
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague February 5, 2020

ASSIGNMENT OF MASTER’S THESIS
 Title: Synchronization of hierarchical data

 Student: Bc. Richard Molnár

 Supervisor: RNDr. Josef Pelikán

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2020/21

Instructions

Design and implement network layers for data synchronization of complex hierarchical data. 3D data for
AR/VR will be considered as a typical use case, concrete data formats and conditions will be defined in
cooperation with Pocket Virtuality company.

Tasks:
1. Analyze user requirements and create a detail specification.
2. Define a low-level layer/library for packet transport.
3. Define and implement a higher (logical) layer for data transfer and synchronization. Synchronization of a
hierarchical 3D data structure (FMcore) should be considered as a primary task of the project.
4. Consider a reliable transfer of small data packets (events).
5. Consider an optional transport of multimedia data with different requirements (non-reliable, time-
critical data delivery).
6. Consider data security (encryption) options.

References

Will be provided by the supervisor.

Master’s thesis

Synchronization of Hierarchical Data

Bc. Richard Molnár

Department of Software Engineering
Supervisor: RNDr. Josef Pelikán

August 3, 2020

Acknowledgements

Throughout the writing of my master’s thesis, I have received a great deal of
support and assistance.

I would like to thank my supervisor, RNDr. Josef Pelikán, and everybody
from Pocket Virtuality for their help and wonderful collaboration. I am very
grateful for the opportunity I was given to work on such an amazing project.

I would also like to thank my family, friends, and everybody else who
helped me during this time, especially Betka.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended,
in particular that the Czech Technical University in Prague has the right to
conclude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on August 3, 2020

Czech Technical University in Prague
Faculty of Information Technology
c© 2020 Richard Molnár. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Molnár, Richard. Synchronization of Hierarchical Data. Master’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2020.

Abstrakt

Synchronizace a přenos komplexńıch dat po śıti může být náročným problémem.
Společnost Pocket Virtuality potřebovala řešeńı pro svou platformu pro vzdálenou
př́ıtomnost, která by poskytovala synchronizačńı služby mezi zař́ızeńımi v této
platformě. Tato zař́ızeńı muśı mı́t možnost rychle a snadno vyměňovat velká
a komplexńı hierarchická data ve formě graf̊u scén obsahuj́ıćıch 3D modely,
textury a daľśı binárńı data a synchronizovat kopie těchto struktur na jiných
zař́ızeńıch.

Tato práce se zabývá analýzou stávaj́ıćıho prostřed́ı platformy Fata Morgana
a jej́ıch požadavk̊u. Tato analýza je pak základem pro seznam funkčńıch a
nefunkčńıch požadavk̊u na śıt’ové řešeńı.

Knihovna FMLink je výsledkem fáze návrhu a implementace této práce.
Jedná se o śıt’ovou knihovnu navrženou pro v́ıce platforem, vysoce efektivńı
a odolnou v̊uči zhoršeným śıt’ovým podmı́nkám. Pro splněńı bezpečnostńıch
požadavk̊u poskytuje FMLink podporu kryptografického protokolu TLS.

Tato knihovna je testována proti mnoha možným degradaćım śıtě a tes-
tována v r̊uzných emulovaných śıt’ových podmı́nkách. Testy prokázaly, že
knihovna může být nasazena a použita mnoha aplikacemi v platormě Fata
Morgana.

Kĺıčová slova poč́ıtačové śıtě, śıt’ová synchronizace, TCP, UDP, Internet,
TLS

vii

Abstract

Synchronization and transfer of complex data over the network can be a
challenging problem. The company Pocket Virtuality needed a solution for
its remote-presence platform, which would provide synchronization services
between the devices in this platform. These devices need to quickly and easily
exchange large and complex hierarchical data in the form of the scene graphs
containing 3D models, textures, and other binary data and synchronize copies
of these structures on other devices.

This thesis revolves around the analysis of the existing environment of the
Fata Morgana platform and its requirements. This analysis is then the basis
for the list of functional and non-functional requirements of the networking
solution.

