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ABSTRACT

Recently, next-generation sequencing has been introduced as a promising, new platform for assessing the copy number of
transcripts, while the existing microarray technology is considered less reliable for absolute, quantitative expression measure-
ments. Nonetheless, so far, results from the two technologies have only been compared based on biological data, leading to the
conclusion that, although they are somewhat correlated, expression values differ significantly. Here, we use synthetic RNA
samples, resembling human microRNA samples, to find that microarray expression measures actually correlate better with sample
RNA content than expression measures obtained from sequencing data. In addition, microarrays appear highly sensitive and
perform equivalently to next-generation sequencing in terms of reproducibility and relative ratio quantification.
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INTRODUCTION

For the past decade, microarrays have grown in popularity
as the primary tool for gene expression analysis. Recently,
however, ‘‘digital gene expression’’ by next-generation se-
quencing has been introduced as a promising, new plat-
form for assessing the copy number of transcripts, thereby
providing a digital record of the numerical frequency of
a sequence in a sample.

So far, the general assumption that microarrays are
producing less reliable, absolute quantitative measurements
is based on comparison studies, assuming that sequencing
provides a better approximation of the actual transcript
content in a sample. Such studies compare microarray
data from biological samples to Illumina sequencing data
(Marioni et al. 2008; 9t Hoen et al. 2008) or to massively
parallel signature sequencing (MPSS) data (Coughlan et al.
2004; Chen et al. 2007; Liu et al. 2007). However, most
high-throughput sequencing methods rely on a polymerase
chain reaction (PCR) based sample amplification step, in
which bias may be introduced. This is the case for Roche’s

454 (GS FLX), Illumina’s Genome Analyzer (GA), and
ABI’s SOLiD technologies. Although ratios from micro-
array and sequencing data have been found to correlate
(Marioni et al. 2008; 9t Hoen et al. 2008), no previous study
has evaluated next-generation sequencing and microarray
technologies by directly comparing data from samples with
well-defined RNA content.

Here, we address the question of relative and absolute
RNA quantification using Exiqon’s LNA-based microarrays
and Illumina’s GA-II sequencing platform. Furthermore,
we assess the two platforms’ sensitivity and reproducibility.
For this purpose, we constructed two synthetic samples
from 744 synthetic RNA oligos reflecting the biological
variation of real microRNA samples, but without the noise
from unspecified RNA components. This approach enables
a direct comparison of obtained expression data from each
platform to the known RNA content.

RESULTS AND DISCUSSION

Artificial samples A and B

Two artificial samples (A and B) were constructed by
mixing different amounts of the 16 synthetic RNA pools
(comprising a total of 744 RNA oligos), as listed in Table 1.

Reprint requests to: Hanni Willenbrock, Exiqon, Bygstubben 3-16, DK-
2950 Vedbæk, Denmark; e-mail: haw@exiqon.com; fax: 45-45-661888.
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A comparison of these two samples gives us 11 different
expected log2 ratios in the �4 to 4 range, and measure-
ments at 14 different concentrations spanning four orders
of magnitude. By using such ‘‘constructed’’ samples in the
analysis instead of biological samples, the measurements
from each platform may be compared to the ‘‘actual’’ RNA
concentrations/content based on optical density and chem-
ical high-performance liquid chromatograph (HPLC) anal-
ysis of individual synthetic RNAs.

By using pools, in which the most similar sequences were
distributed in separate pools, any cross-hybridization on
the array platform will affect the result more severely than
if similar sequences were grouped together in the same
pool. For example, if a probe targeting an RNA present at
1 amol/mL concentration cross-hybridizes to an RNA pres-
ent at 1000 amol/mL concentration, it will affect the expres-
sion value more than if it just cross-hybridized to an RNA
present at the same concentration. Thus, by using similarity
separated RNA pools rather than similarity pooled RNAs the
experiment is designed to maximally challenge the perfor-
mance of the microarrays or any other expression technique
with potential ‘‘cross-hybridization’’ issues.

Absolute and relative quantification

Good absolute gene expression measurements are required
for studies comparing the expression of different genes, for
example when identifying which microRNAs are highly
expressed. Here, we found that microarray data correlated
well with the known RNA concentration (r = 0.69) (Fig. 1A),
while sequencing data were significantly less correlated (r =
0.50; Fisher’s z test for difference in correlation coefficients:
P-value < 2.74e�08) (Fig. 1B).

