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Abstract. Given article presents a generalized equation for calculating the average coordina-

tion number from the density of a random sphere packing, supplemented by a dependence on 

the threshold value of the interparticle distance in two- and three-dimensional spaces. It is 

shown that the calculation of the average coordination numbers according to the proposed 

equation gives an unambiguous correspondence between the simulated, calculated and experi-

mental data for threshold values of more than 1.02 particle diameters. An explanation of the 

weak dependence of the average coordinate number on the packing density for small threshold 

values of the interparticle distance is given in this work. 

1. Introduction 

Random sphere packing has been a topic of considerable attention for many decades, mainly because 

of their role in understanding the nature of dispersed materials [1]. A number of physical parameters, 

such as packing density (porosity) and coordination number characterize the structure of sphere pack-

ing. The coordination number is one of the most important parameters used to describe the spatial 

structure of random sphere packing. This concept can be defined as the number of nearest particles in 

a close-packed system of particles located around a selected particle allowing us to estimate the degree 

of proximity of particles to each other. It is customary to distinguish several varieties of the coordina-

tion number. In the case of direct contact between particles, the coordination number is usually con-

sidered as the so-called “contact number” or “Newtonian number”. An additional account of nearby, 

but not contacting, particles belonging to the second coordination sphere allows us to speak of a “local 

coordination number”. So, for example, the local coordination number of the body-centered packing 

can be considered as 8+(6), that is, 8 particles belonging to the first and 6 particles to the second coor-

dination sphere, which gives a numerical value equal to: Z = 10.125 [2]. The averaged statistical calcu-

lation of the total number of neighboring particles near other packing particles is considered to be the 

“average coordination number”, and the allocation of a region with particles included in the selected 

particle is the “effective coordination number” of the spherical packing. In this paper, we restrict our-

selves to considering only such a concept as the average coordination number.  

The information on the average coordination number for various types of random sphere packings 

is rather well reflected in a number of earlier reviews [3, 4]. In addition, in the scientific literature 

there are many attempts to relate the coordination number to the packing density [2, 5-14]. Therefore, 

the authors of a number of presented works tried to find the relationship between the average coordi-

nation number and packing density, which was determined by selecting empirical dependencies taking 

into account the intervals of their changes (table 1). As a basis, they used the calculated data for regu-
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lar packings of monodisperse spheres, as well as experimental data for determining the parameters of 

random sphere packings.  

 

Таble 1. The calculated values of the coordination numbers obtained on the basis of the formulas for 

the dependence of the coordination number Z on the density of the 3-D sphere packing η. 

a
 The intervals for changing the parameters of sphere packings are not presented in the table. 

b
 Data on experimental values of random spherical packing are taken from [15]. 

 

An analysis of the formulas for the dependence of the coordination number Z on the packing densi-

ty η presented in Table 1 shows that most of them were obtained empirically. One can see a significant 

difference between the calculated values obtained from the proposed formulas and the geometric data 

for regular packings. There is also a large scatter of the obtained values for random packages. To be 

fair, it should be noted that their application for practical purposes has strict boundary conditions for 

the ranges of the considered package densities. The exception is the equations for the coordination 

number, theoretically determined by A N Kolmogorov in 1937, V G Bondarev et al. in 2015. As can 

be seen from the calculated data on the coordination numbers, the first equation can be relatively well 

applied for random packings, and the second equation, which allows one to uniquely determine the 

analytical dependence of the coordination number 𝑍𝑒on the packing density η for regular spherical 

packings, located both in two- and three-dimensional spaces 

 𝑍𝑒(𝑛) = 𝑛𝑚[(
2𝑛

𝜋
η(𝑛))2 − 1] + 2𝑛 , (1) 

where 𝑛 is the dimension of the space under consideration; 𝑛𝑚 is the largest dimension of the space 

(𝑛𝑚 = 6). It would also be useful to clarify the possibility of applying equation (1) not only for regu-

Author 
Sour

ce 
Formula 

Packing type 

Cubic 

simple 

 

Hexag

onal 

dense 

 

Volu-

me-

center

ed 

cubic 

Tetra-

gonal 

Cubic 

dense 

 

Loose 

 

Close 

 

Smith W et al. (1929)  [5] 26.49 – 10.73/η 6.0 8.74 10.71 11.12 12 8.9 9.72 

Kolmogorov A N 

(1937) 
[6] – 8 ln(1– η) 5.93 7.42 9.12 9.58 10.79 7.53 8.17 

Rumpf H (1958)  [7] 3.1/(1– η) 6.51 7.84 9.69 10.27 11.95 7.95 8.61 

Field (1963) [8] 12/(2– η) 8.13 8.6 9.09 9.22 9.53 8.63 8.82 

Meissner H et al. 