The FMLink library is the result of the design and implementation phase
of this thesis. It is a networking library designed to be multi-platform, highly
efficient, and resistant to degraded network conditions. To satisfy the security
requirements, FMLink provides support for the TLS cryptographic protocol.

This library is tested against multiple possible network degradations and
tested in various emulated network conditions. The tests proved the library
can be deployed and used by many Fata Morgana applications.

Keywords computer networks, network synchronization, TCP, UDP, Inter-
net, TLS

viii

Contents

Introduction 1

1 Analysis 3
1.1 Fata Morgana . 3
1.2 Basic architecture of Fata Morgana 3
1.3 Synchronization Requirements 4

1.3.1 Data transfer . 4
1.3.2 Data synchronization . 4

1.4 FMCore . 4
1.4.1 Node . 4

1.4.1.1 Node addresses 5
1.4.2 Project . 5
1.4.3 Messenger . 5
1.4.4 Execution engine . 6

1.5 Environment . 6
1.6 Supported Devices . 6

1.6.1 Microsoft Hololens . 6
1.6.2 Desktops and Servers 7

1.7 Software platforms . 9
1.7.1 Universal Windows Platform 9
1.7.2 .NET . 9

1.7.2.1 .NET Framework vs .NET Core 9
1.8 Legacy solutions . 9

2 Requirements 11
2.1 Functional Requirements . 11

2.1.1 Create connections between Fata Morgana devices . . . 11
2.1.2 Sending of messages . 11
2.1.3 Project Synchronization 12

ix

2.2 Non-Functional Requirements 12
2.2.1 Compatibility . 12
2.2.2 Security . 13
2.2.3 Compliance . 13
2.2.4 Reliability . 13
2.2.5 Efficiency . 13

3 Design 15
3.1 StartSync and Notify . 15
3.2 Node Shadows . 15
3.3 Finding tree changes . 16

3.3.1 Diff Utils . 16
3.4 Serialization . 17

3.4.1 FMCore BinaryArchive 17
3.4.2 FMPatchatableArchive 18

3.5 Choosing an internet layer . 18
3.6 Messages . 19

3.6.1 IMessage . 19
3.6.1.1 Transport Message 20

3.6.2 Transport Chunks . 20
3.7 Sending Messages . 21

3.7.1 IFMLinkSocket . 21
3.7.2 IFMLinkClient . 22

3.8 Channels . 23
3.9 FMLinkQueue . 24
3.10 FMLinkSession . 25

4 Implementation 27
4.1 Platforms . 27

4.1.1 Memory managemenent 27
4.1.2 Interfaces . 28

4.2 Usage example . 29
4.3 FMPatchableArchive . 30
4.4 Messages . 31

4.4.1 Synchronization Messages 31
4.4.2 TreeDiffMessage . 31
4.4.3 Channel Messages . 31
4.4.4 Data Messages . 32

4.5 Synchronization . 32
4.5.1 Start/Stop Sync . 32
4.5.2 Notify . 32
4.5.3 Detecting change . 32

4.6 Interaction with Project . 33
4.6.1 Multiple variants of API 33

x

4.7 Implementing the IFMLinkSocket and choosing network layer . 34
4.7.1 UDP . 34
4.7.2 TCP . 35

4.8 Establishing connections . 35
4.9 Security . 36

5 Testing 39
5.1 Wireshark . 39

5.1.1 Wireshark Generic Dissector 40
5.2 Creating various test conditions 41

5.2.1 Test environment . 41
5.2.2 Testing the environment 43

5.2.2.1 Bandwidth test 43
5.2.2.2 Latency test 43

5.2.3 Emulating network conditions 43
5.2.4 Toxiproxy . 44
5.2.5 Clumsy . 45
5.2.6 TMnetsim . 45
5.2.7 NetBalancer . 46

5.3 FMLinkTester . 46
5.3.1 Ping-Pong Test Scenario 46

5.3.1.1 Test results without network modifications . . 47
5.3.2 Testing delayed connection 47
5.3.3 Testing a connection with jitter 48
5.3.4 Testing connection with packet loss 49
5.3.5 Testing tree exchange 50