Figure 1, A and B, illustrates the estimated 95% confi-
dence intervals for expression measures at each of the 14
concentrations. Here, it appears that expression measures
from sequencing vary more within each concentration.
Consequently, microarray data may provide a more con-
fident measure of absolute gene expression for predicting if
one miRNA is truly expressed at a higher rate than another.
In fact, we estimated that for microarrays, on average, a
72 amol/mL difference in concentration is needed for a sta-
tistically significant difference (P-value < 0.05) in absolute
expression values between pools of synthetic RNAs, while
for sequencing a minimum of 125 amol/mL concentration
difference is necessary.

While we do not suggest that microarrays are indeed
quantitative, it is surprising that we find them to be more
correlated with RNA content than expression sequenc-
ing, a platform commonly believed to be more quantita-
tive than microarrays. However, next-generation sequenc-
ing is still in its infancy, while microarray probes have
been Tm (melting temperature) normalized and perfected
over several array generations, thus increasingly limiting
the noise contribution from variations in hybridization
efficiency.

Also worth noticing is that, even though sequencing
counts spanned three orders of magnitude wider than
microarray expression intensities (z1–670,000 counts for
sequencing versus z100–65,000 intensity for arrays), the
95% confidence intervals of counts lie within the same
dynamic range (three orders of magnitude).

Interestingly, only intermediate correlations were found
between absolute expression measurements from the two
platforms—microarray intensities versus sequencing counts
(r = 0.47) (Supplemental Fig. 1). On the other hand, for
relative quantification (ratios between sample A and B ex-
pression measures), data from the two platforms were highly
correlated (r = 0.93) (Fig. 1C), and both correlated extremely
well with the expected ratios (r = 0.96) (Supplemental Fig. 2).
Ratios from sequencing were close to the expected (slope
z0.97), while ratios were slightly underestimated for micro-
arrays (slope z0.8), which is a commonly observed phenom-
enon for microarray fold changes (Wurmbach et al. 2003).
This does not necessarily mean that expression sequencing is
more likely to find significant differential expression than
microarrays, since this depends on a system’s overall signal-to-
noise ratio, that is, lower variance between repeated measure-
ments would compensate for reduced ratios. Although we
observed a slightly lower variance between replicates (synthetic
RNAs with the same concentration in samples A and B) in the
microarray data, this may be due to differences in the
technicians’ experience with the platforms.

Reproducibility and sensitivity

To further assess data quality, we examined reproducibility
and sensitivity in terms of detected/undetected synthetic

TABLE 1. Overview of composition of artificial samples A and B

Pool

Sample A
concentration

(amol/mL)

Sample B
concentration

(amol/mL) Ratio
log2

ratio

RNA
oligos
in pool

1 376.47 23.53 16 4 47
2 355.56 44.44 8 3 46
3 320.00 80.00 4 2 48
4 266.67 133.33 2 1 47
5 266.67 133.33 2 1 47
6 234.31 165.69 1.414 0.5 45
7 1.00 1.00 1 0 47
8 10.00 10.00 1 0 45
9 100.00 100.00 1 0 47
10 1000.00 1000.00 1 0 46
11 165.69 234.31 0.707 �0.5 47
12 133.33 266.67 0.5 �1 45
13 133.33 266.67 0.5 �1 47
14 80.00 320.00 0.25 �2 47
15 44.44 355.56 0.125 �3 47
16 23.53 376.47 0.0625 �4 46
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RNAs. The results are summarized in Table 2 and Figure

1D. Generally, data from both platforms were highly

reproducible (r � 1) (Table 2), while microarrays were

more sensitive than sequencing, especially at the lowest

concentration.
For sequencing data, the low sensitivity was found when

accepting miRNAs with one sequencing count as detected.

However, numerous unmapped sequences were also iden-

tified, many with counts considerably higher than 1. In fact,

16% of all reads (sample A) did not match perfectly to any

of the synthetic RNAs. Also, we found >130,000 different

read sequences among reads from each of samples A and B,

although only 744 different synthetic RNA oligo sequences

were present originally in each sample. This is in line with

the previously reported sequence read variation issue on

the Illumina sequencing platform (Dohm et al. 2008).

