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Abstract: Urban natural surfaces and non-surface human activities are key factors determining the 

urban heat island (UHI), but their relative importance remains highly controversial and may vary 

at different spatial scales and focal urban systems. However, systematic studies on the scale-

dependency system-specificity remain largely lacking. Here, we selected 32 major Chinese cities as 

cases and used Landsat 8 images to retrieve land surface temperature (LST) and quantify natural 

surface variables using point of interest (POI) data as a measure of the human activity variable and 

using multiple regression and relative weight analysis to study the contribution and relative 

importance of these factors to LST at a range of grain sizes (0.25–5 km) and spatial extents (20–60 

km). We revealed that the contributions and relative importance of natural surfaces and human 

activities are largely scale-dependent and system-specific. Natural surfaces, especially vegetation 

cover, are often the most important UHI determinants for a majority of scales, but the importance 

of non-surface human activities is increasingly pronounced at a coarser spatial scale with respect to 

both grain and spatial extent. The scaling relations of the UHI determinants and their relative 

importance were mostly linear-like at the city-collective level, but highly diverse across individual 

cities, so reducing non-surface heat emissions could be the most effective measure in particular 

cases, especially at relatively large spatial scales. This study advances the understanding of UHI 

formation mechanisms and highlights the complexity of the scale issue underpinning the UHI effect. 

Keywords: land surface temperature; urban heat island; natural surface; human activity; point of 

interest; multi-scale analysis; scaling 

 

1. Introduction 

According to the projection of the United Nations, urban residents will account for 70% of the 

world’s total population by the middle of this century [1]. Urbanization has profoundly transformed 

the Earth’s land surfaces and modified the composition, structure, and energy flow of the 

atmospheric system in the near-surface layer [2,3]. Among these remarkable urbanization-induced 

modifications is the urban heat island (UHI) effect, referred to as the phenomenon of urban 
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temperatures being higher than those in rural surroundings [4–8]. Studies on the UHI effect are 

gaining momentum across a wide range of research fields, with particular concerns given to its 

negative environmental and social impacts such as deteriorated air quality [9], excessive 

consumption of water and power [2], and impaired human health [10]. Therefore, there is an urgent 

need for us to take measures to help mitigate the UHI effect. Furthermore, a comprehensive, 

quantitative understanding of the determinants of UHIs would help to choose the most efficient 

mitigating measures. 

Typically, the UHI effect can be quantified based on the measurement of near-surface air 

temperature (referred to as atmospheric UHIs) or land surface temperature (referred to as surface 

UHIs) [11,12]. Facilitated by readily available remotely sensed data, recent studies have increasingly 

focused on land surface temperature (LST) as a direct indicator of the surface UHI effect to study how 

UHIs are shaped by an array of environmental and anthropogenic determinants [13–16]. It has been 

well documented that remotely sensed LST is strongly correlated with natural-surface biophysical 

variables that characterize vegetation and water cover, suggesting that urban vegetation and water 

bodies have a significant cooling effect [4,14,17,18]. A set of remotely sensed indicators of natural-

surface properties such as the normalized difference vegetation index (NDVI), the leaf area index 

(LAI), and the normalized difference water index (NDWI) has therefore been adopted in studies 

aimed at unraveling the driving factors of UHIs [19,20]. 

However, these natural-surface factors are not the only determinants of UHIs [6] because some 

human activities that do not modify the physical properties of land surfaces can also contribute to 

UHI formation. For example, two separate land units that accommodate substantially different 

resident densities, with all else being equal, would emit different amounts of heat (for the purpose of 

e.g., stabilizing indoor environments), thus resulting in differential local thermal environments. 

Indeed, a handful of empirical studies has suggested that population density and societal status (in 

terms of income and education level) have significant effects driving the formation of UHIs [7,10,21]. 

One barrier for us in the study of the human influence of LST is that the quick development of 

remote sensing technology allows us to extract high-resolution LST and natural-surface data, while 

the social sensing data are usually restricted by the administrative census. Fortunately, the rapid 

development of Internet technology and the increasing availability of open big data are substantially 

alleviating this difficulty. In recent years, the development of social sensing technology has produced 

a rich set of high-resolution data, allowing for the quantitative characterization of human activities 

in detail [22,23]. Many social sensing data (such as social media data, public transport data, and 

location-based service data) have been mined, giving rise to a range of interesting socioeconomic 

structures and dynamics that have been previously impossible to reveal [22,24]. One particular useful 

source is the Point of Interest (POI) data, which provides location-based geographic information and 

other detailed information for each geographic element on the map [25]. POI contains almost all types 

of human activities in the city, and are suggested to be able to well reflect the intensity of human 

activities and anthropogenic heat emissions [22,25,26]. While increasing attention is being paid to 

these non-surface factors, their strengths relative to the land-surface factors remain unclear.  