5.3.5.1 Testing maximum possible network utilization 51
5.3.5.2 Tree synchronization over lossy network 52

Conclusion 55

Bibliography 57

xi

List of Figures

1.1 FMCore::Node class diagram . 5
1.2 Example of network conditions. 7
1.3 Drawing of Microsoft Hololens 1 (from patent[1]) 8
1.4 Intel Compute Stick . 8

3.1 Internet protocol suite model[2] . 19
3.2 Transport Chunks and Transport Messages 20
3.3 FMLinkClient connection state machine 23
3.4 Simplified internal structure of FMLink 25

4.1 Example usage of FMLink for .NET 29
4.2 Example usage of FMLink for UWP 30

5.1 Part of .fdesc FMLink format . 40
5.2 Wireshark Interface with FMLink plugin 41
5.3 Scheme of the test network . 42
5.4 Output of the bandwidth test . 43
5.5 Network latency histogram . 44
5.6 Ping-Pong protocol . 47
5.7 Distribution of round-trip times over an emulated network with

delay and jitter . 48
5.8 Histograms of cycle times in a network with packet loss 49
5.9 Utilization of the network . 51

xiii

List of Tables

5.1 Test Machine Configurations . 42
5.2 Test result of tree synchronization with different packet loss scenarios 52

xv

Introduction

The purpose of this thesis is to analyze the problem of data synchronization in
a very complex environment. Companies currently use many different solutions
to transfer data over the network. These solutions can range from very simple
to highly complex enterprise systems.

This thesis will not try to do develop an universal solution for every use
case in every environment, instead, the goal is to develop a highly integrated
solution for one specific software platform – Fata Morgana.

Fata Morgana is a platform for remote presence in virtual and augmented
reality with real-time capabilities. The platform is already in development for
several years now, but until now, it lacked an appropriate way of synchronizing
data over the network between the devices in the Fata Morgana platform.
These devices need an easy way of transporting large amounts of data, very
efficiently, and in potentially highly varying network conditions.

This thesis was written for the purpose of analyzing, designing„ and
implementing an universal and comprehensive networking solution for the
needs of the Fata Morgana platform. The target is to develop a FMLink
library, which will be able to support all the requirements of the Fata Morgana
platform.

This networking solution needs to be designed to be high performance,
efficient, and easily expandable in the future. It will need to be tested against
network complications it might encounter in the environments where it will be
deployed. Applications in the Fata Morgana ecosystem can be deployed on
many different operating systems, device types, and CPU architectures and
FMLink will have to consider this in its design.

1

Chapter 1
Analysis

1.1 Fata Morgana

Fata Morgana is the main product of the company Pocket Virtuality, based in
Prague. To cite the company website:

“Fata Morgana is a remote presence platform. The system scans
the environment and produces its virtual representation in real-time.
This virtual venue can be joined and shared by other users from
remote locations. The system facilitates collaboration of connected
users in remote locations and in the real environment.”[3]

Fata Morgana(FM) is a very complex product and the full description of it
is beyond the scope of this thesis, so I will focus only on the parts directly
affecting FMLink.

The Fata Morgana platform consists of many physical devices, each of them
having their own roles. These devices can run on different CPU architectures
and operating systems. With this arises a need to synchronize data between
the devices in a fast and efficient way.

These devices can be thousands of kilometers apart and in different internet
networks – some of them may not even be connected to the global internet.

1.2 Basic architecture of Fata Morgana

Each device in the Fata Morgana platform runs some kind of FM software.
Currently, this SW runs on top of the operating system – but this is not
required, and in the future, some IoT devices running only with very light
firmware are being considered. Fata Morgana software is composed of various
company-developed libraries. Currently, every FM device requires at least two
libraries – FMCore, containing basic data types used, and FMLink, to allow

3

1. Analysis

connection to other devices. Other components are added depending on the
application requirements.

1.3 Synchronization Requirements

The main purpose of the Fata Morgana platform is to provide remote presence
services in virtual and augmented reality. This fundamentally brings the
challenge of transferring large volumes of data. By the request of the Pocket
Virtuality, FMLink will need to provide two services – data transfer and data
synchronization.