Sequencing data ‘‘sequence variation’’

A majority of read variants (z88% of unique sequences)
could be aligned to the synthetic reference sequences by
allowing a maximum of three sequence errors/mismatches.
These included 10% length variants (sample A) that aligned
perfectly to the synthetic reference sequence either in its
full read length or the full synthetic sequence’s length. Of
these, approximately half were shorter length variants that
may be somewhat explained by truncated RNA impurities
in the synthetic sample. The average read count of variant
reads was 9, with maximum counts of 17,396 and 8,817 in
samples A and B, respectively. Figure 2 illustrates the vari-
ations in read lengths for all length variants. The remaining
12% and 11% read variants (samples A and B, respectively)
did not resemble any of the synthetic RNAs, thus posing
a challenge for correct discovery by de novo sequencing.

FIGURE 1. Comparison of microarray and sequencing data. (A,B) Ninety-five percent confidence intervals for sample A intensities versus RNA
concentrations. (C) Illumina sequencing ratios versus microarray ratios. (D) Bar plot of the undetected fraction (false discovery rate) of synthetic
RNAs at each concentration. The lower the bar, the better sensitivity.
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Sequencing ‘‘errors’’ for synthetic RNA reads were
compared with the single-nucleotide variations known to
exist within miRNA families, such as the well-characterized
let-7 family. Here, sequence read variations found in
Illumina GA-II sequencing data were much higher than
variations found within the miRNA family (Fig. 3). On mi-
croarrays, families of close homologous miRNAs can lead
to cross-hybridization when sequence variations are found
in the sequence extremities. Likewise, digital gene expres-
sion by sequencing apparently has a ‘‘cross-sequencing’’
specificity issue, making it hard to distinguish expression of
closely related RNAs.

The observed gross sequence variation and the identified
longer variants may reflect the amount of errors introduced
during sample preparation (PCR) or sequencing. Ideally,

pre-processing such as sequence correction by evaluating
read quality scores in conjunction with genome mapping
would improve the results obtained from sequencing. We
tested pre-processing with Bowtie (Langmead et al. 2009),
a sequence read genome alignment program with a quality-
aware backtracking algorithm that permits mismatches.
However, although various settings were tested, this type of
pre-processing not only resulted in decreased sensitivity,
but also reduced absolute and relative quantification cor-
relations slightly (data not shown). This may be due to the
particular sequence properties of miRNAs, for which single-
nucleotide differences often exist between miRNA family
members. As discussed above, this within miRNA family
sequence variation was much lower than the observed read
sequence variation.

Also, sequence neighborhood-based correction methods
developed for SAGE libraries (Akmaev and Wang 2004;
Beissbarth et al. 2004) may be adapted to correct sequence
bias in next-generation sequencing data. However, although
these algorithms may succeed somewhat in correcting
sequencing bias, they are also susceptible to over-correction
of low abundant miRNA sequences that are similar to high
abundant reads with reduced sensitivity as a consequence.

We acknowledge that the Illumina GAII sequencer is
a very sensitive instrument, and that the protocol for
library preparation may have a crucial impact on the
results. Thus, improved sample preparation protocols for
small RNA sequencing libraries, such as the one (v.1.5)
recently developed by Illumina (fewer gel purification steps
and fewer PCR cycles), are more likely to limit sequencing
bias than the application of sophisticated bias correction
algorithms. However, this remains to be experimentally
verified. Although the original sample preparation protocol
was applied in this study, one of the critical gel elution steps
was skipped since the synthetic RNA library did not require

TABLE 2. Comparison of Exiqon microarrays and Illumina digital
gene expression for synthetic miRNA expression analysis

Comparison Exiqon Illumina
Illumina
multiplex

Reproducibility
(correlation, r)

r = 0.997 r = 0.991a r = 0.87

Absolute
quantification

r = 0.69 r = 0.50 r = 0.41

Relative
quantification

r = 0.95 r = 0.96 r = 0.70

Sensitivity at
1 amol/mLb

94% 70% 52%

% undetected RNAs
(false negatives)c

0.97% 3.1% 12%

aOnly RNAs in pools 7–10 are considered since they have the same
concentration in samples A and B.
bPercent of RNAs detected in pool 7.
eTotal percent of undetected RNAs (count = 0 for sequencing or
intensity below background for arrays).

FIGURE 2. Histogram of read variants’ lengths in Illumina sequencing data. The black bar shows the number of exact sequence read matches for
all synthetic RNAs, while the gray bars show the number of length variants that are perfect matches but shorter or longer than the synthetic RNA
it resembles the most. ‘‘Relative length’’ is the read length relative to the length of the synthetic RNA it resembles the most.
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any size fractioning, thus limiting the sources of experi-
mental bias in this study.

