alpha-diversity analyses were carried out on the datasets of
identified taxa (Supplementary Data 3 and 4), excluding contaminants and
redundant taxa (e.g., Onychomys sp. was excluded as Onychomys arenicola, and
Onychomys leucogaster was detected). NMDS analyses were carried out in R using
the Vegan package (https://cran.r-project.org/web/packages/vegan/index.html),
based on the same datasets as the alpha-diversity estimates. One sample (HCS3)
was excluded from the NMDS plot for plants as this sample only contained a single
species (Celtis). Ordination analyses using a taxonomy-independent approach
(Supplementary Fig. 7) were carried out as described above using the ASV tables
as input.

Habitat modelling. Climatic-realised niche limits were based on geographic ranges
for relevant species from the The IUCN Red List of Threatened Species (https://
www.iucnredlist.org) and precipitation and temperature data at a resolution of 10-
min longitude and latitude from WorldClim version 2 (https://biogeo.ucdavis.edu/
data/worldclim/v2.1/base/wc2.1_10m_bio.zip)57. Temperature and precipitation
data were extracted for the geographic ranges of the species L. californicus58, Lepus
townendii59, O. arenicola60, O. leucogaster61, Sigmodon fulviventer62, Sigmodon
hispidus63 and Sigmodon ochrognathus64 using the raster package in R. Next, mean
annual temperature and precipitation were calculated by averaging the monthly
values for each data point. For Supplementary Figs. 11–13, 2D kernel density
estimates of temperature/habitat were plotted for each species using the geom_-
density_2d command (MASS) in ggplots2. Temperature niche limits reported in
the paper, are the upper and lower limits of temperature data encompassing 95% of
the data.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Fastq files for all DNA sequencing data reported in this paper were deposited in the
European Nucleotide Archive under study accession number “PRJEB37627 [http://www.
ebi.ac.uk/ena/data/view/PRJEB37627]”.

The source data underlying Figs. 3c and 4c, and Supplementary Figs. 6, 9 and 17 are
provided as a Source Data file. All databases used in this study are publicly available
online: “NCBI nt database” [ftp://ftp.ncbi.nlm.nih.gov/blast/db/nt*gz], “UCSD Plants
database” [https://plants.sc.egov.usda.gov/adv_search.html], “The IUCN Red List of
Threatened Species” [https://www.iucnredlist.org] and “WorldClim version 2” [https://
biogeo.ucdavis.edu/data/worldclim/v2.1/base/wc2.1_10m_bio.zip].
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Code availability
The “getLCA” code used for taxonomic assignments in this study is available at https://
github.com/frederikseersholm/blast_getLCA.
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