
Ing. Karel Klouda, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague November 25, 2018

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Automatic Image Colorization

 Student: Justína Kušpálová

 Supervisor: Ing. Magda Friedjungová

 Study Programme: Informatics

 Study Branch: Knowledge Engineering

 Department: Department of Applied Mathematics

 Validity: Until the end of summer semester 2019/20

Instructions

The problem of automatic image colorization (i.e., the coloring of black and white images) has been
discussed a lot over the last decade. It is highly ill-posed due to the large degrees of freedom during the
assignment of color information. We attempt to generalize the colorization procedure using state-of-the-
art methods that are based on generative networks.

1) Review and theoretically describe the state-of-the-art approaches to image colorization.
2) Use or implement at least two of the reviewed approaches and experimentally compare their
performance on a suitable data set. Use existing implementations as much as possible.
3) Propose a direction for further improvement of image colorization approaches.

References

Will be provided by the supervisor.

Bachelor’s thesis

Automatic Image Colorization

Justína Kušpálová

Department of Applied Mathematics
Supervisor: Ing. Magda Friedjungová

August 13, 2020

Acknowledgements

I would like to thank my supervisor Ing. Magda Friedjungová. She was always
willing to help and give advice. I would also like to thank my family, which
was supportive during my entire studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on August 13, 2020

Czech Technical University in Prague
Faculty of Information Technology
© 2020 Justína Kušpálová. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Kušpálová, Justína. Automatic Image Colorization. Bachelor’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2020.

Abstrakt

Množstvo rôznych metód bolo navrhnutých na ofarbovanie obrázkov. V mojej
bakalárskej práci implementujem automatické kolorizovanie obrázkov pomo-
cou generatívnych kontradiktórnych sietí – GANov. Ukázali sľubné výsledky
pri generovaní rôznych dát, vrátane obrázkov. Používam dve modfikácie GA-
Nov – DCGAN a CycleGAN. Tieto dve metódy porovnávam a vyhodnocujem
pomocou najpoužívanješích metrík, vhodných pre tento problém. V záverečnej
časti práce sú zobrazené aj ukážkové obrázky, vygenerované jednotlivými mo-
delmi.

Klíčová slova automatické ofarbovanie obrázkov, strojové učenie, genera-
tívna kontradiktórna sieť, konvolučná neurónová sieť, image-to-image translation

Abstract

Many different methods have been suggested to colorize images yet. In this
thesis, I try to implement a fully automatic image colorization using generative
adversarial networks – GANs. They have shown promising results in generat-
ing various kinds of data, including images. I adopt two different modifications
of GANs – DCGAN and CycleGAN. These two methods are compared, and

vii

results are evaluated using the most common metrics used for this problem.
Example images are provided as well.

Keywords automatic image colorization, machine learning, generative ad-
versarial network, convolutional neural network, image-to-image translation

viii

Contents

Introduction 1
Objectives . 1

1 Image colorization 3
1.1 Color representation . 4

1.1.1 RGB . 4
1.1.2 CIE-Lab . 4

1.2 Generative Adversarial Network 4

2 State-of-the-art 7
2.1 Image-to-Image Translation . 7
2.2 Unsupervised Colorization . 8

3 Implemented models 11
3.1 Deep Convolutional Conditional GAN 11

3.1.1 DCGAN . 11
3.1.2 Conditional GAN . 11
3.1.3 Objective function . 12
3.1.4 Network architecture . 13
3.1.5 Evaluation metrics . 14

3.2 CycleGAN . 14
3.2.1 Objective function . 15
3.2.2 Network architecture . 16
3.2.3 Evaluation metrics . 17

4 Implementation 19
4.1 Technologies . 19
4.2 DCGAN details and specifics 20

4.2.1 DCGAN for CIFAR-10 dataset 20
4.2.1.1 DCGAN AB/LAB 21

ix

4.2.1.2 DCGAN RGB 21
4.2.2 Training strategies . 22
4.2.3 DCGAN for Intel Image Classification dataset 24

4.3 CycleGAN details and specifics 24
4.3.1 CycleGAN for CIFAR-10 dataset 24
4.3.2 CycleGAN for Intel Image Classification dataset 25
4.3.3 Training strategies . 25

5 Experiments 27
5.1 Datasets . 27
5.2 Design of experiments . 27

6 Results and evaluation 29
6.1 DCGAN . 29
6.2 CycleGAN . 31
6.3 Comparison . 32

Conclusion 41
Future work . 41

Bibliography 43

A Acronyms 47

B Contents of enclosed SD card 49

x

List of Figures

1.1 Basic GAN architecture. 5

3.1 Simple conditional GAN architecture. 12
3.2 Different cost functions of the generator, image taken from [22]. . . 12
3.3 Basic structure of the CycleGAN [24]. 15

4.1 Architecture of the discriminator, DCGAN AB model. 21
4.2 Architecture of the generator, DCGAN AB model. 22
4.3 Generator adversarial loss over 500 epochs on CIFAR-10 dataset,

DCGAN AB model . 23
4.4 L1 loss over 500 epochs on CIFAR-10, DCGAN AB model 23
4.5 Total generator loss over 500 epochs on CIFAR-10 dataset, DC-

GAN AB model . 23
4.6 Generator loss over 40 epochs, CycleGANmodel, Intel Image dataset.

The loss of the second generator looks very similarly. 25

5.1 Example pictures from CIFAR-10 dataset. 28
5.2 Example pictures from Intel Image Classification dataset. 28

6.1 Miscolorized pictures from CIFAR-10 dataset, colorized by DC-
GAN AB model over 200 epochs. 30

6.2 Mean absolute error during training, DCGANABmodel on CIFAR-
10 dataset on 500 epochs. 32

6.3 Accuracy ε = 2 during training, DCGAN AB model on CIFAR-10
dataset on 500 epochs. 33

6.4 Accuracy ε = 5 during training, DCGAN AB model on CIFAR-10
dataset on 500 epochs. 33

6.5 CIFAR-10 dataset, colorized by DCGAN AB model on 200 epochs. 34
6.6 Example pictures from Intel Image Image Classification dataset,

colorized by DCGAN AB model on 40 epochs. 35

xi

6.7 Miscolorized images from Intel dataset, colorized by DCGAN AB
model on 40 epochs . 36

6.8 Accuracy ε = 2 during training CycleGAN model on Intel dataset
over 40 epochs. 36

6.9 Accuracy ε = 5 during training CycleGAN model on Intel dataset
over 40 epochs. 37

6.10 Mean absolute error during training CycleGAN model on Intel
dataset over 40 epochs. 37

6.11 Example pictures from Intel Image Image Classification dataset,
colorized by CycleGAN on 40 epochs. 38

6.12 Example pictures from Intel Image Image Classification dataset,
colorized by CycleGAN on 40 epochs. 39

6.13 Example pictures from CIFAR-10 dataset, colorized by CycleGAN. 40

xii

List of Tables

6.1 MAE and accuracy of DCGAN models measured during training
on CIFAR-10 dataset on 200 epochs. Comparison to benchmark
results. 30

6.2 MAE and accuracy of DCGAN models measured on CIFAR-10 test
dataset. The test dataset consisted of 10 000 images. 31

6.3 MAE and accuracy of AB DCGAN model measured on Intel Image
Classification dataset on 40 epochs. 31

xiii

Introduction

It is not a difficult task for a person to fill the black-and-white regions of a
picture with colors – even children are capable of accomplishing a similar task
in a coloring book. Some objects keep their color – the grass is green, or
the sky is blue, others are dependent on the human imagination and can be
assigned several plausible colors. But what is easy for a human can be quite
challenging for the computer. And so is the image colorization.