Multiplexed high-throughput expression sequencing
affects data quality

To increase throughput for expression sequencing, samples
may be run in a multiplexed experimental setup. The
multiplexed approach resulted in decreased sensitivity
due to reduced sequencing depth and, overall, a signifi-
cantly lower data quality in terms of reproducibility,
absolute quantification, and even relative quantification
(Table 2). For example, the correlation for ratio data
(relative expression quantification) dropped to an average
of 0.70 (compared to 0.96 for single-sample sequencing
protocol), and only 52% of the RNAs were detected at the
lowest concentration compared to 70% for single-sample
sequencing (see the details in Supplemental Note 1). The
somehow poorer results obtained with the multiplexed
setup are most probably due to the bar-coding step, where
individual barcodes may have differential ligation and
amplification efficiencies, which will skew the results.

Supporting results

Supporting the results presented here for Exiqon’s micro-
arrays, we obtained similar absolute quantitative correla-

tions from Agilent’s microarrays for
the subset of synthetic microRNAs
targeted by this array platform (Sup-
plemental Note 2). The observed lower
sensitivity (78% of covered micro-
RNAs) of Agilent’s microarrays (Sup-
plemental Note 2), however, indicates
that sensitivity is a product-specific
parameter and independent of the cho-
sen technology.

Concluding remarks

Previous evaluations of expression anal-
ysis platforms all rely on measurements
from biological samples compared with
data obtained by another expression
measurement technology (Coughlan
et al. 2004; Chen et al. 2007; Liu et al.
2007; Arikawa et al. 2008; Marioni et al.
2008; 9t Hoen et al. 2008). In contrast to
this, our experimental approach, using
synthetic RNAs with known sequences
and concentrations, produces a well-
characterized input as the basis for
estimates of each platform’s perfor-
mance (summarized in Table 2).

In conclusion, for quantification of
small RNAs such as microRNAs, microarray expression
analysis appears as a both highly specific and very sensitive
technology that still surpasses next-generation sequencing
with respect to absolute RNA expression quantification.
Nonetheless, sequencing offers other advantages, such as
enabling discovery of new sequence variants, although our
study indicates that thorough filtering is important in
order to avoid over-interpretation of potential sequencing
errors. Both technologies deliver highly reproducible ex-
pression data and perform well in relative gene expression
studies.

MATERIALS AND METHODS

Synthetic RNA

All synthetic RNAs used in this study were 59 phosphorylated
RNA molecules (IDT) that were between 18 and 28 nucleotides
(nt) long and HPLC purified. Concentration was determined by
OD260, and all oligos where validated by mass spectrometry (ESI)
and capillary electrophoresis. The purity was >90% on average
and >84% for 90% of the synthetic RNAs. Due to the applied
RNA synthesis and purification technique, impurities may only be
attributed to truncated—shorter—RNA oligos with incomplete
RNA synthesis. That is, once a synthesis coupling fails, the oligo is
not extended further and results in a shorter variant of the
expected oligo sequence.

FIGURE 3. Histogram of the alignment distances (sum of mismatches and gaps in
alignments) between the human let-7 family sequences (black) according to the miRBase
sequences and unique variant reads aligning to the let-7 family members (gray) as its best
match. In comparison, many variant read sequences have much higher alignment distances to
their closest matching synthetic RNA sequence than alignment distances observed within the
let-7 miRNA family.
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Synthetic miRNA pools

We constructed a library of 744 synthetic RNA sequences,
corresponding to 708 human mature microRNAs (miRNAs) from
miRBase (http://microrna.sanger.ac.uk/) version 10.0 as well as 36
in-house miRNA sequences. The additional 36 in-house miRNAs
comprise a subset of RNAs with particularly similar sequences.
RNAs were divided into 16 different pools of z47 oligos each.
Similar sequences where placed in separate pools according to
a divisive clustering scheme (see the details in the Supplemental
Methods). In this way, miRNA sequences within a pool are less
likely to cross-hybridize to the same probes and also less likely to
hybridize to each other in solution.