1.3.1 Data transfer

Platform applications often need a simple way to transfer data from their
device to some other device. This data can be of any quality – it can be text,
video, raw binary data, or serialized objects. Clients (applications built upon
synchronization library) provide the data messages and the service ensures the
other side receives them.

1.3.2 Data synchronization

Another service clients will need is data synchronization. In this case, the
application exposes its data to the synchronization service and the service
ensures that the data is synchronized to other participants in communication.
When the data changes on any device, the changes must propagate to other
devices, so all devices have the same data. Any side of the communication
can change the synchronized data and the change must be transferred to other
clients automatically.

1.4 FMCore

As mentioned before, devices in the Fata Morgana platform need to expose and
transfer many different data types. Every application keeps part of its internal
data in the form of a tree, with nodes, edges, and attributes. All these and
more are defined in the FMCore library. This library was already developed
by Pocket Virtuality, but it will need to be expanded to fulfill the needs of the
FMLink solution.

1.4.1 Node

The tree structure used by the FM applications is defined in the FMCore
library. The main class used is FMCore::Node, which represents nodes of the
data tree. The tree has bidirectional links – each node has a reference to
its parent and vice versa. Application data can be represented by the tree

4

1.4. FMCore

Figure 1.1: FMCore::Node class diagram

structure itself or as part of node attributes. Each node can have a set of
different attributes. An attribute is characterized by its name and Value.

Value is class comprised of three important members – enum value, specify-
ing the value type of the payload, serial number, used for uniquely identifying
the concrete value and the payload itself. The value type allowed can be of any
predefined data type – the data types allowed for the attributes are also defined
and listed in the FMCore library. They can be of very simple nature – scalars,
vectors, fixed-size matrices – or complex ones – textures, XML documents,
etc. The synchronization solution for Fata Morgana will need to know how to
serialize and process these data types.

Some applications store whole 3D models as trees in their data context
(each vertex representing a Node), thus the tree can have millions of nodes
and attributes.

1.4.1.1 Node addresses

The location of each node in a tree can be characterized by a string address.
An example of such an address is ”/foo/bar”, which describes a node named
”bar”, that is a child of a node named ”foo”. This syntax is very similar to
the Linux syntax of locating files – it also shares the usage of ’.’ and ’..’ for
specifying ”local” and ”parent” respectively.

1.4.2 Project

The main data tree of a given application is encapsulated in a structure called
”Project” and is represented by the FMCore::Project class. Project is the
main data type synchronization is based around and it is the only object
the synchronization service needs to access from the application. It has two
main members: the root of the data tree and the messenger. The project also
contains a basic execution engine.

1.4.3 Messenger

FMCore::Messenger is a class used to route messages inside of one application
instance. It can be used to notify different components of activity from other
components. The messages are characterized by their type ID, subtype ID,

5

1. Analysis

and other optional parameters. Different components of an application can
send messages to the Project’s messenger. Components can then subscribe
to messages from the messenger and only receive messages of the requested
type. FMLink can use this messenger to notify other components that the
data under synchronization has been modified by the other party.

1.4.4 Execution engine

The Project has an ability to accept commands (usually expressed as lambda
expressions in c# or c++) and execute them. This is used so the Project can
control access to the data tree. Every action that accesses or modifies the
data tree should be bundled and executed as ”Command”, represented by the
FMCore:Command class. Project takes these Commands and queues them
for execution, and when possible, executes them in order. Commands may or
may not be ”exclusive”. If a Command modifies the data inside the tree, it
should be marked as exclusive – during its execution, no other Commands will
be executed. If the Command only reads the data inside the tree, it should
be marked as non-exclusive – in this case, the execution engine will allow it
to run in parallel to other non-exclusive commands that are successive in the
Command queue.

1.5 Environment

Fata Morgana platform is heavily distributed – it runs on many devices.
Currently, the devices are mainly Microsoft Hololens, Windows Desktops, and
Windows Server. The devices can be connected using various connections,
such as Wi-Fi, LTE, or Ethernet. Some devices may not even be permanently
connected to the Internet. The quality of connectivity between devices (mainly
Wi-Fi) can be highly degraded since the platform might be deployed inside a
factory, mining site, or other challenging environments.