A variety of techniques has been employed to produce credible, colorful images
from their grayscale counterparts. With the arrival of convolutional neural
networks, machine learning models have shown a huge potential in different
image-to-image translation tasks. Automatic image colorization is not an
exception. Many models have been trained to improve the results in this
challenging area. These models can be used as a simple tool to bring old,
black-and-white photos into the colorful world.

This work focuses on automatic image colorization using generative adversarial
networks. In recent years, it has become one of the most popular deep learning
techniques due to its ability to deal with numerous problems from various
areas. The studies have also shown its robust results in the field of image
colorization.

Objectives
The goals of this thesis are following:

• review current state-of-the-art machine learning methods utilized for
automatic image colorization

• implement selected methods

• evaluate their performance on publicly available datasets

1

Introduction

Firstly, I will introduce image colorization in general and survey up-to-date
machine learning methods that tackle this problem. After that, I will imple-
ment similar models keeping the best practice strategies, and I will evaluate
their performance on the benchmark CIFAR-10 dataset. Finally, I will apply
these models to another dataset to observe their behavior on higher-quality
images.

2

Chapter 1
Image colorization

Image colorization can be defined as a problem of taking a grayscale image and
transforming it into a colorized version of the monochrome image. The output
does not necessarily have to be the same as the original image – many times,
there is no original colorful version of the image when we want to restore old
photographs. The goal is to create a fidelitous, realistic output.

It began together with the first photographs when people tried to add colors
to monochrome films and photographs by hand. Digital colorization started
in the 1970s and has been widely improved since then.

Different approaches were used to achieve the best results. Some of them
require human supervision like scribble-based [1, 2, 3], where the user needs
to provide a few color strokes of the desired color to certain areas of the
grayscale image. The algorithms then propagate these colors into the whole
picture, assuming that the neighboring pixels with similar luminance should
be colored in like manner.

Transfer-based colorization requires an example image, from which color in-
formation is transferred to the target grayscale image. The mapping can be
established with the manual intervention [4, 5, 6] or partially automatically
where reference image selection is chosen manually [7, 8].

Automatic colorization focuses on coloring grayscale images without man-
ual intervention. These methods [9, 10, 11] are fully automatized, although
trained only on datasets with smaller sizes. With the rise of deep learning,
convolutional neural networks [12] and modified variational autoencoders [13]
have shown favorable results in this field.

3

1. Image colorization

1.1 Color representation

Color representation is a fundamental problem in computer vision. Colors can
be represented in many different ways, and color spaces give us information
about the exact representation. Some of the most famous color spaces include
YCrCb, YUV, RGB, HSV CIE-LAB, CIE-LUV, and many more.

1.1.1 RGB

RGB color space is defined by an additive color model in which the sum of color
channels can express the perceived color. The RGB model is characterized by
red, green, and blue light channels, together composing a vast range of colors.
In the standard RGB model, the intensity of each channel can take on values
in range 0-255. The full strength of every channel corresponds to black color,
while zero strength represents the white color. The color information is not
separated from the intensity, causing the channels to be highly correlated.
Moreover, the channels are not proportional to the color difference, so just
small perturbation can result in sudden variations in color and brightness.
It is a device-dependent color space; different devices reproduce colors in a
different manner.

1.1.2 CIE-Lab

Three channels also represent CIE Lab color space, but these channels denote
something else than in the case of RGB. Lightness channel L is defined in
range 0-100, representing black at L = 0 and white at L = 100. It is kept
separate from color channels, and it is equivalent to a grayscale image of the
given color picture. Color information is encoded in two channels: A – green
to red and B – blue to yellow. The color range for A and B channels is
implementation-specific, but usually acquires values between -128 to +127.
This color model is device-independent.

1.2 Generative Adversarial Network

The idea of a generative adversarial network is quite young; it was first in-
troduced in [14] in 2014. It is capable of generating new data points of any
kind, but it is especially popular for generating images. The architecture of
GAN consists of two parts: the generator and the discriminator. It is often
compared to the thief and police, where the thief (the generator) creates fake
money, and the police (the discriminator) tries to expose him. The thief has to
produce better and better counterfeits so that he is not exposed by the police,
and the police also keeps improving its techniques to capture more thieves.
In other words, they play a two-player game where both sides try to achieve
equilibrium.

4

1.2. Generative Adversarial Network

Initially, the generator is fed with a random noise sampled from normal or
uniform distribution z ∼ pz(z). It produces so-called fake output, which is
similar, but not exactly the same as data points from the training set. This
network learns the probability distribution of the training set and tunes its
parameters θg to generate realistic samples.

The input to the discriminator is either a real or a fake sample. The discrim-
inator’s role is to distinguish between real and fake samples, returning 1 if it
is real and 0 if not. In fact, the discriminator decides whether the sample is
from pr or pg where pr is real distribution of the training dataset and pg is
distribution generated by the generator. Ideally, the generator produces such
realistic samples that the discriminator cannot tell whether they are real or
fake, returning 0.5 probability for any input data point.

The generator tries to minimize the probability of fake sample being classified
as fake by the discriminator:

min
g
L(D,G) = Ez∼pz(z)[log(1−D(G(z; θg); θd))] (1.1)

The discriminator maximizes:

max
d

L(D,G) = Ex∼pr(x)[logD(x; θd)] + Ez∼pz(z)[log(1−D(G(z; θg); θd))]
(1.2)

where the first term Ex∼pr(x)[logD(x)] is the probability of classifying real
sample as real and second term Ez∼pz(z)[log(1 −D(G(z)))] is the probability
of classifying fake sample as fake.

Total loss function of GAN:

min
G

max
D

L(D,G) = Ex∼pr(x)[log(D(x))] + Ez∼pz(z)[log(1−D(G(z)))] (1.3)

Figure 1.1: Basic GAN architecture.

5

Chapter 2
State-of-the-art

Numerous machine learning techniques have been proposed to colorize images.
Some of them are supervised and require a set of paired images, where one of
the pictures is in grayscale, and the other is a colorized version of the same
picture. But there are also methods which do not need matching images. In
this chapter, I will summarize some of these techniques. In the next chapter,
I will introduce two methods that I chose, in detail.