(1964)  
[9] 2exp(2.4η) 7.03 8.54 10.23 10.68 11.83 8.65 9.29 

Ridgway K and Tar-

buck K (1967) 
[10] η =

Z

8.38
–

𝑍2

232
– 0.07 6.54 7.96 9.71 10.25 12.1 8.07 8.71 

Nakagaki M and 

Sunada H (1968) 
[11] 1.61(1 –  η)−1.48 4.82 6.36 8.7 9.48 11.85 6.49 7.3 

Haughey D and Beve-

ridge G (1969)  
[12] 22.47– 39.39(1– η) 3.7 6.9 9.87 10.58 12.25 7.11 8.29 

Gotoh K (1978) [13] 20.7η– 4.35 6.49 8.17 9.73 10.1 10.98 8.28 8.9 

Timofeev V N et al. 

(2011) 
[14] 13.4η 7.02 8.1 9.11 9.35 9.92 8.17 8.58 

Bondarev V G et al. 

(2015) 
[2] 6(6η/π)2 6.0 8.0 10.13 10.67 12.0 8.14 8.96 

Coordination number, Z (geometrical and experimental 

data) 
6.0 8.0 8+(6) 10+(4) 12.0 7.5 8.9 

Packing density, η 0.524 0.605 0.68 0.698 0.74 0.58 0.64 
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lar, but also for random packings. For this reason, the purpose of the research presented in this article 

is to build a mathematical model of the coordination number when considering random sphere pack-

ings taking into account the packing density and dimension of the space under consideration. 

2. Problem definition  

The average coordination number of random sphere packing can be estimated by applying four differ-

ent methods [15]: 

– the threshold value method based on the choice of a certain radial distance L between the centers 

of neighboring particles, on which the “belonging” of a particle to the number of neighbors of the se-

lected particle is determined. It is customary to consider strictly defined discrete limits of distance L, 

which are fixed on values in the range 1.02 ÷ 1.1σ (σ is the particle diameter); 

– the method of deconvolution, which makes it possible to distinguish between particles that are in 

direct contact with each other and particles that are fairly close but do not have contacts with each oth-

er statistically; 

– a geometric method that uses information obtained from tomography or computer simulation to 

determine the distances between adjacent particles in a package rigorously, based on which the coor-

dination number is estimated. This method is also implemented by introducing a new concept – the 

coordination coefficient [16], which allows to determine the coordination numbers based on the con-

sideration of the relative positions of particles relative to the central (base) particle; 

– the analytical method used to calculate coordination numbers from known values of packing den-

sity (porosity) or interparticle distances by using some theoretical or empirical equation that deter-

mines the relationship of these parameters.  

Now, after we have decided upon methods used we move to the goal setting. Let’s consider a ran-

dom sphere packing located in some limited region of a space of dimension n. When conducting the 

study, we take equation (1) as a function of the dependence of the coordination number 𝑍𝑒 on the den-

sity of the sphere packing η obtained for the case of regular packing. We choose the threshold value 

method as the basic approach for conducting the study. In the case of 2-D packing, let\s conduct the 

computational experiment to obtain the characteristics of a random sphere packing. In addition, we 

include the experimental data on coordination numbers for the selected threshold values of the limiting 

“contact” distance between particles, and the corresponding packing densities obtained earlier by T. 

Aste et al. [15] for 3-D packages. Based on the information presented, the statement of the problem 

can be formulated as follows. Let the source data be pairs of values (𝑍𝑖 , 𝜂𝑖), 𝑖 = 1, 𝑚𝑗 (𝑚𝑗 is the num-

ber of measurements performed for the j-th threshold value of the interparticle distance), which are the 

results of measurements obtained by computer simulation for 2-D and experimental for 3-D packages. 

It is necessary to determine the equation for random spherical packing on the basis of the modelling 

data, which allows to estimate the coordination number from the values of packing density, depending 

on the value of threshold values, and taking into account the dimensionality of space.  