Assessing the relative importance of the surface vs. non-surface factors in shaping the UHI effect 

(hereafter referred to as the relative importance problem, RIP) is highly relevant to the mechanistic 

understanding of the UHI effect. It also has important implications for the decision making of urban 

climate mitigation [27,28]. For example, at specific conditions, if a UHI pattern is predominantly 

determined by the natural surface properties, the effectiveness of measures for cooling down the 

urban environment would largely rely on the design of the urban green system. However, the answer 

to the RIP remains elusive, as contrasting conclusions have been reached in previous studies. On one 

hand, it has been suggested that compared with human activities, the biophysical properties of land 

(especially natural) surfaces can largely determine the latent and sensible heat flux and generally 

contribute the most to LST pattern and intensity [2,3,29]. On the other hand, it has been stressed that 

non-surface human activities also play a key role in shaping UHIs through contributing an important, 

direct heat source, particularly in high-density neighborhoods at local spatial scales [5,6,8,30].  
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This active debate on the RIP of UHI determinants may be undermined by some important 

confounding factors that have not been explicitly addressed. First, it remains poorly understood if 

and to what extent the RIP answer is specific or universal to different urban systems. Regarding 

previous studies that have largely been based on single urban systems, a more comprehensive 

understanding would necessarily invoke systematic investigations that take into account multiple 

urban systems across a wide geographic range. Second, it remains unclear if and how the RIP answer 

is dependent on the observational scale. Previous work has shown that the spatial pattern of LST, as 

well as its driving factors, are sensitive to the spatial resolution of the remotely sensed data used 

[15,21,27,28,31], implying that the RIP solution is plausibly dependent on grain size (as a fundamental 

dimension of spatial scale). A complete understanding of the role of scale requires systematic scaling 

analyses that consider both the spatial extent and grain size.  

Therefore, in this study, to clearly answer these insufficiencies, we assessed the relative strengths 

of natural-surface vs. non-surface factors in shaping the LST patterns across 32 major Chinese cities. 

We focused on the natural surfaces (including vegetation and water) because they have been 

recognized as essential “ecological infrastructure” for mitigating the UHI effect. We used the 

Landsat-8 OLI remote sensing data and the POI social sensing data to characterize natural-surface 

properties and non-surface human activities, respectively. We then assessed their relative importance 

in explaining the observed LST patterns across a range of spatial scales in terms of grain size and 

spatial extent. We aimed to answer two specific questions: (1) Is the relative importance between 

natural-surface vs. non-surface factors dependent on observational scales? and (2) Is the relative 

importance specific to different urban systems? Finally, we hope that this study will provide 

implications for understanding the mechanism of UHI formation and UHI mitigation practices. 

2. Materials and Data Processing 

2.1. Study Areas and Data Pre-Processing 

For our study, we selected major Chinese cities with built-up areas >100 km2 in 2015. For this 

selection, as a first step, we extracted all built-up areas within China using the global land cover 

product at a spatial resolution of 300 m from the Climate Change Initiative of the European Space 

Agency (ESACCI-LC-L4-LCCS-Map-300m-P1Y-2015-v2.0.7) [32]. By filtering out those <100 km2, we 

yielded 70 candidate cities. The social sensing data were real-time data and we collected it in October 

2017, so we checked all available cloud-free Landsat-8 OLI images acquired during 2015–2017 to 

ensure the time-efficiency of the data. Eventually, 32 cities that had available cloud-free images 

during this time period were defined as our study areas (Figure 1, see Table A1, Appendix A for 

detailed information). All Landsat-8 images used in this study were geometrically registered. For 

each image, we conducted radiometric calibration and then atmospheric correction using the 

FLAASH tool with the ENVI 5.2 software. The resulting reflectance images were used for subsequent 

analyses. 
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Figure 1. The locations of the 32 studied Chinese cities. 