2.1 Image-to-Image Translation
Image-to-image translation includes problems such as reconstructing objects
from the edges, creating realistic satellite photos from maps and vice versa,
creating night-to-day and day-to-night photos, image inpainting, or automatic
colorization of images. One approach is to create one universal method capable
of solving all of these issues. The idea behind this common framework is
simple: predict pixels from pixels.

Authors of this idea use a conditional generative adversarial network with
the U-net encoder-decoder architecture. L1 distance between predicted and
the original image has been added to the non-saturating objective function
of conditional GAN since previous studies found this approach beneficial. No
input noise is introduced to the generator because the authors have found the
model ignoring the noise. The discriminator architecture uses PatchGAN.

The model is trained by alternating the training of generator and discrimina-
tor. Authors divide the loss function by 2 when training the discriminator, to
avoid quick training of discriminator compared to the generator. Evaluation
metric in case of colorization was qualitative, measured as plausibility to a
human observer. Participants of the experiment were given a set of 40 trials
where the real and fake image was presented for one second. After that, they
had unlimited time to decided which of the pictures was fake.

7

2. State-of-the-art

A similar approach is used in [15]. This work is focused on automatic coloriza-
tion in Japanese comics Manga. Two models were compared – a convolutional
neural network ConvNet and conditional GAN. They were trained to pre-
dict how particular characters, animals, or objects should be colored since the
model was trained on a specific animation. Two types of pictures were man-
ufactured from original colorful pictures – grayscale and edge-only pictures.

The architecture of the GAN’s generator is again a U-Net, consisting of 6
encoding and 6 decoding layers. Objective function with the L1 regulariza-
tion term is used. Batch normalization [16] and LeakyReLU [17] activation
function is applied after each layer. It is conditioned on a gray or edge-only
image as the input and gives out an output with the same size as input but
with 3 RGB color channels. No noise is introduced into the generator.

The discriminator is given a grayscale/edge-only image and either a real or
generated image. It consists of 6 layers, just like the encoding part of the gen-
erator, with the sigmoid function applied on the last layer to decide whether
the input is real or fake. The mini-batch size is set to 64. The model was
trained on 20 epochs using Adam optimizer and learning rate 0.0002. Dataset
was collected from 15 hours of Pokemon videos, where every 50 frames an
image with a final size of 180x320 pixels was generated.

GAN’s quality of images from the grayscale images is generally better than the
images generated by the ConvNet, which are dimmer and less sharp. However,
two often failures were experienced: in characters with similar appearances,
GAN confused the colors of the thing in which they differ, and in large object
coloring, GAN did not color the object as a whole. In a quantitative eval-
uation where mean absolute error and mean squared error per pixel-channel
distances were measured, the results from GAN outperformed those gener-
ated by ConvNet. For both models, using the dataset with grayscale images
had better results. This behavior was expected since grayscale images contain
more information than edge-only ones.

2.2 Unsupervised Colorization

Another approach to colorization is unsupervised colorization. One study [18]
proposes unsupervised diverse colorization, where conditional GAN tries to
learn the real distribution of item colors. The goal is not to find an image
which is as close as possible to the original one, but rather produce realistic
and plausible images, that do not suffer from sepia-toned colorization.

The generator has fully convolutional architecture with stride 1, so it does

8

2.2. Unsupervised Colorization

not downsize the data. Authors argue that keeping spatial information is
essential to preserve item boundaries, in contrast with the encoder-decoder
network, which tends to extract global features. The generator is introduced
multi-layer noise on the first three layers to achieve diverse colorization. A
conditional grayscale image is applied to every layer of the generator. Ex-
perimental comparison between one-layer noise and multi-layer noise, as well
as the comparison between multi-layer condition and single-layer condition,
is provided. The input to the discriminator is either original or generated
color image. No conditional information in the form of the grayscale image is
introduced to the discriminator.

The model was trained both on RGB and YUV color space to compare the re-
sults using both color representations. The authors also implemented Wasser-
stein GAN [19] to measure its performance. Models were trained on the TL-
SUN bedroom dataset using 503900 images of size 64x64.

Multi-layer noise resulted in more color diversity in predicted images. Con-
ditional input applied to multiple layers provided more information on the
structure of the pictures; the edges of the items were preserved better than
using single-layer condition. Wasserstein GAN achieved similar results to the
model presented in this study; however, the training time was much longer.
YUV model was more stable than the RGB one since it had to predict only
two channels with a fixed Y channel.

Turing test on 80 participants who were asked 20 questions was conducted
to evaluate the results. Each question contained 5 images, among them one
original and 4 generated. Participants were asked to determine whether any
of them had disturbing quality. The results showed 62.6% positive feedback
on generated images and 70% on the ground truth images. Moreover, the
significance t-test showed that there is no notable difference between created
and original pictures.

9

Chapter 3
Implemented models

In this chapter, I will describe the two models I decided to implement in more
detail. These two models are Deep Convolutional GAN and CycleGAN. I will
characterize how they work, their objective function, and their architecture
according to the original scientific paper that suggested them.

3.1 Deep Convolutional Conditional GAN

The first model is based on conditional DCGAN from [20]. Authors of this
study try to create a stable model capable of automatic image colorization
with good performance. The model can be described as a deep convolutional
conditional GAN. It is built upon [21], where one GAN-based model is used
for different image-to-image translation problems. In further text, I will refer
to this model as DCGAN.

3.1.1 DCGAN

One of the prevalent GAN architecture is deep convolutional GAN (DCGAN).
It eliminates fully connected layers, replaces all max-pooling layers with convo-
lutional stride for downsampling, and utilizes transposed convolution (decon-
volution) for upsampling. It uses Batch normalization on most of the layers,
ReLU activation function in generator and LeakyReLU activation [17] in the
discriminator.

3.1.2 Conditional GAN

In the classic GAN model, there is rather no control over generated data.
When extra input information y is provided to both generator and discrim-
inator, the model is called conditional GAN. It can be any information, for
example, class labels or some additional data, forcing the generator to produce
a more specific output instead of a generic sample.

11

3. Implemented models

Figure 3.1: Simple conditional GAN architecture.

3.1.3 Objective function

In classic GAN objective function, the convergence rate is rather slow. The
gradients are small, and the generator produces similar samples in the early
stages of the training. A new objective function called heuristic non-saturating
game, was introduced [22] to overcome these issues. It can be interpreted
as the maximization of the probability of discriminator being mistaken and
rewritten to minimization problem:

min
G

L(D,G) = −Ez∼pz(z)[log(D(G(z)))] (3.1)

Better properties of non-saturating heuristics can be also observed from Fig-
ure 3.2, where different cost functions of the generator are compared.

Figure 3.2: Different cost functions of the generator, image taken from [22].