The main strategy for developing a mathematical model of the coordination number of random 

sphere packing will be to take into account the threshold values of interparticle distances when consid-

ering analytical equation (1) for packing in spaces of different dimensions. To obtain a generalized 

equation of the average coordination number, it is also necessary to find those laws that will allow 

transforming the constants obtained in the final equation into a form that takes into account the dimen-

sions of the spaces considered. 

3. Materials and methods 

To study the coordination numbers of random sphere packing, it was decided to use, in addition to 

mathematical and computer modeling, statistical analysis methods as well. Therefore, we will simulate 

2-D sphere packing by the method of layer-by-layer packing proposed in work [17] and based on a 

dynamic approach. Using this approach, a leading front of the installation of added particles moving in 

the chosen direction [18] is used to form the packing. We describe this approach in more detail. Let us 

consider some configuration of N installed particles with a certain frontal surface. Further, let’s take 
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some set g = (p1, p2,…, pm), which is a set of positions with coordinates (xi,yi), near this surface, in 

which the centers of new particles can be located. Finally, let us choose two adjacent positions, the 

distance between which is less than the particle diameter σ. It is required to find the position that will 

be occupied by the particle, in this case another position should subsequently be excluded from the 

further consideration. This problem is solved by applying the concept of the probability of installing a 

particle in a selected position. So, we assume that if the probability P of occupying separate position is 

0.5, then this gives equally possible variants of placing the particle in one of both positions. We will 

also assume that with probability P = 1.0, the position with the smallest vertical y-coordinate will be 

taken. 

Let’s consider the implementation of the growth algorithm developed on the basis of the layer-by-

layer packing method. Compared with the known advantages of the proposed method it can be listed 

as follows: 

1. The generated particle systems are presented in the form of random packings of particles having 

geometric anisotropy caused by unidirectional weak force. 

2. Particles in the installation area are placed without overlays. 

3. The installation area is limited by “transparent” walls, which allows the boundary particles to be 

partially located outside this area. 

The general algorithm of computer simulation in this case splits into three subtasks: 

1. The construction of the base (initial) layer in the strip is the task of determining the coordinates 

of the centers of the particles of the layer. 

2. Determination of the mechanism for installing particles is the task of choosing options for the lo-

cation of particles, depending on the value of the probability of their participation in the construction 

of the package. 

3. Analysis of the position of the boundary particles is the task of controlling the placement of par-

ticles near the boundaries of the installation area. 

The process of forming random packing can be described as a set of the following steps. At the first 

stage, within the lower boundary of the installation area, there is a base layer obtained from a close-

packed regular chain of particles having random displacements y in y-coordinate in the range: 0 ≤ y 

≤ 2 ( is the diameter of the particle). The size of the displacement is determined so that the dis-

tance between the particles does not exceed a value that would lead to overlap of the adjacent neigh-

boring particles. The array of particles of the base layer forms the lower boundary of the random pack-

ing (Figure 1). 

 
Figure 1. An example of the spatial structure of a random 2-D sphere package in the particle installa-

tion area (highlighted by a red line) size 16×16. 
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As soon as the base layer is formed, at the second stage the particles of the new layer are installed 

by performing a number of steps. 

Step 1. A particle with the smallest y-coordinate is selected and a set of particles is formed, includ-

ing the selected particle together with its neighbors. 

Step 2. Near this particle, the coordinates of the possible positions are determined, in which a new 

particle can be installed. Positions for installing new particles are determined by geometric calcula-

tions and based on the considered condition of random packing. The choice of a specific position of a 

new particle is made on a competitive basis, taking into account the probability of its possible installa-

tion in this position. 

Step 3. A check is made for the possibility of overlapping the new particle with other previously in-

stalled particles, and if there is such overlap, then the coordinates of the center of the new particle are 

recalculated, taking into account its contact with another particle, in order to remove the detected over-

lap. 

Step 4. If the generated particle does not go beyond the boundaries of the installation area, as well 

as if there are no intersections with previously placed particles, then the coordinates of its center are 

fixed, and the generated particle is “included” in the package structure. Its close neighbors are deter-

mined and the particle itself is also included in the composition of the neighbors of the particles sur-

rounding it. Exit particle position beyond the boundaries of the installation area gives the right to ex-

clude this particle from the system. However, when installing subsequent particles, such a particle can 

also take part as a boundary particle, even without taking it into account in the package structure. 