2.2. Land Surface Temperature Retrieval 

We used the radiative transfer equation (RTE) algorithm [33] for the Landsat-8 thermal infrared 

sensor (TIRS) to quantitatively retrieve the LST in all studied cities, considering that the accuracy of 

this algorithm has been repeatedly validated [8,17]. A brief description of the RTE algorithm is given 

below: 

𝐿𝜆 = [𝜀𝐵(𝑇S) + (1 − 𝜀)𝐿𝑑]τ + 𝐿𝑢, (1) 

where Lλ is the apparent radiance received by the sensor; 𝜀 is the surface emissivity; Ts is the land 

surface temperature; 𝐵(𝑇S) is blackbody spectral radiance; τ is atmospheric transmittance; 𝐿𝑢  is 

the upwelling path radiance; and 𝐿𝑑 is the downwelling path radiance. According to Plank’s Law, 

𝐵(𝑇S) can be calculated as:  

𝐵(𝑇S) = [𝐿𝜆 − 𝐿𝑢 − τ(1 − 𝜀)𝐿𝑑]/τ𝜀, (2) 

Then, the LST (𝑇S) can be calculated as: 

𝑇S = 𝐾2/ln⁡(𝐾1 𝐵(𝑇S)⁄ + 1), (3) 

The atmospheric parameters τ, 𝐿𝑢, and 𝐿𝑑 can be calculated with the Atmospheric Correction 

Parameter Calculator [34]. For Landsat-8 TIRS band 10, 𝐾1 = 774.89⁡ mWm−2s ∙ r−1μm−1 ; 𝐾2 =

1321.08⁡ 𝐾. 
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The retrieved LST maps can be found in Appendix A (Figure A2). 

2.3. Natural-Surface and Non-Surface Variables 

Prior to analyses, the areas were divided into grid cells at a particular size (see Section 3.2 below). 

Within each grid cell, we calculated the natural-surface and non-surface variables. Our natural-

surface variables included vegetation cover and water cover (seen in Figure A3, Appendix A) as they 

are the most commonly used variables in the studies of the surface UHI effect [4,14,19,35]. Within 

each grid cell, we calculated the mean of the normalized difference vegetation index (NDVI) for all 

vegetated pixels as an indicator of vegetation cover. For water cover, we calculated the percentage of 

water bodies within each grid cell.  

We used POI as an indicator of the intensity of human activities. POI is a point type geo-located 

data representing all urban facilities such as companies, shopping malls, schools, and parks. Unlike 

traditional remote sensing data where one building is one point, POI data can give more detailed 

information within the building such as the shops, restaurants, beauty shops, etc. close by. More POI 

density means more human activity intensity. POI data are real-time data and we collected the data 

in October 2017. The POI data were obtained from the AMap [36], which is one of the most widely 

used web mapping and navigation services in China. We derived the spatial data of POIs for each 

studied city using the application programming interface (API) provided by AMap (Figure A4, 

Appendix A). We then calculated the density of POIs within each grid cell. 

3. Methodology 

3.1. Statistical Analyses 

To assess the explanatory power of the natural-surface vs. non-surface variables, we constructed 

regression models with LST as the response variable and NDVI, water cover, and POI density as the 

explanatory variables (one grid cell represents one data point in the models). NDVI, water cover, and 

POI density were log-transformed to approach normal distributions before model fitting.  

As a first step, we constructed the most commonly used univariate ordinary least squares (OLS) 

models to assess the explanatory power (measured by R2) of each individual explanatory variable in 

explaining the observed LST patterns [28,37]. Then, we combined all three explanatory variables to 

fit multivariate OLS models to assess their collective explanatory power (measured by adjusted R2). 

We used the relative importance analysis (RWA) to partition the relative importance (measured by 

the proportional contribution of the variables decomposed from the total explanatory power) of the 

three explanatory variables [38]. In addition, to account for the potential spatial autocorrelation (SAC) 

problem in the OLS models, we used simultaneous autoregressive (SAR) models to test for the 

robustness of our results. We used the spatial error model (SARerr) recommended by Kissling and 

Carl [39], considering the uncertainty of the autocorrelation sources [40,41]. The explanatory power 

of the SAR models was decomposed into spatial signal versus non-spatial trends. We subsequently 

calculated the pseudo-R2 of the non-spatial component, and by checking the result of the SARerr model 

for explaining the LST pattern (Figure B15, Appendix B), we found that our OLS scaling relations 

were qualitatively robust to spatial autocorrelation. Considering that a comparison with other studies 

where the OLS model was mostly used as well as the method for the application of the RWA to SAR 

models are not available yet, we only used the results of the OLS model to answer our questions in 

this article. The statistical analyses were performed with R 3.3.4. The RWA was performed by using 

the RWA-Web software [42]. 