12

3.1. Deep Convolutional Conditional GAN

Furthermore, L1 = λ||G(z)−y||1 regularization term is added to the objective,
to force the generator to produce images analogous to the ground truth. λ is
the regularization parameter set to 100, G(z) is the generated image, and y is
the original color image. L1 norm was chosen rather than L2, which produces
blurry images.

Final objective for the generator then is:

min
G

L(D,G) = −Ez∼pz(z)[log(D(G(z)))] + λ||G(z)− y||1 (3.2)

3.1.4 Network architecture

The generator architecture has a U-Net architecture [23], which is symmetric
encoder-decoder based architecture. The encoder consists of n = 7 downsam-
pling layers with an increasing number of filters. After that, n decoding –
upsampling layers are added to the network. The dimensionality reduction
of the encoder shrinks the tensor shape and enables compact feature learn-
ing without large memory consumption. Skip connections are added between
layer i and n− i to allow the flow of the low-level information in the network.
One additional encoding unit without skip is inserted between the encoder
and decoder.

The network is fully convolutional, without any fully connected layers. Kernel
size is set to 4, stride to 2, except for the first layer, where the stride is set to
1. Batch normalization is applied on all layers except the first and last layers
of the generator. It serves to avoid the mode-collapse when the generator
learns to produce one output that can fool the discriminator all the time.
LeakyReLU activation function is used on the encoding part, ReLU, on the
decoding part. Hyperbolic tangent activation is applied on the last layer to
produce output pixels between -1 and +1. The model for the dataset with
the higher resolution has additional encoding and decoding block. The input
noise is not given to the generator because the generator tends to ignore it.
It is provided in the form of dropout on the first two decoding layers of the
generator.

RGB pictures are converted into CIE-LAB space and normalized into range
-1 to +1 beforehand. The L channel of an image serves as the conditional
input. The output of the generator are all three L, A, B channels. There is
an option of predicting only A and B channels, and the results of these two
approaches I compare in Chapter 6.

The discriminator architecture consists of 5 encoding layers with kernel size
set to 4 and stride set to 2 and 1 in the last two layers. Batch normalization

13

3. Implemented models

is applied, except for the first and last layer, and LeakyReLU with slope 0.2
is the activation function on all layers except the last one. The input to the
discriminator is either real or fake, together with the same picture’s grayscale
equivalent. For both networks, Adam optimizer with the learning rate set
0.0002 is utilized.

3.1.5 Evaluation metrics

Two quantities were chosen to evaluate the experimental results:

• mean absolute error for every color channel for every pixel between orig-
inal and generated image:

MAE(x, y) = 1
c ∗ n

n∑
p=1

c∑
l=1
|h(x)(p,l) − y(p,l)| (3.3)

where x is input grayscale image, y is corresponding color image, p is
the index of pixel, l is the index of a color channel, n is the number
of pixels of an image, c is the number of color channels and h is image
translation function.

• accuracy, which "is measured by the ratio between the number of pixels
that have the same color information as the source and the total number
of pixels. Any two pixels are considered to have the same color if their
underlying color channels lie within some threshold distance ε" [20]:

acc(x,y) = 1
n

n∑
p=1

3∏
l=1

1[0,εl](|h(x)(p,l) − y(p,l)|) (3.4)

3.2 CycleGAN
The goal of image-to-image translation is to learn the mapping between input
and output images. In a standard way, it requires paired images for the
training procedure. The cost of getting paired images is often very high, and
the images are challenging to obtain or do not exist at all. The authors of
the study [24] suggest a method that is suitable for unpaired image-to-image
translation. They do not use it for image colorization specifically, but among
other experiments, they try to apply it to edge-to-image colorization, which
can be classified as a similar problem. This method is able to use a collection
of pictures from one domain, learn the style of the collection, and translate it
to another domain.

Instead of paired images, the algorithm is fed with two datasets from different
domains X and Y . The goal is to learn the mapping G : X → Y , such
that the output ŷ = G(x), x ∈ X, is indistinguishable from images y ∈ Y .

14

3.2. CycleGAN

However, the classic adversarial loss itself does not have stable results, so cycle
loss is introduced. Given another translation F : Y → X, cycle loss forces
F (G(x)) ≈ x and G(F (y)) ≈ y. These two mappings are done using two
generators:

• generator G which translates images from domain X to domain Y

• generator F , which translates images from domain Y to domain X

The model also contains two discriminators:

• discriminator Dy - distinguishing G(x) from domain Y

• discriminator Dx - distinguishing F (y) from domain X

Figure 3.3: Basic structure of the CycleGAN [24].

3.2.1 Objective function

The total objective function consist of two parts:

• Adversarial loss

• Cycle loss

Adversarial loss is standard GAN loss function:

LGAN (G,DY , X, Y) = Ey∼pdata(y)[log(DY (y))]+Ex∼pdata(x)[log(1−DY (G(x)))]
(3.5)

The cycle loss consists of two parts: forward and backward cycle consistency.
Forward cycle consistency encourages images x from domain X to be trans-
lated back to the original image in the cycle: x → G(x) → F (G(x)) ≈ x.
The pictures should also satisfy backward cycle consistency: y → F (y) →
G(F (y)) ≈ y.

15

3. Implemented models

Total cycle consistency:

LCY C(G,F) = Ex∼pdata(x)||F (G(x))−x||1 +Ey∼pdata(y)||G(F (y))− y||1 (3.6)

The full objective function is then:

L(G,F,DX , DY) = LGAN (G,DY , X, Y)+LGAN (F,DX , Y,X)+λLCY C(G,F)
(3.7)

where λ describes relative importance and it was set to 10.

In addition, identity loss is suggested to encourage training stability and the
quality of images. The generator is given real pictures from the target domain.
It should produce the same pictures without change. However, this cannot
be applied for image colorization because of the different number of input
channels to each generator.

3.2.2 Network architecture

Initially, the architecture for 128x128 pictures consists of convolution with
kernel size 7, stride 1, and 64 number of filters. After that, two layers with
kernel size 3, stride 1, and doubling number of filters follow. Then six residual
blocks are applied. Two layers with kernel size 3, and stride 2 follow, halving
the number of filters. Lastly, there is a convolution with kernel size 7 and
stride 1, outputting 3 channels. Instance normalization and ReLU activation
are applied after every standard convolution.

The residual block [25] contains convolution with kernel size set to 3, instance
normalization, ReLU activation, followed by another convolution and instance
normalization layer. The number of filters remains the same. The residual
block output is concatenated with the input to the first layer of the residual
block.

The discriminator consists of 4 convolutional layers, kernel size 4, stride 2, and
doubling number of filters after every convolution. Leaky ReLU is applied after
every layer, and instance normalization is applied on every layer except the
last one. After the last layer, convolution is used to produce one-dimensional
output.