Illumina Genome Analyzer data

Pre-processed Illumina sequencing data were obtained from service
provider Fasteris in Switzerland (http://www.fasteris.com/). Here,
samples were prepared using Illumina’s small RNA sample prep-
aration protocol, although the first gel purification step for
purification of small RNAs was skipped for the synthetic RNAs.
Samples were then sequenced in separate lanes on an Illumina GA-
II instrument. Reads were trimmed for adapter sequences using
standard settings in Illumina’s GAPipeline1.0. In brief, the data
were screened for the sequence of the 59 adapter using the last 10
bases of this adapter. Then, all reads were processed for the 39

adapter location and removal. The adapter sequences were trimmed
in three steps:

1. The 21-nt adapter sequence was used to identify ‘‘inserts’’ of 15
nt or less.

2. If no adapter sequence was found, in successive steps, the last
base of the adapter was removed and the sequence was
searched at the end of the reads. The minimum adapter size
of six bases permits identifying inserts of up to 30 bases.

3. Finally, the remaining reads were searched for nonexact
matches of the adapter. The first four bases of the adapter
were searched within the full read sequences, and at least
75% of the following bases must be identical to the adapter
sequence (maximum = 31 nt). One PhiX lane was used as the
reference channel for the calculation of the phasing and pre-
phasing (note: This lane is used for the validation of the quality
of the run by an Eland mapping). Then the sequences were
passed through the chastity filter of value ‘‘>0.6.’’

Pre-processed Illumina data were matched to the known synthetic
RNA sequences. Only perfect matches were counted in the main
analysis. Sensitivity was estimated as the fraction of synthetic
RNAs detected at each concentration (minimum count = 1). For
correlation calculations, one pseudocount was added to all counts
to avoid having to take the log of zero.

For analysis of read variations on the Illumina platform, read
sizes at least 5 nt were aligned to the synthetic RNA sequences
using Vmatch (http://www.vmatch.de). If multiple alignments
were found for a read, only the closest match was kept.

Additional pre-processing by genome matching was assessed
with Bowtie (Langmead et al. 2009) using NCBI v36 of the human
genome and default parameters except for including Illumina’s
quality scores and guaranteeing best possible alignments. Addi-
tional changes to parameters were tested to improve genome

mapping such as reducing seed length, limiting number of allowed
mismatches, and limiting low quality reads.

Exiqon microarrays

Microarray experiments were conducted as single-channel Hy3
experiments in duplicates on Exiqon’s miRCURY LNA microRNA
Array, v.10.0. The RNA labeling was done according to the Exiqon
protocol: miRCURY LNA microRNA Array Power Labeling kit
without the use of synthetic spike controls. Hybridization of
labeled RNA to the array was performed on a Tecan HS Pro 4800
hybridization station.

Slides were scanned using Agilent DNA microarray scanner
model G2565BA and image analysis was conducted in Feature
Extraction 9.5.3. The median of the spot median signals was used
as the raw expression value. Only probes with a single synthetic
RNA target were considered. If a synthetic RNA target had
multiple probes targeting it, the median of the signals was used.

The background signal was estimated as the median intensity
from extended spike-in control spots, since spike-ins were not
included in the hybridization mixture. Sensitivity was estimated as
the fraction of synthetic RNAs with signal above the background
level.

Raw data

The microarray data and the Illumina expression sequencing data
have been submitted to the Gene Expression Omnibus (GEO)
database under the series accession number GSE14511. Here, the
concentration for each individual synthetic RNA is also listed for
the expression data in samples A and B.

Data analysis

Absolute and relative quantification were estimated as Pearson
correlation coefficients between logged expression values and
logged RNA concentrations (absolute quantification) or logged
expression ratios and logged RNA concentration ratios. A Fisher’s
z test was used to compare two correlation coefficients.

For microarrays, the reproducibility score is the Pearson
correlation between logged expression values for replicate sam-
ples. For sequencing data, the reproducibility score is the Pearson
correlations between logged counts for RNAs in pools 7–10, for
which the concentrations are identical in samples A and B.

Ratio reproducibility scores are the mean of the Pearson
correlations for all combinations of sample A versus sample B
ratios (microarrays only).

Ninety-five percent confidence intervals of expression measure-
ments for individual pools were estimated as 61.58 IQR/sqrt(n)
(n, number of observations; IQR, the interquartile range), which
is roughly a 95% confidence interval for the difference in two
medians (McGill et al. 1978).