3.2. Scaling Analysis 

We conducted a straightforward scaling analysis by systematically varying both the spatial 

extent and grain size to quantify the individual explanatory power of NDVI, water cover, and POI 

density as well as their collective explanatory power at different spatial scales. In doing so, for each 

city, we restricted the study area within a squared region according to the urban areas, and then 

divided this squared region into grid cells; we changed the size of the squared region (i.e., 20 × 20 
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km2, 30 × 30 km2, 40 × 40 km2, 50 × 50 km2, and 60 × 60 km2) for the varying spatial extent, and changed 

the size of the within grid cells (i.e., 0.25 × 0.25 km2, 0.5 × 0.5 km2, 1 × 1 km2, 2 × 2 km2, and 5 × 5 km2) 

for varying grain size (see Figure A1, Appendix A for the schematic diagram of the scaling analysis). 

For the selection of the spatial grain size, 500 m and 1000 m are the most commonly used grain sizes 

for the study of the UHI effect and so we made the scaling ladder approximate a double geometric 

progression that could be divisible by the spatial extents. At each combination of spatial extent and 

grain size, we conducted all the statistical analyses (in Section 3.1) and the scaling relations were 

assessed by looking at how the explanatory power changed across the scale ranges. 

The materials used, data processing, and the procedures carried out are shown in the flowchart 

below (Figure 2). 

 

Figure 2. Flowchart showing the procedures for data acquisition and methodology. 

4. Results 

4.1. Scaling Relations at the City-Collective Level 

The natural-surface (NDVI and water cover) and non-surface (POI density) variables jointly 

explained a considerable proportion (ca. 50–90%) of LST variance for all studied cities (Figure 3), 

suggesting that they are indeed good predictors of the UHI patterns. Our scaling analysis clearly 

demonstrated that for the selected variables, both separately and collectively, their explanatory 

power was strongly dependent on the spatial scale with respect to both grain size and spatial extent. 

At the city-collective level (aggregating all studied cities), the adjusted R2 of the full model with all 

three variables included demonstrated an increasingly linear-like (close to monotonic) scaling 

relation as the grain size coarsened from 0.25 km to 5 km (Figure 3a), and a decreasingly linear-like 

scaling relation as the spatial extent was enlarged from 20 km to 60 km (Figure 3e). 
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Figure 3. The power (adjusted R2) of NDVI, water cover (WC), and POI density explaining the LST 

patterns across the grain size range from 0.25 km to 5 km (at each fixed spatial extent, a–d) and the 

spatial extent range from 20 to 60 km (at each fixed grain size, e–h). 

The results from the individual variables revealed that their strengths in shaping the UHI 

patterns were also strongly scale-dependent at the city-collective level (Figure 3). With changing 

grain size, the strengths of the NDVI and POI density (measured by the adjusted R2 of the univariate 

models) showed linear-like scaling relations (Figures 3b,d), which was similar to that of the total 

strength of all three variables (Figure 3a). However, their scaling relations with respect to spatial 

extent tended to exhibit hump-shaped patterns, which were clearly different to the total strength 

(Figure 3e). In contrast with the NDVI and POI, water cover had weaker strength, and its scaling 

relations with respect to both grain size and spatial extent seemed to have similar trends with (though 

more erratic than) those of the total strength (Figures 3c,g). 

Among the three individual variables, NDVI generally had the highest relative importance at all 

spatial scales (Figure 4a), suggesting that vegetation cover is a dominant determinant of UHI 

patterns. Water cover and POI density appeared to have comparable relative importance at the city-

collective level. We also observed a clear scale dependency of the relative importance of the variables. 

With increasing grain size, the relative importance of POI density gradually increased and exceeded 

that of water cover at coarse grain sizes of 2 km and 5 km. Moreover, we observed a strong scale 

dependence of the relative importance of the three variables. Generally, the relative importance of all 

three variables had linear-like scaling relations with respect to grain size (Figures 4a–c): the relative 

importance of NDVI and water cover declined while that of the POI density was elevated with 

coarsening grain sizes. With respect to spatial extent, in general, the relative importance of NDVI and 

POI presented a hump-shaped scaling relation, while water cover showed an inverse humped scaling 

relation. 
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Figure 4. The boxplot of the relative importance of NDVI, water cover (WC), and POI density for 

explaining the LST patterns across the grain size range from 0.25 km to 5 km (at each fixed spatial 

extent, a–c) and the spatial extent range from 20 to 60 km (at each fixed grain size, d–f). 