The discriminator is a PatchGAN that, instead of classifying the whole image,
classifies each 70 x 70 patch as real or fake. It returns the probability of the
portion of the image being either real or fake. After running convolutionally
across the whole picture, all responses are averaged to form the final decision.
It can be applied convolutionally on images of any size, even on the larger

16

3.2. CycleGAN

images than those on which it was trained. It requires fewer parameters,
causing the algorithm to run faster.

3.2.3 Evaluation metrics

Perceptual study on Amazon Mechanical Turk served as the primary evalua-
tion metric. Participants were shown one real and one fake image, and they
were supposed to click on the one, they considered as authentic. The fool
rate of the pictures created by the algorithm was counted during this evalu-
ation. The second evaluation metric was the FCN score, which uses a fully
convolutional network. It completes semantic segmentation and creates label
maps. Afterward, the comparison of label maps between real and fake images
is made.

17

Chapter 4
Implementation

In this chapter, I will specify the technologies I used for the implementation.
I will describe how I implemented the models, what changes I needed to make
to suit my experiments, how I tuned the hyperparameters, and which training
strategies I employed.

4.1 Technologies

I decided to pick Python for the implementation of the practical part. It was
the first choice, and I did not even think about other possibilities. It offers
vast library support for machine learning, and I was familiar with it from
other school projects.

For image processing, I used scikit-image1, an open-source Python package. It
was useful for conversion between color spaces without writing the equations
manually. Nevertheless, when I needed to do some numerical calculations, I
used NumPy2 library.

Another library I picked is Matplotlib3. I adopted it for visualization of the
images and for plotting the training loss and evaluation metrics. Later, I de-
cided to benefit from Tensorboard4, which is Tensorflow’s visualization toolkit
for machine learning which is more interactive and offers better options for
monitoring the training procedure.

Tensorflow 2.05 is an open-source platform the provides an API, which is
excellent for numerical computing and working with tensors. It is one of the

1https://scikit-image.org/
2https://numpy.org/
3https://matplotlib.org/
4https://www.tensorflow.org/tensorboard
5https://www.tensorflow.org/

19

https://scikit-image.org/
https://numpy.org/
https://matplotlib.org/
https://www.tensorflow.org/tensorboard
https://www.tensorflow.org/

4. Implementation

most famous libraries used for deep neural networks. Moreover, it provides a
backend for Keras, which is a high-level Python-based framework built on the
top of Tensorflow. It is designed for working with neural networks even more
efficiently. It eliminates low-level computations, so the user does not have to
deal with tensor algebra or optimization techniques.

Jupyter Notebook6, an open-source web application has been, among other
things, widely used for machine learning and data visualization. I used Google
Colab7, which is a free Jupyter notebook environment. It runs in the cloud
and requires no setup, so it is straightforward to start working immediately.
Moreover, it provides access to GPU units, that speed up the training pro-
cess to a manageable period. Although it has some limitations on maximum
RAM and running time without interruption, it was a convenient tool for this
project.

4.2 DCGAN details and specifics

Since I worked with two datasets containing pictures of different sizes, I needed
to create a slightly different neural network for every dataset.

4.2.1 DCGAN for CIFAR-10 dataset

I focused on the CIFAR-10 dataset, for which I created three different models
that differ in the way I work with colors. These three models are:

• DCGAN AB

• DCGAN LAB

• DCGAN RGB

Although the baseline paper for my first model converts RGB to CIE LAB, it
does not take advantage of predicting only two channels. During my research,
I came across this idea, which is quite logical, since the model does not have to
learn to predict all three channels, but instead predicts two and concatenates
them with the grayscale image. The model has to learn fewer parameters,
and most importantly, the structure of the image is preserved better. During
the early training stages, the output resembles the original picture much more
than using any other model. In all three models, the data were first processed
into a given color space, and each channel was normalized to the range -1 to
+1.

6https://jupyter.org/
7https://colab.research.google.com/

20

https://jupyter.org/
https://colab.research.google.com/

4.2. DCGAN details and specifics

4.2.1.1 DCGAN AB/LAB

These two models model work with CIE LAB color space. I used a function
from the scikit-image library for conversion. The discriminator’s architecture
is the same as already described in Chapter 3 Section 3.1. The architecture of
the generator is also similar, but instead of 7 encoding and decoding layers, I
used only 4. I established this decision based on the original implementation
of the paper that suggested this option. The three layers I removed did not
bring any improvement in results, just caused a little longer training time.
In the AB model, the output of the generator is only two channels, A and
B. The LAB network has the same architecture as the AB, but instead of 2
output channels, it generates all 3 L, A, and B channels.

4.2.1.2 DCGAN RGB

The architecture is exactly the same as in the DCGAN LAB model. I used
this equation:

Grayscale = 0.299 ∗R+ 0.587 ∗G+ 0.114 ∗B (4.1)

to convert a color image to the grayscale in RGB. It is based on human per-
ception, it decreases the contribution of red color, increases the participation
of the green color, and puts blue color contribution between these two, to
create a grayscale image.

However, the RGB color space is not well suited for this problem because of
its instability. The learning is much slower, it requires longer training time,
and the results are slightly worse.

Figure 4.1: Architecture of the discriminator, DCGAN AB model.

21

4. Implementation

Figure 4.2: Architecture of the generator, DCGAN AB model.

4.2.2 Training strategies

The original number of epochs e = 200 showed up as the acceptable number
of epochs. Longer training time did not bring much improvement. I kept the
model running for 500 epochs as well, to observe the convergence of the model.

I used many implementation tips to stabilize training:

• scaling of the pictures to values between -1 and 1

• tanh as the output layer of the generator

• batch normalization

• weight initialization from the normal distribution

• convolutional stride instead of max-pooling layers

• Adam optimizer that is preferred optimizer for GAN training

The last thing that proved to be handy is label-smoothing. GAN discrim-
inators tend to become overconfident and use only a few features to detect
real or fake images. Smoothing the target label from 1 to 0.9 to penalize
overconfident values greater than 0.9 enhances the training procedure.

It was quite challenging to observe the direct impact of changes of some hy-
perparameters in a reasonable amount of time. The best option emerged in
keeping the suggested: Adam optimizer with the learning rate of 0.0002 and
β = 0.5. The λ coefficient, which emphasizes the relative importance of the

22

4.2. DCGAN details and specifics

L1 part of the objective function, I set to 100, as suggested. I used mini-batch
mode, with the batch size set to 128.

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

0 50 100150200250300350400450500

Figure 4.3: Generator adversarial loss over 500 epochs on CIFAR-10 dataset,
DCGAN AB model

0.05
0.055
0.06

0.065
0.07

0.075
0.08

0.085
0.09

0 50100150200250300350400450500550

Figure 4.4: L1 loss over 500 epochs on CIFAR-10, DCGAN AB model

9.5
10

10.5
11

11.5
12

12.5
13

13.5

0 50 100150200250300350400450500550

Figure 4.5: Total generator loss over 500 epochs on CIFAR-10 dataset, DC-
GAN AB model

23

4. Implementation

4.2.3 DCGAN for Intel Image Classification dataset

Since the DCGANABmodel showed the best results on the CIFAR-10 dataset,
I adopted a similar model for the second dataset. I kept the same discrimina-
tor and added two more encoding-decoding layers to the generator. I needed
to decrease the number of epochs due to a higher number of trainable param-
eters in this network. I trained the model on 50 epochs, with a mini-batch
size of the size of 16. I used the same training strategies and hyperparameters
as before.