Step 5. Steps 1-4 are repeated many times until the next new particle is outside the upper boundary 

of the installation area. If the installed particle goes beyond the upper boundary of the installation area, 

the rules for stopping the process of forming random packaging are determined. 

To conduct computational experiments to determine the characteristics of random packing, using 

the considered algorithm, we used the PackLD software package [17], which was developed on the 

basis of the layer-by-layer packing method chosen by us. The use of an improved modification of the 

complex allowed us to carry out a number of computational experiments to determine the characteris-

tics of random packing. To this end, 60 different packings were generated in six different structural 

states. Packings were generated in the installation area of particles, size 50×50, which made it possi-

ble to study the volume of the aggregate of the order of 3000 or more particles, as well as to obtain 

stable values of structural characteristics. According to the results of computer calculations, the tables 

of the behavior of the integral packing density and the average coordination number were compiled 

depending on the probability values P of the choice of positions of the installed particles (see Appen-

dix). The output also created a visualization of the spatial structure of random packing. 

4. Results and discussion 

4.1. 2-D packing 

Let’s consider a random ball packing if it is placed in a two-dimensional space. Such packing can be 

considered as a close-packed system of hard particles. Equation (1) of the coordination number of 

sphere packing for a 2-D space can be represented as 

 𝑍𝑒(2) = 𝑛𝑚(
4

𝜋
η(2))2 − 2 . (2) 

However, this equation does not take into account the influence of threshold values of interparticle 

distances, therefore, to determine the dependence of the coordination number on the value of threshold 

values, a computer simulation of a random 2-D ball packing was performed. 

The results of computer experiments obtained using the PackLD software package [16] made it 

possible to determine the range of change in coordination numbers with a change in packing densities 

(table 2). So, for free packing (RLP) we have ηRLP = 0.815±0.001, and for bound packing (RCP): ηRCP 

= 0.832±0.002. 
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Таble 2. 2-D sphere packing densities and coordination numbers 

at various threshold values of the interparticle distance. 

Packing density, η 
Coordination number, Z 

L=1.02σ L=1.05σ L=1.10σ Theory 

0.815±0.001 4.07±0.01 4.17±0.02 4.34±0.02 4.46±0.01 

0.816±0.002 4.07±0.01 4.18±0.02 4.37±0.01 4.48±0.01 

0.817±0.003 4.08±0.01 4.19±0.02 4.38±0.03 4.49±0.04 

0.821±0.003 4.11±0.02 4.24±0.05 4.42±0.07 4.55±0.05 

0.823±0.002 4.12±0.02 4.27±0.02 4.51±0.05 4.59±0.04 

0.832±0.002 4.18±0.04 4.39±0.06 4.64±0.09 4.73±0.03 

 

A comparison of the results of computer experiments performed with the calculated data obtained 

in accordance with equation (2) shows that the computational experiment gives somewhat lower val-

ues of the coordination number. The reason for this situation is the ambiguous correspondence be-

tween the average coordination number and packing density, which occurs in the case of computer 

simulation. To eliminate this discrepancy, we took into account the threshold value, which will allow 

us to consider experimental and calculated data based on a single equation. For this purpose, equation 

(2) for the coordination number was supplemented by a dependence on the threshold distance L, which 

can be estimated by constructing the equation: 𝑍(2) = 𝑍𝑒(2) – Δ𝑍, where Δ𝑍 is a function that takes 

into account the influence of the threshold value of the distance L between particles. 

For further analysis, we establish the relationship between ΔZ and L. Based on the assumption of 

the linear nature of this function, we write 

 Δ𝑍 = 𝐴(2) (𝐿𝑚(2) – 𝐿) σ⁄  , (3) 

where A(2) is a constant; 𝐿𝑚(2) is the limit distance between particles at which an unambiguous cor-

respondence is established between the coordination number and the 2-D packing density. The calcu-

lation shows that the constant in formula (3) has a value: A(2) = 4, and the limiting distance between 

particles: 𝐿𝑚(2) = 1.131σ. It follows that, the general formula for determining the coordination num-

ber of two-dimensional packing will have the following form 

 Z(2) = 𝑛𝑚(
4

𝜋
η(2))2 − 2 − 𝐴(2) (𝐿𝑚(2) – 𝐿) 𝜎⁄  . (4) 

With the help of formula (4), it is possible to calculate the coordination number for any two-

dimensional sphere packing. Moreover, even despite the quadratic dependence on the packing density, 

the calculation results can be approximated by linear regression equations, due to the small range of 

variation in the packing density. Figure 2 presents the results of a theoretical study and computational 

experiments to assess the dependence of the coordination number on the packing density, taking into 

account the value of the threshold value L. 