4.2. Scaling Relations and Variable Relative Importance at the Individual-City Level 

While the above-mentioned city-collective-level analysis clearly revealed the general scaling 

patterns, it remains unclear whether or not such ‘aggregated’ patterns have resulted from consistent 

scaling behavior across different studied cities. We then closely scrutinized each individual city. 

Comparted with the linear (monotonic) scaling relations that were mostly found at the city-collective 

level, we observed much more diverse scaling relations at the individual-city level. Specifically, we 

identified six types of scaling relations, referred to as (1) monotonically increasing, (2) monotonically 

decreasing, (3) humped, (4) inversely humped, (5) scale invariant, and (6) erratic (Figure 5). The 

monotonic increasing or decreasing scaling relations were often the most frequent types across the 

individually studied cities (Figures 5 and 6, detailed scaling relations for each city could be found 

from Figures B1–B14 in Appendix B), giving rise to the general scaling patterns at the collective-city 

level. However, very contrasting scaling relations can also frequently arise. For example, the strength 

of the NDVI had both monotonic increasing and humped scaling relations with respect to grain size 

at the spatial extent of 20 km (Figure 5b, green bars). Our results thus demonstrate that the strengths 

of the UHI determinants as well as their relative importance can vary from city to city, suggesting 

that the scaling relations are clearly system-specific. 
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Figure 5. The frequency (number of cities) distributions of six types of scaling relations with respect 

to grain size (at each fixed spatial extent, a–d) and spatial extent (at each fixed grain size, e–h) for the 

individual explanatory power of NDVI, water cover (WC), and POI density as well as their overall 

explanatory power. The number of cities (the frequency) that had a specific scaling relation type is 

annotated above the corresponding bar. 

 

Figure 6. The frequency (number of cities) distributions of six types of scaling relations with respect 

to grain size (at each fixed spatial extent, a–c) and spatial extent (at each fixed grain size, d–f) for the 

relative importance of NDVI, water cover (WC), and POI density. The number of cities (the frequency) 

that had a specific scaling relation type is annotated above the corresponding bar. 
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To further illustrate the system-specificity of the relative importance, we plotted the number of 

cities that were found to have NDVI, water cover, or POI density as the most important determinant 

at a given spatial scale (Figure 7, see Table B1, Appendix B for detailed information). The NDVI was 

consistently identified as the dominant determinant in ca. 20 cities (around 60%) across all 

observational scales; water cover was identified as the dominant determinant in up to 12 cities (i.e., 

~35% of the studied cities); and POI density as the dominant determinant in up to seven cities (i.e., 

~20% of the studied cities). An interesting pattern is that the dominance of POI density tended to be 

more pronounced at coarser grain sizes and larger spatial extents. In brief, the natural-surface 

variables were the most important UHI determinates, but the non-surface variable can occasionally 

dominate the UHI patterns, especially at larger spatial scales. 

 

Figure 7. The frequency (number of cities) distributions of NDVI, water cover (WC), or POI density 

as the dominant urban-heat-island determinant that had the highest relative importance at each 

combination of spatial extent and grain size. 

5. Discussion 

5.1. Scale Dependency and System Specificity of Urban Heat Island Determinants 

Our study demonstrates that the strengths of the UHI determinants as well as their relative 

importance are strongly dependent on the observational scale and are clearly system-specific. This is 

not very surprising in the sense that scale dependency and system specificity are generally expected 

to occur, and have been found in many geographic, ecological, and social patterns [30,31,43]. 