4.3 CycleGAN details and specifics

The CycleGAN model is implemented as two models. One converting from
domain X to domain Y and the other from Y to X. Firstly, the generator
G translates images from domain X to domain Y , and the adversarial loss
is counted. After that, the fake image is put into generator F , and forward
cycle loss for is counted. Finally, the real picture from domain Y is fed into
the generator F and then to G to calculate the backward loss. These loss
functions are then used to update both generators and discriminators. This
is performed vice versa as well.

The dataset is unpaired, meaning the subset of images from domain X are
randomly chosen images from the whole dataset and converted to grayscale.
Domain Y is a random subset of color pictures taken from the same dataset.
I use RGB conversion to grayscale.

4.3.1 CycleGAN for CIFAR-10 dataset

I experimented with the network’s architecture, with the number of residual
blocks, the number of layers and their characteristics (kernel size, stride),
learning rate, the relative weight of loss function, and mini-batch size but even
original architecture was not able to produce successful results on the CIFAR-
10 dataset. Longer training time also did not bring meaningful improvement.
I tried to reduce the size of the dataset or train the model only on images
from one category but without any good outcome.

When I saw that the network was training several times longer than the DC-
GAN model and the results were still quite unsatisfactory, I decided to stop
the execution early even if the generator loss was still slowly decreasing. I
could not find a proper model, so I focused on the other dataset. I will show
some examples of collapsing images in Chapter 6.

24

4.3. CycleGAN details and specifics

4.3.2 CycleGAN for Intel Image Classification dataset

Since the training time was much higher than in the other model, I could not
use the whole dataset. I picked two categories: street and forest and created
two separate models. The architecture of the generator and the discriminator
remains the same as the original architecture I already described.

4.3.3 Training strategies

I used Adam optimizer with the learning rate of 0.0002 and β = 0.5, as
suggested. The weight loss contribution of the discriminators is set to 0.5
to prevent the discriminators from learning too fast, giving no space for the
generators to develop. I used the batch mode when the network updates after
every single training point. I trained the model on 40 epochs for the Intel
dataset.

Instead of feeding the discriminator with currently generated images, the
model keeps a buffer that stores 50 previously created images. If the pool is
full, there is a 50% probability that the current generated image will replace
one of the pictures from the pool. The images given to the discriminator are
then randomly chosen from this pool.

2.6
2.8
3

3.2
3.4
3.6
3.8
4

4.2
4.4
4.6
4.8
5

5.2
5.4
5.6

-5 0 5 10 15 20 25 30 35 40 45 50

Figure 4.6: Generator loss over 40 epochs, CycleGAN model, Intel Image
dataset. The loss of the second generator looks very similarly.

25

Chapter 5
Experiments

In this chapter, I will introduce the datasets I picked and describe performed
experiments.

5.1 Datasets
I used two different datasets on which I evaluated the models. I did not
employ the whole dataset in some experiments, but I picked a smaller portion
if needed.

The first one is a well-known CIFAR-108 dataset that has been widely utilized
for deep learning evolving images. It contains 32x32 color images, split into 10
categories (airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck).
The whole dataset consists of 50 000 training images and 10 000 test images.

Since CIFAR-10 has quite low resolution, for better visual classification, I
chose publicly available dataset of natural scenes that was created for Intel
Image Classification9. It contains 150x150 colorful images distributed under 6
categories (buildings, forest, glacier, mountain, sea, street). I resize the data
to 128x128.

5.2 Design of experiments
I created a few models already described in the previous chapter. I ran each
of them separately. For evaluation, I used suggested mean absolute error and
custom accuracy with ε = 2 and ε = 5. I calculated these metrics on training
and test dataset.

8https://www.cs.toronto.edu/~kriz/cifar.html
9https://www.kaggle.com/puneet6060/intel-image-classification

27

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.kaggle.com/puneet6060/intel-image-classification

5. Experiments

Figure 5.1: Example pictures from CIFAR-10 dataset.

Figure 5.2: Example pictures from Intel Image Classification dataset.

28

Chapter 6
Results and evaluation

In this chapter, I will evaluate the performance of my models quantitatively, I
will provide some example images to visually compare the images, and I will
discuss the results.

6.1 DCGAN
As the evaluation metrics, I used the suggested accuracy and mean absolute
error. The original paper provides results only on the training set, but I
evaluated the model on the test dataset as well. Quantitative results are
shown in the Table 6.1 and 6.2. In Figure 6.1, some of the wrongly colorized
images are displayed. Figure 6.5 shows example images that were colorized
credibly. Figures 6.2, 6.3 and 6.4 show plots of evaluation metrics during the
training procedure.

Visually, it can be observed that the models performed quite well. A slight
problem with miscolorization occurred; for example, the models tend to put
more green into the background, confusing it with the grass. This error was
expected; it is a common mistake in image colorization, and authors of other
studies experienced it as well. They believe this is caused by the considerable
amount of images containing grass. The second issue happens when the picture
is colored unusually and involves colors that emerge only rarely in the dataset
images. In that case, the picture is painted with more natural colors.

Since the two models, AB and LAB, had similar performance, but AB variant
performed slightly better on the test dataset, I decided to implement AB
variant for the other dataset. The quantitative results on training and test
dataset can be seen in the Table 6.3.

Qualitatively, in my subjective opinion, the images look very realistic. Gener-
ally, the colors are bright, not suffering from the hue. Again, the model cannot

29

6. Results and evaluation

capture some specific situations that are uncommon; for example, when the
water in the picture is brown, the model colors it in blue. In some cases, when
the original image is not very colorful, the model tends to colorize it more,
so the generated images look even better than the original ones. Some of the
images are shown in Figure 6.6 and Figure 6.7.

Original Train
Dataset MAE ε = 5 ε = 2 MAE ε = 5 ε = 2

CIFAR AB - - - 5.8 62.5% 24.0%
CIFAR LAB 5.1 65.5% 24.1% 5.4 70.2% 27.2%
CIFAR RGB - - - 7.7 63.2% 20.2%

Table 6.1: MAE and accuracy of DCGAN models measured during training
on CIFAR-10 dataset on 200 epochs. Comparison to benchmark results.

Figure 6.1: Miscolorized pictures from CIFAR-10 dataset, colorized by DC-
GAN AB model over 200 epochs.