The analysis of the results presented in Figure 2 allows us to note the sufficient accuracy of the cal-

culations, in which the correlation coefficient shows a strong direct relation of the studied parameters 

(r=0.998), which allows us to confirm the correctness of our assumption about the linear nature of the 

relation the coordination number and threshold value of L is bigger than 1.02 particle diameter. At the 

same time, at low threshold values, this dependence significantly decreases. This fact can be explained 

by the discrete nature of the inclusion of neighboring particles at such small distances in the “influ-

ence” region of the selected particle. Let us explain this fact by conducting a thought experiment. Sup-

pose we have a fragment of a square package consisting of four particles, the coordination numbers of 

which are the same and equal to two. Now we will slowly bring together two opposite particles of this 

fragment. 
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Figure 2. Dependence of the coordination number on the 2-D packing density 

 at various threshold interparticle distances. 

 

We note here that this process will in no way affect the coordination numbers of individual parti-

cles, although the packing density will increase during this process. Consequently, it can be argued 

that there is no relationship between the considered parameters in this example. However, if we 

choose large threshold values, then we can “notice” a change in the coordination number earlier and, 

therefore, we can already assert the emergence of a relationship between the coordination number and 

the packing density. 

4.2. 3-D packing 

For three-dimensional space, formula (1) for the coordination number of the ball packaging can be 

presented in the following form 

 𝑍𝑒(3) = 𝑛𝑚(
6

𝜋
η(3))2 . (5) 

Let us use the additional experimental data obtained by T. Aste et al. [15] for random sphere pack-

ing (table 3). Here, the known values of the average coordination number range from 5.5 to 8.9. Rela-

tive errors of data on the coordination number are not presented in the article under consideration. The 

data on the density of 3-D packings also have a range of changes ranging from 0.586 ± 0.005 for RLP 

packing to 0.640 ± 0.005 for RCP packing.  

Having constructed the regression equations, similarly to formula (3), for the three-dimensional 

case we obtain the numerical values of the constant: 𝐴(3) = 18 and the limiting distance between par-

ticles – 𝐿𝑚(3) = 1.109σ. These results allow us to present the general equation for 3-D packaging in 

the following form 

 Z(3) = 𝑛𝑚(
6

𝜋
η(3))2 − 𝐴(3)(𝐿𝑚(3) − 𝐿)/σ. (6) 

Figure 3 shows the dependence of the coordination number Z on the density of a random spherical 

packing η at various threshold values of the interparticle distance L for three-dimensional space. 



Applied Mathematics, Computational Science and Mechanics: Current Problems

IOP Conf. Series: Journal of Physics: Conf. Series 1479 (2020) 012097

IOP Publishing

doi:10.1088/1742-6596/1479/1/012097

8

Таble 3. Densities of 3-D sphere packing and coordination numbers at various threshold values of the 

interparticle distance. 

Packing 

density, η 

Coordination number, Z 

L=1.02σ 
Deconvolut

ion 
L=1.05σ L=1.1σ Theory 

0.586±0.005 5.5 5.81 6.7 7.5 7.62 

0.596±0.006 5.9 5.91 6.8 7.7 7.88 

0.619±0.005 6.4 6.77 7.5 8.4 8.41 

0.626±0.008 6.0 6.78 7.5 8.4 8.55 

0.630±0.010 6.3 6.95 7.6 8.6 8.69 

0.640±0.005 6.9 6.97 7.9 8.9 8.96 

An analysis of the function Z(η) shows that for almost all threshold values of L, its graph is close to 

its linear position, that is proved by the correlation coefficient r=0.998). Except for the data related to 

the threshold value: L = 1.02, where the experimental data on the coordination number have a larger 

scatter (correlation coefficient r = 0.768) and are significantly less than for the other threshold values. 

For this reason, it was also decided to include in the consideration the data obtained by the method of 

deconvolution, allowing to clarify the value of the coordination number at such a threshold value. 