1.6 Supported Devices

Fata Morgana applications need to run on many different device types, even
different CPU architectures. Currently, only the Windows devices, but other
operating systems will be considered in the future.

1.6.1 Microsoft Hololens

“Microsoft HoloLens 2 is an untethered holographic computer. It
refines the holographic computing journey started by HoloLens (1st
gen) to provide a more comfortable and immersive experience paired
with more options for collaborating in mixed reality.”[4]

6

1.6. Supported Devices

Figure 1.2: Example of network conditions.

Hololens is a device from Microsoft for augmented reality applications. Its
main feature is a pair of holographic displays allowing it to display digital
objects in the real world. It is a completely stand-alone device – it includes
its own processing unit, which is running Windows Holographic Operating
System (a modified version of Windows 10).

There are currently versions 1 and 2 of Hololens, which are both supported
by Fata Morgana. The main difference from the FMLink perspective is CPU
architecture. Hololens 1 uses old Intel Atom x86 CPU and Hololens 2 uses
Qualcomm Snapdragon 850 ARM CPU. ARM and x86 instruction sets are not
mutually compatible, therefore FMLink needs to take this into account.

1.6.2 Desktops and Servers

These devices are classic desktops and servers running Windows 10 and Win-
dows Server 2019. They all run on the x86-64 architecture, and thus can use
all the common tools available to these platforms. Some of the ”desktops”
might have very little computing power – one of them is Intel Compute Stick.
This device includes Intel Atom x5-Z8300, a quad-core 1.44 GHz x86-64 CPU,

7

1. Analysis

Figure 1.3: Drawing of Microsoft Hololens 1 (from patent[1])

and only 2 GB of RAM. This might seem like a lot, but this device is running
full Windows 10 OS, so there is not much left for applications. The main
advantages of this device are its size, which is slightly larger than an average
USB flash drive, and power requirements – it can be powered by a standard
USB charger.

Figure 1.4: Intel Compute Stick

8

1.7. Software platforms

1.7 Software platforms

Since there are many different device types, several Fata Morgana components
are being developed for two different platforms - Universal Windows Platform
and Microsoft .NET.

1.7.1 Universal Windows Platform

Universal Windows Platform – UWP for short – was chosen as a platform for
native development for Windows. UWP was chosen mostly because of Hololens
and other low power devices. FMCore and other existing Fata Morgana
libraries are written using C++/WinRT runtime, so FMLink will also use
these tools to target the UWP platform. These tools natively support both
ARM and x86 CPUs.

“C++/WinRT is an entirely standard modern C++17 language
projection for Windows Runtime (WinRT) APIs, implemented
as a header-file-based library, and designed to provide you with
first-class access to the modern Windows API. With C++/WinRT,
you can author and consume Windows Runtime APIs using any
standards-compliant C++17 compiler.”[5]

1.7.2 .NET

Another platform that Fata Morgana targets is .NET. This platform was
previously chosen for its powerful capabilities in building server applications
and faster and simpler development, compared to C++/WinRT.

1.7.2.1 .NET Framework vs .NET Core

At the start of the FMLink development, Fata Morgana libraries were targeting
.NET Framework version 4.7.2. During the development, the decision was
made to switch the whole Fata Morgana platform to .NET Core 3.1. This
brought many advantages – .NET Core offers much better portability to other
operating systems. This was almost necessary since version 4.8 of the .NET
Framework is probably the last one and only the .NET Core will continue its
development.

1.8 Legacy solutions

Before the deployment of the FMLink, the Fata Morgana platform used various
legacy techniques to synchronize data. The most common was very basic
HTTP pooling from clients to servers. This was very inefficient and slow.
Since the polling was executed at fixed intervals, there was a necessary latency
created by this polling interval. Every time there was even a small change

9

1. Analysis

in the application data, the whole application state had to be transferred.
Combined with very inefficient data serialization, this was limited by both
CPU computing power and network throughput. Applications also had to
include a lot of ”boilerplate” code for the handling of HTTP communication
and manual serialization.

10

Chapter 2
Requirements

In this chapter, I will discuss the functional and non-functional requirements of
FMLink, which have been identified from the analysis phase. The final library
will need to consider and satisfy these requirements. The term ”user” will be
used, which represents the application that will include and use the FMLink
library.