30

6.2. CycleGAN

Test
Dataset MAE ε = 5 ε = 2

CIFAR AB 7.0 51.7% 19.2%
CIFAR LAB 7.9 47% 13.3%
CIFAR RGB 13.6 33.6% 9.6%

Table 6.2: MAE and accuracy of DCGAN models measured on CIFAR-10 test
dataset. The test dataset consisted of 10 000 images.

Train Test
Dataset MAE ε = 5 ε = 2 MAE ε = 5 ε = 2
INTEL 5.4 64.3% 24.7% 5.7 61.1% 25.7%

Table 6.3: MAE and accuracy of AB DCGAN model measured on Intel Image
Classification dataset on 40 epochs.

6.2 CycleGAN

From the evaluation plots, Figure 6.8, Figure 6.9 and Figure 6.10 it can be
observed that the accuracy is much lower, and the mean absolute error much
higher than in the previous model. For example, in DCGAN, the accuracy
ε = 5 was reaching more than 75% at the end, while here, the maximum it
reaches is less than the 8%.

Visually, the images can be judged as credible in most cases, but they suffer
from more errors and mislocorization than before. In later stages, after the
mean absolute error and accuracy hit their peak (about epoch 17), I would
say that the model tends to make the images too colorful. Example images
are provided in Figure 6.11 and Figure 6.12.

As I already mentioned, I could not create a suitable CycleGAN model for
the CIFAR-10 dataset. It would be meaningless to evaluate the model in
any way, while it can be seen that the images are not realistic nor plausible.
The model learned to create pictures in something like a negative tone – it
colors the lightest areas as dark and vice versa. However, it can still perform
a good translation the other way – from color to grayscale, even though the
fake colorized image does not look well. Pictures are shown in Figure 6.13

31

6. Results and evaluation

6.3 Comparison
If I should compare both models, the results from the CycleGAN cannot be
even compared to those from DCGAN. In my opinion, it is because of the
fact that the first model was designed exactly for image colorization, while
in the case of the second model, there is a broader range of different image
translations it can be applied to.

The training time of the CycleGAN is much longer, resulting in worse results.
Moreover, the CycleGAN has to be trained on a smaller dataset to accomplish
the training in a reasonable period. The results of the CycleGAN are better
if trained only on one category of images, which comes from the fact, that
input to the original CycleGAN contained images with related features (day
photos, night photos, zebras, horses, and so). However, this creates a model
that is narrowly specified and cannot generalize well.

4.5
5

5.5
6

6.5
7

7.5
8

8.5
9

0 100 200 300 400 500 600 700

Figure 6.2: Mean absolute error during training, DCGAN AB model on
CIFAR-10 dataset on 500 epochs.

32

6.3. Comparison

0
10
20
30
40
50
60
70
80

0 50 100 150 200 250 300 350 400 450 500

Figure 6.3: Accuracy ε = 2 during training, DCGAN AB model on CIFAR-10
dataset on 500 epochs.

30
35
40
45
50
55
60
65
70
75
80
85

0 50 100 150 200 250 300 350 400 450 500

Figure 6.4: Accuracy ε = 5 during training, DCGAN AB model on CIFAR-10
dataset on 500 epochs.

33

6. Results and evaluation

Figure 6.5: CIFAR-10 dataset, colorized by DCGAN AB model on 200 epochs.

34

6.3. Comparison

Figure 6.6: Example pictures from Intel Image Image Classification dataset,
colorized by DCGAN AB model on 40 epochs.

35

6. Results and evaluation

Figure 6.7: Miscolorized images from Intel dataset, colorized by DCGAN AB
model on 40 epochs

-0.5
0

0.5
1

1.5
2

2.5
3

3.5

-5 0 5 10 15 20 25 30 35 40 45 50

Figure 6.8: Accuracy ε = 2 during training CycleGAN model on Intel dataset
over 40 epochs.

36

6.3. Comparison

-2
0
2
4
6
8
10
12
14
16

-5 0 5 10 15 20 25 30 35 40 45 50

Figure 6.9: Accuracy ε = 5 during training CycleGAN model on Intel dataset
over 40 epochs.

46
48
50
52
54
56
58
60
62
64
66
68

-5 0 5 10 15 20 25 30 35 40 45 50

Figure 6.10: Mean absolute error during training CycleGAN model on Intel
dataset over 40 epochs.

37

6. Results and evaluation

Figure 6.11: Example pictures from Intel Image Image Classification dataset,
colorized by CycleGAN on 40 epochs.

38

6.3. Comparison

Figure 6.12: Example pictures from Intel Image Image Classification dataset,
colorized by CycleGAN on 40 epochs.

39

6. Results and evaluation

Figure 6.13: Example pictures from CIFAR-10 dataset, colorized by Cycle-
GAN.

40

Conclusion

Firstly, I presented the automatic image colorization problem and reviewed
the state-of-the-art methods. Based on the survey, I picked two different
methods – DCGAN and CycleGAN. I theoretically described how they work.
After that, I mentioned some of the implementation details, changes I needed
to make, training strategies, and technologies used. Based on the research, I
picked two appropriate publicly available datasets – the CIFAR-10 and Intel
Image Classification dataset, and I described them. Finally, I evaluated the
results using the surveyed metrics – custom accuracy and mean absolute error.
Moreover, I compared how color space influences the training procedure. I
fulfilled the objectives for this work, and some extended or more detailed
work can be built upon this project.

Using the first model, I achieved similar or, in some cases, even slightly better
results than the original paper. Using the CycleGAN, the results could not
be compared to the original article, since it does not work exactly with im-
age colorization. However, I can compare the two models I executed, clearly
declaring the first model as faster, more suitable, and more accurate for au-
tomatic image colorization.

Future work
One of the most significant unresolved possibilities that can be conducted in
the future is retraining the DCGAN model on pictures with a bigger size.
For much larger images, some changes to the network will be necessary as
well. The biggest challenge remains one universal project capable of colorizing
images of any size and from any domains.

I would suggest training smaller GANmodels similar to DCGAN. I would train
each one on the dataset with few classes, so each model becomes confident in
colorizing pictures from its domain. When the input image is given, image

41

Conclusion

recognition will be applied at first, and then the correct model will colorize the
photo according to the picture parameters. I have not tried anything similar
since it is far beyond the requirements for this work, but it might be a nice
experiment.

42

Bibliography

1. LEVIN, Anat; LISCHINSKI, Dani; WEISS, Yair. Colorization using op-
timization. In: ACM SIGGRAPH 2004 Papers. 2004, pp. 689–694.

2. YATZIV, Liron; SAPIRO, Guillermo. Fast image and video coloriza-
tion using chrominance blending. IEEE transactions on image processing.
2006, vol. 15, no. 5, pp. 1120–1129.

3. MUSIALSKI, Przemyslaw; CUI, Ming; YE, Jieping; RAZDAN, Anshu-
man; WONKA, Peter. A framework for interactive image color editing.
The Visual Computer. 2013, vol. 29, no. 11, pp. 1173–1186.