The difference in RNA concentration necessary to detect
a significant difference between the expression levels (median
expression) of two miRNAs was estimated by using the in-
formation from the pool-to-pool expression variation. Thus, we
computed log P-values (two-sided Wilcoxon rank sum tests) for
each pool-to-pool combination (e.g., comparison of expression
values from pool 1 miRNAs with pool 2 miRNAs). We then
fitted a regression line to the concentration difference versus log
P-values, obtained by comparing expression measurements for

Comparing array and deep-sequencing expression data

www.rnajournal.org 2033

 Cold Spring Harbor Laboratory Press on October 27, 2009 - Published by rnajournal.cshlp.orgDownloaded from 

http://rnajournal.cshlp.org/
http://www.cshlpress.com


each pool with all other pools. From this regression line, we esti-
mated the concentration difference necessary to produce a signif-
icant P-value of 0.05.

SUPPLEMENTAL MATERIAL

Supplemental material can be found at http://www.rnajournal.org.

ACKNOWLEDGMENTS

We thank Christina Wolsted, Søs M. Ludvigsen, Gitte Friis, and
Tina S. Bisgaard for technical assistance, and Carsten Alsbo for
feedback on the manuscript. We also thank Dr. Laurent Farinelli
at Fasteris for help with evaluating the bar-code data and for the
small RNA sample preparation protocols.

Received April 22, 2009; accepted August 18, 2009.

REFERENCES

Akmaev VR, Wang CJ. 2004. Correction of sequence-based artifacts in
serial analysis of gene expression. Bioinformatics 20: 1254–1263.

Arikawa E, Sun Y, Wang J, Zhou Q, Ning B, Dial SL, Guo L, Yang J.
2008. Cross-platform comparison of SYBR� Green real-time PCR with
TaqMan PCR, microarrays and other gene expression measurement
technologies evaluated in the MicroArray Quality Control (MAQC)
study. BMC Genomics 9: 328. doi: 10.1186/1471-2164-9-328.

Beissbarth T, Hyde L, Smyth GK, Job C, Boon WM, Tan SS, Scott HS,
Speed TP. 2004. Statistical modeling of sequencing errors in SAGE
libraries. Bioinformatics (Suppl 1) 20: i31–i39.

Chen J, Agrawal V, Rattray M, West MA, St Clair DA,
Michelmore RW, Coughlan SJ, Meyers BC. 2007. A comparison
of microarray and MPSS technology platforms for expression
analysis of Arabidopsis. BMC Genomics 8: 414. doi: 10.1186/1471-
2164-8-414.

Coughlan SJ, Agrawal V, Meyers B. 2004. A comparison of global gene
expression measurement technologies in Arabidopsis thaliana.
Comp Funct Genomics 5: 245–252.

Dohm JC, Lottaz C, Borodina T, Himmelbauer H. 2008. Substantial
biases in ultra-short read data sets from high-throughput DNA
sequencing. Nucleic Acids Res 36: e105. doi: 10.1093/nar/gkn425.

Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and
memory-efficient alignment of short DNA sequences to the
human genome. Genome Biol 10: R25. doi: 10.1186/gb-2009-10-
3-r25.

Liu F, Jenssen TK, Trimarchi J, Punzo C, Cepko CL, Ohno-
Machado L, Hovig E, Kuo WP. 2007. Comparison of hybridiza-
tion-based and sequencing-based gene expression technologies on
biological replicates. BMC Genomics 8: 153. doi: 10.1186/1471-
2164-8-153.

Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. 2008. RNA-
seq: An assessment of technical reproducibility and comparison
with gene expression arrays. Genome Res 18: 1509–1517.

McGill R, Tukey JW, Larsen WA. 1978. Variations of box plots. Am
Stat 32: 12–16.

9t Hoen PA, Ariyurek Y, Thygesen HH, Vreugdenhil E, Vossen RH, de
Menezes RX, Boer JM, van Ommen GJ, den Dunnen JT. 2008.
Deep sequencing-based expression analysis shows major advances
in robustness, resolution and inter-lab portability over five micro-
array platforms. Nucleic Acids Res 36: e141. doi: 10.1093/nar/
gkn705.

Wurmbach E, Yuen T, Sealfon SC. 2003. Focused microarray analysis.
Methods 31: 306–316.

Willenbrock et al.

2034 RNA, Vol. 15, No. 11

 Cold Spring Harbor Laboratory Press on October 27, 2009 - Published by rnajournal.cshlp.orgDownloaded from 

http://rnajournal.cshlp.org/
http://www.cshlpress.com