2.1 Functional Requirements

The main purpose of FMLink is to provide a simple way of connecting to other
Fata Morgana devices, synchronize selected subtrees of a Project and send
and receive any arbitrary data. Functional requirements need to take this into
account.

2.1.1 Create connections between Fata Morgana devices

Users of the FMLink library need a simple way to connect to other Fata
Morgana devices. User should supply only the hostname and port of the other
device and FMLink should handle the rest and establish a connection which
can be used further. When the user wants to close the connection, FMLink
should notify the other party and gracefully close the connection on both ends.
The user should also be notified if the connection gets to a broken state (other
party not responding, network disconnection, etc.).

2.1.2 Sending of messages

Once the connection is established, users of the library should be able to send
messages to the other party. The messages can contain any data, as soon as
the data is immutable and serializable. The messages can be expected to be
very large, up to single gigabytes in extreme situations. The library needs to

11

2. Requirements

return control to the user immediately when the user tries to send a message,
so it doesn’t block the execution of the user thread.

If the user tries to send a very large message on a slow connection, he
should still be able to send other messages with higher priority, even if the
first large message hasn’t been fully transmitted yet. Once these have been
transmitted, the original large message should continue the transfer. This
implies that there needs to be some mechanism in place which allows the user
to assign different priorities to messages and FMLink needs to respect that.

2.1.3 Project Synchronization

The application using FMLink can have some of its data stored inside the
Project. FMLink needs to be able to synchronize this data with the other
party, making sure that the other party receives a correct copy of this data.
Since it is in the form a tree, the user needs to be able to select which subtree
to synchronize to the other party’s destination subtree. The remote path of
the synchronized subtree might be different from the original local path of the
subtree.

If the user makes any changes in the subtree marked for synchronization,
the user will notify FMLink of it – FMLink then needs to ensure, that any
changes made to the subtree are replicated on the remote party’s subtree. This
is required both ways – if a remote party makes such changes to their subtree,
the changes should also reflect locally.

To easily process changes made to users Project tree, FMLink should notify
the user when it received and applied the changes from the other party. It
should apply the changes in a way that will not corrupt any data in the Project
tree or cause undefined behavior.

2.2 Non-Functional Requirements

From the analysis chapter, several major non-functional requirements emerged.
These requirements are probably the largest factor of why FMLink became
it’s own and large project – if the following requirements were relaxed, the
development of synchronization solution for Fata Morgana would take only
a small fraction of development efforts. They can be grouped into several
categories: portability, security, compliance, reliability, and efficiency.

2.2.1 Compatibility

As mentioned before, Fata Morgana is currently targeting .NET and UWP
platforms and its libraries and applications are programmed in C# and
C++/WinRT respectively. Therefore, UWP users should be able to use
native FMLink and .NET users should be able to use the .NET library. Not

12

2.2. Non-Functional Requirements

only that, but client applications should be able to communicate with other
client applications running on different platforms.

2.2.2 Security

Customers using the Fata Morgana platform might be transferring sensitive
and business-critical data. Therefore FMLink needs to provide all aspects of a
well-secured communication protocol.

The first is access control – devices using FMLink must be able to properly
authenticate and authorize themselves and also other devices. In this context,
authentication is the process of retrieving and verifying of an identity. Au-
thorization then specifies what access and privileges the given identity has.
In general, this means that FMLink must be able to defend itself against an
unauthorized attacker.

FMLink also needs to be able to encrypt the data it transfers, since it can
be very sensitive. The encryption must be fast since the devices can have very
little processing power. It also needs to be resistant to potential attacks from
well-funded attackers.

2.2.3 Compliance

Since the Fata Morgana platform will have access to sensitive customer data,
customers will probably need some assurance that this solution is safe to install
into their environment. One of the common ways to achieve this is to get the
product audited by an independent organization specializing in security audits
of IT solutions. This needs to be taken into account when designing security
aspects of FMLink since they will be a large part of a security audit.