4. IRONI, Revital; COHEN-OR, Daniel; LISCHINSKI, Dani. Colorization
by Example. In: Rendering Techniques. 2005, pp. 201–210.

5. GUPTA, Raj Kumar; CHIA, Alex Yong-Sang; RAJAN, Deepu; NG, Ee
Sin; ZHIYONG, Huang. Image colorization using similar images. In: Pro-
ceedings of the 20th ACM international conference on Multimedia. 2012,
pp. 369–378.

6. CHIA, Alex Yong-Sang; ZHUO, Shaojie; GUPTA, Raj Kumar; TAI, Yu-
Wing; CHO, Siu-Yeung; TAN, Ping; LIN, Stephen. Semantic coloriza-
tion with internet images. ACM Transactions on Graphics (TOG). 2011,
vol. 30, no. 6, pp. 1–8.

7. CHARPIAT, Guillaume; HOFMANN, Matthias; SCHÖLKOPF, Bern-
hard. Automatic image colorization via multimodal predictions. In: Eu-
ropean conference on computer vision. 2008, pp. 126–139.

8. WELSH, Tomihisa; ASHIKHMIN, Michael; MUELLER, Klaus. Trans-
ferring color to greyscale images. In: Proceedings of the 29th annual con-
ference on Computer graphics and interactive techniques. 2002, pp. 277–
280.

9. MORIMOTO, Yuji; TAGUCHI, Yuichi; NAEMURA, Takeshi. Automatic
colorization of grayscale images using multiple images on the web. In:
SIGGRAPH 2009: Talks. 2009, pp. 1–1.

43

Bibliography

10. CHENG, Zezhou; YANG, Qingxiong; SHENG, Bin. Deep colorization.
In: Proceedings of the IEEE International Conference on Computer Vi-
sion. 2015, pp. 415–423.

11. DESHPANDE, Aditya; ROCK, Jason; FORSYTH, David. Learning large-
scale automatic image colorization. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision. 2015, pp. 567–575.

12. ZHANG, Richard; ISOLA, Phillip; EFROS, Alexei A. Colorful image
colorization. In: European conference on computer vision. 2016, pp. 649–
666.

13. DESHPANDE, Aditya; LU, Jiajun; YEH, Mao-Chuang; JIN CHONG,
Min; FORSYTH, David. Learning diverse image colorization. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition. 2017, pp. 6837–6845.

14. GOODFELLOW, Ian; POUGET-ABADIE, Jean; MIRZA, Mehdi; XU,
Bing; WARDE-FARLEY, David; OZAIR, Sherjil; COURVILLE, Aaron;
BENGIO, Yoshua. Generative adversarial nets. In: Advances in neural
information processing systems. 2014, pp. 2672–2680.

15. FU, Qiwen; HSU, Wei-Ting; YANG, Mu-Heng. Colorization using con-
vnet and gan. In: Stanford University. 2017, pp. 1–8.

16. IOFFE, Sergey; SZEGEDY, Christian. Batch normalization: Accelerat-
ing deep network training by reducing internal covariate shift. arXiv
preprint arXiv:1502.03167. 2015.

17. MAAS, Andrew L; HANNUN, Awni Y; NG, Andrew Y. Rectifier non-
linearities improve neural network acoustic models. In: Proc. icml. 2013,
vol. 30, p. 3. No. 1.

18. CAO, Yun; ZHOU, Zhiming; ZHANG, Weinan; YU, Yong. Unsuper-
vised diverse colorization via generative adversarial networks. In: Joint
European conference on machine learning and knowledge discovery in
databases. 2017, pp. 151–166.

19. ARJOVSKY, Martin; CHINTALA, Soumith; BOTTOU, Léon. Wasser-
stein gan. arXiv preprint arXiv:1701.07875. 2017.

20. NAZERI, Kamyar; NG, Eric; EBRAHIMI, Mehran. Image colorization
using generative adversarial networks. In: International conference on
articulated motion and deformable objects. 2018, pp. 85–94.

21. ISOLA, Phillip; ZHU, Jun-Yan; ZHOU, Tinghui; EFROS, Alexei A.
Image-to-image translation with conditional adversarial networks. In:
Proceedings of the IEEE conference on computer vision and pattern recog-
nition. 2017, pp. 1125–1134.

22. GOODFELLOW, Ian. NIPS 2016 tutorial: Generative adversarial net-
works. arXiv preprint arXiv:1701.00160. 2016.

44

Bibliography

23. RONNEBERGER, Olaf; FISCHER, Philipp; BROX, Thomas. U-net:
Convolutional networks for biomedical image segmentation. In: Inter-
national Conference on Medical image computing and computer-assisted
intervention. 2015, pp. 234–241.

24. ZHU, Jun-Yan; PARK, Taesung; ISOLA, Phillip; EFROS, Alexei A. Un-
paired image-to-image translation using cycle-consistent adversarial net-
works. In: Proceedings of the IEEE international conference on computer
vision. 2017, pp. 2223–2232.

25. HE, Kaiming; ZHANG, Xiangyu; REN, Shaoqing; SUN, Jian. Deep resid-
ual learning for image recognition. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2016, pp. 770–778.

45

Appendix A
Acronyms

AB Channel A and Channel B, from CIE LAB color space

CNN Convolutional Neural Network

CycleGAN Cycle Generative Adversarial Network

DCGAN Deep Convolutional Generative Adversarial Network

GAN Generative Adversarial Network

LAB Lightness, Channel A and Channel B, from CIE LAB color space

MAE Mean Absolute Error

ReLU Rectified Linear Unit

RGB Red Green Blue

47

Appendix B
Contents of enclosed SD card

readme.txt the file with contents description
src the directory with source codes

training............................the directory with training files
evaluation....................... the directory with evaluating files

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format
assignment.pdf......................the assignment in PDF format

49

	Introduction
	Objectives

	Image colorization
	Color representation
	RGB
	CIE-Lab

	Generative Adversarial Network

	State-of-the-art
	Image-to-Image Translation
	Unsupervised Colorization

	Implemented models
	Deep Convolutional Conditional GAN
	DCGAN
	Conditional GAN
	Objective function
	Network architecture
	Evaluation metrics

	CycleGAN
	Objective function
	Network architecture
	Evaluation metrics

	Implementation
	Technologies
	DCGAN details and specifics
	DCGAN for CIFAR-10 dataset
	DCGAN AB/LAB
	DCGAN RGB

	Training strategies
	DCGAN for Intel Image Classification dataset

	CycleGAN details and specifics
	CycleGAN for CIFAR-10 dataset
	CycleGAN for Intel Image Classification dataset
	Training strategies

	Experiments
	Datasets
	Design of experiments

	Results and evaluation
	DCGAN
	CycleGAN
	Comparison

	Conclusion
	Future work

	Bibliography
	Acronyms
	Contents of enclosed SD card