It can be seen from the graph in Figure 3 that the deconvolution method also has a significant scat-

ter of data, indicating a weak dependence of the coordination number on the packing density at low 

threshold values of the interparticle distance. Overall, the linear nature of the dependence of the coor-

dination number on the threshold values is clearly visible when their value is more than 1.02 particle 

diameters, which are described with a certain accuracy for the practice by equation (6) for the coordi-

nation number of 3-D packing. 

 
Figure 3. Dependence of the coordination number on the 3-D packing density 

 at various threshold interparticle distance values. 

 

Comparison of equation (4) for 2-D packing and expression (6) for 3-D packing shows that they 

differ from each other only by constants depending on the dimension of the selected space and the 

largest distance for particles of the first coordination sphere, numerically equal to √2σ. To summarize 

these equations, we can choose the appropriate expressions to explain the value of these constants. So, 
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the constant A, taking into account the dimension of space, can be represented as follows: 

A(𝑛) = 2𝑛𝑛−1, and the maximum threshold value for 2-D packaging can be written on the basis of the 

maximum dimension of space: 𝐿𝑚(2)=√2σ (𝑛𝑚 − 2) (𝑛𝑚 − 1)⁄ . When considering the maximum 

threshold value for 3-D packaging, it is necessary to reduce its value by including an additional pa-

rameter: 𝐿𝑚(3)=𝐿𝑚(2) − 𝜎 (𝑛𝑚 − 1)2⁄ . In this case, the maximum threshold value of the n-

dimensional packing can be represented as 

 𝐿𝑚(𝑛) = σ(√2
𝑛𝑚 − 2

𝑛𝑚 − 1
−

𝑛 − 2

(𝑛𝑚 + 1)2
). (7) 

Now, having determined expression (7) for 𝐿𝑚(𝑛), the equation for the coordination number of the 

n-dimensional random sphere packing, taking into account formula (1), can finally be represented as 

follows 

 
Z(𝑛) = 𝑛𝑚[(

2𝑛

𝜋
η(𝑛))2 − 1] + 2𝑛 – 2𝑛𝑛−1[(√2

𝑛𝑚 − 2

𝑛𝑚 − 1
−

𝑛 − 2

(𝑛𝑚 + 1)2
) – 𝐿 𝜎⁄ ] . (8) 

The resulting generalized analytical equation (8) can then be used to calculate the average coordi-

nation number of random sphere packings based on the knowledge of packing densities at various val-

ues of the interparticle distance in two- and three-dimensional spaces.  

5. Conclusion 

Our studies made it possible to expand the constructed mathematical model for the coordination num-

ber of sphere packing, additionally including the interparticle distance into consideration. Here we 

have shown that the coordination number is a function that uniquely depends on the packing density, 

the dimension of the space under consideration, and the magnitude of the interparticle distance in the 

case if L > 1.02, and described by equation (8). The validity of this equation was confirmed by the re-

sults of computer modeling and known experimental data. 

We also explained the linear relationships between the coordination number and packing densities 

at various threshold interparticle distances. Additionally, we analyzed the experimental data on the 

coordination number. Also, it was confirmed by computer simulation that the coordination number in 

random packing is determined not only by changes in packing density, since the dimension of space 

and threshold values of interparticle distances also play an important role. We also verified the asser-

tion that the ratios of the coordination number and packing density at small values of the interparticle 

distance are weakly dependent on each other and, using the example of a mental experiment, we 

demonstrated the reasons responsible for the lack of the dependence between the given parameters. 

Appendix  

Table 4. Results of a computational experiment to evaluate packing densities η and coordination  

numbers Z for 2-D packs for various probabilities P of choosing the positions of mounted particles. 

 

P = 0.5 P = 0.6 

η L = 1.02σ L = 1.05σ L = 1.10σ 
Calcula-

tion 
η L = 1.02σ L = 1.05σ L = 1.10σ 

Calcula-

tion 

0.8137 4.0553 4.1521 4.3368 4.4402 0.8150 4.0542 4.1500 4.3333 4.4608 

0.8141 4.0700 4.1726 4.3121 4.4465 0.8167 4.0748 4.1951 4.3826 4.4878 

0.8149 4.0649 4.1475 4.3297 4.4592 0.8168 4.0814 4.1840 4.3796 4.4894 

0.8153 4.0682 4.1603 4.3491 4.4656 0.8156 4.0650 4.1650 4.3760 4.4703 

0.8161 4.0717 4.1614 4.3583 4.4783 0.8162 4.0746 4.1800 4.3620 4.4798 

0.8143 4.0700 4.1501 4.3500 4.4497 0.8172 4.0730 4.1790 4.3930 4.4957 

0.8147 4.0802 4.2004 4.3430 4.4561 0.8177 4.0701 4.1715 4.3955 4.5037 
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0.8149 4.0704 4.1703 4.3400 4.4592 0.8193 4.0923 4.2141 4.4079 4.5292 