However, the remarkably high plasticity of the UHI determinants (to spatial scale and studied system) 

revealed by our analyses was indeed unexpected. For example, when comparing different spatial 

scales, we found up to a threefold difference in the assessed strength of particular determinants for 

the same city (see figures in Appendix B); and this difference can be even larger when comparing 

different cities. Such plasticity may easily lead to contrasting conclusions if the observation is based 

on a single scale and a single city, as in many previous studies [15,28,31].  
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A general scaling relation we found was that the selected natural-surface and non-surface 

variables, collectively, could better explain the observed LST patterns at smaller spatial extents, but 

coarser grain sizes. These detected scaling relations might be underpinned by the spatial 

heterogeneity of LST. With increasing spatial extent, the thermal environment would generally 

present higher spatial heterogeneity (caused by more heterogeneous topographic conditions, 

background climatic conditions, etc.) associated with more coexisting determinants and/or shaping 

mechanisms of UHIs [7,44,45]. When the grain size becomes finer, the local-scale variation of thermal 

conditions will become stronger as a result of increasing heterogeneity of micro-environment in terms 

of the spatial configuration of the buildings [10,46] three-dimensional (3D) vegetation structure 

[47,48], and other factors. These heterogeneities may not be well captured by our selected variables 

and/or single linear models, leading to declined explanatory power.  

For the individual variables, we found that the explanatory power of NDVI increased 

monotonically as the grain size became coarser. This finding is in line with some previous studies 

[11,49,50], but contradictory to others [26,44,51,52]. For instance, Weng, Lu, and Schubring [51] and 

Liu and Weng [52] suggested that the detected relationship between LST and NDVI was strongest at 

an intermediate grain size of 120 m in Indianapolis City, USA. While we cannot be certain whether 

this contradiction results from the different data sources and analysis methods used, it is very likely 

that it is attributed to system-specific scaling relations, because humped scaling relations of the NDVI 

were also found in some Chinese big cities in our study (Figure 5b). It has been documented that 

water bodies have a cooling effect [18,35,53], however, the scaling relations of water cover are not 

really clear. This multi-scale analysis revealed that 20 km is the threshold spatial extent for 

understanding the contribution of water cover to the LST pattern (Figure 3g), which further deepens 

the understanding of the contribution of water cover to LST and its cooling effect. Furthermore, we 

demonstrated that POI density can contribute to the formation of LST patterns and that its 

contribution increases with coarsening grain size. 

In addition, studies on the formation mechanisms of LST patterns have mostly focused on 

particular influencing factors, leaving their relative importance poorly understood thus far, especially 

at different scales [13,26,48]. Natural surfaces and human activities can largely explain the LST 

pattern that was also demonstrated in this study, while the relative importance between both of them 

is controversial, as we stated above (see also in the Introduction). Through this multi-scale analysis, 

we found that the relative importance of green vegetation to LST was the highest at all spatial scales 

for the city-collective level, and it was significantly higher than the water cover and human activity 

intensity. This finding provides new evidence that the natural surface contributes more to the LST 

pattern than human activity [3,29]. However, the relative importance of water cover and POI to the 

LST shows different results at different scales (Figure 3). In contrast to the trend of human activity on 

the LST, the relative importance of water cover decreased with increasing grain size, and the spatial 

extent of 20 km is a threshold because the relative importance of water cover decreased significantly 

when the spatial extent exceeded 20 km (Figure 3). These results challenge our past understanding 

that the contribution of water cover to the LST generally increases with spatial scale, while the 

contribution of human activities to the LST is usually greater on a smaller spatial scale [6,26,35,53].  

5.2. Implications 

Many previous studies have demonstrated that green vegetation has a significant cooling effect, 

and the cooling effect can vary depending on the type of green vegetation, spatial pattern 

(composition and configuration) of green vegetation [12,17,18,49], and local background climate [54]. 

Our findings revealed that vegetation cover generally has the largest strength in shaping the LST 

patterns at most of the studied scales and lends support to previous argument that the natural surface 

contributes more to the LST pattern than human activity, and highlight the importance of green 

vegetation (and nature-based solution) for city planning in the context of climate adaptation [12]. In 

contrast, some case studies have found that the cooling effect of the water body was better than the 

green vegetation due to the higher rate of the heat consuming process of transpiration [14,54]. Our 

results suggest that this is also possible, as for the single-city level, the results of many cities showed 
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that the water body was the dominant factor to explain the LST pattern, especially at finer spatial 

scales (Figure 6). This further indicated that the explanatory power and relative importance of the 

selected variables are largely scale-dependent and system-specific. Nevertheless, the results of the 

water body (Figures 2g and 3e) indicate that decision makers or planners can design water bodies on 

a smaller spatial grain and extent (20 km) to mitigate the UHI effect. 