2.2.4 Reliability

Fata Morgana devices might be deployed into an environment, where network
conditions might be very poor. FMLink needs to account for this and provide
means to reliably transfer information. It must prevent the potential delivery
of corrupted information to other devices, which might cause catastrophic
consequences. FMLink should also be to reasonable work in conditions, where
information loss during transfer is common and account for this. Messages
delivered to other parties by FMLink need to be delivered in an order that the
user sending them expects. This means that FMLink needs to be designed in
a way where delivery of messages is always in deterministic order, regardless
of network conditions.

2.2.5 Efficiency

FMLink needs to utilize network resources efficiently. Network latency and
especially throughput needs to be considered since the amount of data a given

13

2. Requirements

network is able to transfer can be a very finite resource. FMLink should not add
unnecessary delay and latency to communication in a network with significant
delay. FMLink also needs to be data-efficient – when synchronizing changes
made to the Node tree, only the changes in the tree should be transferred.

14

Chapter 3
Design

When simplified a lot, the basic purpose of FMLink is synchronization of
user-provided Node trees and sending other messages to the other party. Let’s
start by decomposing the main problem, synchronization of the Node trees.

3.1 StartSync and Notify

At the top level of the FMLink API, two main methods used for subtree
synchronization will be provided, StartSync, and Notify. StartSync takes a
Node tree as a parameter – this way FMLink obtains a reference to the tree
user wants to have synchronized with other party and it instructs FMLink
to start checking the tree for changes. It is expected the user will call the
Notify method every time he makes a change to the tree – this way FMLink
doesn’t have to periodically check for changes in the tree, only when the Notify
method is called. This also allows it to be more predictable about when will
FMLink send synchronization messages to the other party.

3.2 Node Shadows

Each time the user calls the Notify method, FMLink needs to know what
changed from the last known state of the tree that was selected for synchro-
nization. The basic solution to this problem would be to keep a copy of the
whole tree. Every time the user would notify FMLink, it would check it against
its own copy of the tree, find the differences and then make a new copy of
the current tree for the next checking of differences. It becomes obvious that
this solution brings a lot of copying, memory allocation, and would be highly
ineffective since it would basically double the memory requirements of the
Node tree.

As a solution for this, a concept of serial numbers in FMCore needs to be
explained first. Each node attribute is described by its name and Value. Value

15

3. Design

is defined in FMCore documentation as follows :

Value is immutable. If one desires to modify the Value, a new one
must be created and then the particular node attribute has to be
replaced. A Value holds a payload, its simplified type, and a serial
number (for detecting modifications).

This means that every time an attribute has changed, it is possible to detect
this by checking the serial number of the attribute’s Value.

FMLink takes advantage of this and creates a new concept of ”Shadow
Nodes”. These nodes are very similar to the normal Node tree structure except
for one difference – Values of attributes have an empty payload. In order to
create Shadow Node tree, FMLink copies the supplied Node tree marked for
synchronization and creates a ”Shadow Copy”. This copy has exactly the same
structure as the original tree, but it omits the actual payload of the attribute
Values while keeping the serial numbers and ValueTypes of the Values. The
payloads of Values account for the majority of the data, so this structure uses
much less memory space.

Using this Shadow Nodes, when a user first marks some Node tree for
synchronization (using the StartSync method), FMLink makes a shadow copy
of this tree, but also it also keeps a reference to the original tree. When the
user notifies the FMLink of possible changes, FMLink can check for changes
by checking the tree structure and attribute Serial numbers against its own
copy in the form of Shadow tree. When the check and synchronization are
completed, the Shadow tree is actualized to reflect the current state of the
user’s Node tree.

3.3 Finding tree changes

Now that FMLink has access to two Node trees (one that is a reference to
the current tree and one that is Shadow copy of the last known state of the
tree), it needs to compare them against each other and find the differences.
Then, it can serialize these differences, bundle them as a message, and send
them to the other connected party. Finally, when the other party applies these
differences to their Node tree, this will effectively synchronize the trees to hold
the same data and have the same structure.