0.8150 4.0610 4.1602 4.3270 4.4608 0.8134 4.0806 4.1730 4.3209 4.4355 

0.8170 4.0680 4.1840 4.3900 4.4926 0.8121 4.0591 4.1338 4.2848 4.4149 

Average 

0.8150 4.0679 4.1658 4.3436 4.4608 0.8163 4.0705 4.1755 4.3711 4.4806 

Standard deviation 

0.0010 0.0066 0.0164 0.0210 0.0153 0.0021 0.0096 0.0158 0.0211 0.0131 

P = 0.7 P = 0.8 

0.8169 4.0814 4.1916 4.3740 4.4910 0.8180 4.1003 4.2019 4.3775 4.5085 

0.8190 4.0828 4.2060 4.4178 4.5244 0.8202 4.0867 4.1875 4.3842 4.5435 

0.8171 4.0662 4.1668 4.3412 4.4941 0.8213 4.1392 4.3066 4.4996 4.5611 

0.8161 4.0717 4.1614 4.3583 4.4783 0.8216 4.1250 4.2218 4.3473 4.5659 

0.8176 4.0942 4.1947 4.3893 4.5021 0.8236 4.1014 4.2655 4.5031 4.5979 

0.8185 4.0805 4.1982 4.3990 4.5164 0.8232 4.0928 4.2686 4.4791 4.5915 

0.8141 4.0630 4.1638 4.3393 4.4465 0.8245 4.1182 4.2935 4.5300 4.6123 

0.8170 4.0608 4.1565 4.3604 4.4926 0.8228 4.1113 4.2537 4.4657 4.5851 

0.8120 4.0668 4.1424 4.2992 4.4130 0.8153 4.0657 4.1598 4.3385 4.4656 

0.8220 4.1057 4.2625 4.4954 4.5718 0.8170 4.0863 4.2014 4.3987 4.4926 

Average 

0.8174 4.0825 4.1884 4.3849 4.4989 0.8209 4.1105 4.2367 4.4223 4.5554 

Standard deviation 

0.0012 0.0092 0.0190 0.0254 0.0196 0.0021 0.0211 0.0489 0.0735 0.0328 

P = 0.9 P = 1.0 

0.8236 4.1177 4.2699 4.5224 4.5979 0.8294 4.1120 4.2994 4.5865 4.6911 

0.8194 4.0968 4.2523 4.4376 4.5308 0.8302 4.1308 4.3853 4.4678 4.7040 

0.8239 4.1391 4.3014 4.5219 4.6027 0.8309 4.1736 4.3460 4.6355 4.7154 

0.8248 4.1135 4.2751 4.5410 4.6171 0.8321 4.2126 4.4579 4.7173 4.7348 

0.8215 4.1189 4.2578 4.4915 4.5643 0.8325 4.1912 4.4783 4.7105 4.7412 

0.8222 4.1165 4.2511 4.4878 4.5755 0.8332 4.1837 4.3457 4.6935 4.7526 

0.8199 4.0936 4.2037 4.4175 4.5387 0.8341 4.2461 4.3974 4.6774 4.7672 

0.8253 4.1517 4.3240 4.5686 4.6251 0.8302 4.1300 4.3853 4.6775 4.7040 

0.8261 4.1162 4.2774 4.5610 4.6380 0.8357 4.3277 4.1930 4.4772 4.7932 

0.8216 4.1127 4.2359 4.4359 4.5659 0.8308 4.1326 4.3797 4.6695 4.7137 

Average 

0.8229 4.1168 4.2747 4.5057 4.5871 0.8319 4.1786 4.3871 4.6412 4.7295 

Standard deviation 

0.0024 0.0174 0.0203 0.0463 0.0384 0.0020 0.0459 0.0639 0.0917 0.0272 
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