The study also showed that as the grain size and spatial extent increases, human activities can 

contribute to the LST pattern more (Figure 3, 6). This result suggests that reducing anthropogenic 

heat emissions is an optional measurement for climate mitigation. In particular, the urban 

agglomeration has become the most salient feature of global urbanization in recent decades, hence 

regional thermal environment mitigation has increasingly become the focus of policy attention. In 

addition, the results of this study also showed that compared with the cooling effect of green space 

and water body, the relative importance of human activities to LST was not that significant, especially 

at finer spatial scales (Figure 3, 6). Therefore, according to these findings, the implication could be 

that compared with restricting human activities induced anthropogenic heat emissions, planning 

more green vegetation (and water bodies) is more efficient for climate adaption. 

Overall, this study demonstrates that natural surfaces and human activities can largely 

determine the LST pattern and that human activity has a positive effect on the increase in LST (SUHI). 

On the other hand, to mitigate the UHI effect, we suggest that green vegetation (or nature-based 

solutions) is the best way to cool cities and urban agglomerations. Moreover, from a larger 

perspective, we would like to mention again the classic problem of landscape ecology–scale effect, 

that is, the patterns and process relationships found in one system or one scale may not be applicable 

to another system or scale. This study once again makes us notice the role of scale effects in other 

disciplines. 

5.3. Limitations and Further Studies  

Some limitations need to be mentioned in this study. First, due to image resolution limitations, 

only five grain sizes from 0.25 km to 0.5 km were selected for this study. The city is a region with a 

very high degree of landscape heterogeneity, so a high resolution of grain size is needed to obtain 

more detailed information in follow up studies. At the same time, urban agglomeration has become 

the most salient feature of urbanization in recent decades, so larger spatial scale-based studies are 

also needed to provide valuable implications for climate adaption in urban agglomerations [8,16,55]. 

Second, previous studies have found that LST patterns vary between day and night and vary in 

different seasons and climate zones. This study only used daytime thermal images to undertake the 

study and did not take the background climate into account. Although the 32 selected Chinese cities 

had similar meteorological conditions (e.g., temperature and relative humidity) in the summer season, 

it would be better if we could take the background climate into consideration in future studies. 

Therefore, future research should also further analyze the daytime and nighttime differences and 

seasonal differences. Third, more detailed human activity data and the 3D structure of the city need 

to be further considered. With the rapid development of information technology, more and more 

human activity data have appeared, so we should try to use these more detailed and new data for 

further research. Furthermore, urban 3D morphology also has effects on the LST pattern, but this 

study did not consider the effects of urban 3D structure, which may underestimate the impact of 

human activities on land surface temperature, particularly on air temperature. 

In addition, although this study revealed the scale effect of the contribution and relative 

importance of natural surfaces and human activities to the LST pattern as well as suggest implications 

for climate adaption planning, the study still does not provide more valuable information such as 

how much green vegetation and water should be placed on a given spatial scale to most effectively 

reduce UHIs. Therefore, more research is needed to find the thresholds for the composition and 

configuration of green vegetation and water cover on a given spatial scale. 
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6. Conclusions 

Taking 32 selected Chinese cities as the sample, this study examined the scale (spatial extent and 

grain size) effects of the contribution and relative importance of natural surfaces and human activities 

to the UHI pattern. The study revealed that the contribution and relative importance of natural 

surfaces and human activities are highly dependent on the scale-dependent and system-specific 

strengths. Specifically, this study found the following. (1) The full model of natural surfaces and 

human activities had a higher contribution to LST at all spatial scales generally, and the explanatory 

power and relative importance of natural surfaces and human activities are scale-dependent and 

system-specific. (2) The green space is negatively correlated with the LST pattern and showed more 

dominance than water and human activity intensity at all spatial scales, which implies that green 

vegetation (or nature-based solutions) is the best way to cool cities and urban agglomerations. (3) The 

water cover is significantly negatively correlated with the LST and the relative importance of water 

cover decreases with increasing grain size, and the spatial extent of 20 km is a threshold. Contrary to 

the water body, human activities are significantly positively correlated with the LST and as the spatial 

extent and grain size increase, human activities can contribute to the LST pattern more. These results 

can guide planners to plan water bodies on a smaller spatial grain and extent (20 km) to mitigate the 

UHI effect. Additionally, when conducting climate adaptation planning on a larger spatial scale, we 

should pay attention to reducing anthropogenic heat emissions, especially at a regional (urban 

agglomeration) scale. The study expands the understanding of the LST formation mechanisms at a 

different spatial scale and different cities, and its methods and results provide useful insights into 

thermal environment research and practice. 
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Table A1. List of the cities and the path/row numbers and the time of the Landsat 8 images each city used. 
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Figure A1. An illustration of scaling analysis composed by changing spatial extent (a) and changing grain size 

(b).  

 

  

City Path/Row Time City Path/Row Time 

Anshan 119/31 2017.08.31 Panjin 120/31 2017.09.07 

Baoding 
123/33; 

124/33 

2017.07.10; 

2017.07.01 
Shanghai 

118/38; 

118/39 

2017.08.24; 

2017.08.24 

Beijing 123/32 2017.07.10 Shenyang 119/31 2017.08.31 

Changzhou 119/38 2017.05.27 Shijiazhuang 
124/33; 

124/34 

2016.08.31; 

2016.08.31 

Datong 125/32 2017.08.25 Suzhou 119/38 2017.05.27 

Fuxin 120/31 2017.09.07 Tangshan 
122/32; 

122/33 

2017.06.01; 

2017.06.01 

Harbin 118/28 2017.07.07 Tianjin 122/33 2015.06.12 

Handan 
124/34; 

124/35 

2016.08.31; 

2016.08.31 
Weifang 

121/34; 

121/35 

2017.07.12; 

2017.07.12 

Hefei 121/38 2016.07.25 Wuhan 123/39 2016.07.23 

Hohhot 126/32 2017.06.29 Xi'an 127/36 2016.06.17 

Jinan 
122/34; 

122/35 

2015.06.12; 

2015.06.12 
Xuzhou 

121/36; 

122/36 

2015.06.05; 

2015.07.30 

Linyi 121/36 2017.05.25 Yinchuan 129/33 2016.07.01 

Luoyang 125/36 2017.08.09 Changchun 
118/29; 

118/30 

2016.07.04; 

2016.07.04 

Nanchang 121/40 2017.09.14 Changsha 
123/40; 

123/41 

2016.07.23; 

2016.07.23 

Nanjing 120/38 2017.07.21 Zhengzhou 124/36 2015.09.14 

Nanning 125/44 2016.10.09 Zibo 
121/34; 

121/35 

2017.07.12; 

2017.07.12 
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Figure A2. Map of the land surface temperature (LST) data for the 32 Chinese cities 
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Figure A3. Map of the normalized difference vegetation index (NDVI) data and water cover (WC) data for the 32 

Chinese cities 
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Figure A4. Map of the point of interest (POI) data for the 32 Chinese cities 
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Appendix B: 

Figures of the scalograms of the explanatory power (adjusted R2) for each variable (NDVI, WC, POI) and their collective explanatory power of linear models at different grain size 

(Figure B1, B2, B3, B4) and different spatial extent (Figure B5, B6, B7, B8); Figures of scalograms of the relative importance for each variable (NDVI, WC, POI) at different grain size 

(Figure B9, B10, B11) and different spatial extent (Figure B12, B13, B14) 
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Figure B1: 

 

  



 

 3 

Figure B2: 
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Figure B3: 
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Figure B4: 
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Figure B5: 
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Figure B6: 
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Figure B7: 
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Figure B8: 
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Figure B9: 
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Figure B10: 
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Figure B11: 
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Figure B12: 
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Figure B13: 
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Figure B14: 

 

  



 

  

 

Table B1. Count of the cities for each factor that should the most importance for explaining the LST pattern under different scales 

 0.25km 0.5km 1km 2km 5km 

 NDVI WC POI NDVI WC POI NDVI WC POI NDVI WC POI NDVI WC POI 

20km 21 11 0 20 12 0 19 10 3 19 10 3 19 9 4 

30km 21 11 0 22 10 0 23 8 1 20 7 5 21 7 4 

40km 23 9 0 23 8 1 21 7 4 20 7 5 23 4 5 

50km 23 9 0 23 8 1 22 5 5 21 4 7 23 4 5 

60km 24 8 0 23 6 3 22 4 6 22 4 6 21 4 7 

 

  



 

 2 

Figure B15. The power (pseudo R2, the non-spatial component of simultaneous autoregressive) of NDVI, WC and POI density explaining the LST patterns across the grain size from 

0.25 km to 5 km (at each fixed spatial extent, upper panels) and the spatial extent range from 20 to 60 km (at each fixed grain size, lower panels). 
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