3.3.1 Diff Utils

To find the actual differences between the two trees, I have designed DiffUtils.
This utility takes two trees (the old, shadow copy, and the new, full Node tree
with Values) and compares their structure and serial numbers of attribute
Values and produces a ”Patch”. The patch fully describes the changes the
user made to the new tree, compared to the old one. This patch can then be

16

3.4. Serialization

applied to the tree on the other side of the connection and it will transform it
and thus synchronizes it.

3.4 Serialization

FMLink needs to provide a simple means of transporting the tree structure
and changes in the tree. In order to do this, it needs to be able to turn this
data into a stream of bytes and reconstruct this data from the provided stream
of bytes – a process called serialization and deserialization.

Node attributes in the Project tree have 39 predefined possible Value types
in the FMCore library. There are numerical value types, variable-length arrays,
fixed sized matrices, and other types commonly used in applications working
with computer graphics. The full list is listed in the ValueType enum in the
FMCore library.

Fortunately, FMCore already contains a means of serializing and deserializ-
ing these types, so FMLink can leverage it. FMCore includes a serializer and
deserializer that takes a Value with a given ValueType and platform-dependent
binary reader/writer and uses it as byte storage.

3.4.1 FMCore BinaryArchive

FMCore library contains its own binary format for storing Node trees called
FMBinaryArchive. This binary format is able to store a single tree in a given
byte stream, including all its attribute values and the structure of the tree
itself. It is quite a simple format, which works recursively. The algorithm can
be described in 3 parts :

1. Write begin marker

2. Recursively go through the whole tree and write each node.
Each node written consists of several fields :

a) Node start marker
b) Node address in the tree
c) Node name
d) List of attributes, where each attribute consist of its value type,

name, and actual serialized value
e) Node end marker

3. Write end marker

During the deserialization process, as the algorithm reads the stream of bytes,
it deserializes the nodes contained and gradually builds the whole tree. Since
the tree is serialized recursively, each time a node is read during deserialization,

17

3. Design

it is certain that its parent was already deserialized and thus the Node can be
added to its list of children.

This format works well for storing complete information about a given tree.
However, FMLink needs something more. It needs to maintain a synchronized
copy of a tree on the other side of the connection. If it sent the whole tree
every time a single number changed in a very big tree, it would be sending a
lot of redundant information. Therefore some system needs to be designed,
which detects actual changes made to the tree and transfers only those.

3.4.2 FMPatchatableArchive

As part of this thesis, a new type of archive type has been proposed and
implemented in order to support the requirements of FMLink. This format is
formally version 2 of the existing FMBinaryArchive format. It was designed
to have additional ability to create archives that store tree ”patches”, which
can be applied to an existing tree and modify it. This extended format is
able to specify nodes and attributes to be removed from an already existing
tree. More information about this format is discussed in the Implementation
chapter.

3.5 Choosing an internet layer

Since FMLink needs to run over the internet, the decision was needed which
network protocols it is going to use. This decision needs to take into account
the requirements specified. If the layer chosen is too high, the protocol might
have issues achieving some goals set by the requirements, since the higher the
abstraction, the lower the amount of control possible. For example, if HTTP
was chosen, which is running on an application layer, FMLink would lose a
lot of control and for example, it wouldn’t be possible to get finer control of
security, latency, frame sizes, etc. However, if the layer chosen is too low, it
might be needed to do an unnecessary large amount of development, which
might not even provide better results than already existing solutions. In the
following description, I was following the TCP/IP model of the Internet, as
opposed to the OSI model.

The lowest TCP/IP layer in the TCP/IP model is the link layer. Since this
layer is not routed through the Internet, which is a requirement of FMLink,
this layer was not selected. A level higher is the Internet Protocol layer, with
common implementations such as IPv4, IPv6, ICMP, IPsec, and more. Since
protocols such as IPv4 and IPv6 are already widely used and supported, it
would be unfeasible to easily develop custom Internet layer protocols that
would get routed through the Internet.

The third layer is the Transport Layer. The most common protocols of
this layer are UDP and TCP. In theory, it would be possible to develop custom
Internet Layer protocol, these protocols would even be routed through the

18

3.6. Messages

Figure 3.1: Internet protocol suite model[2]

Internet. However, UDP and TCP already offer enough functionality and
performance for use by FMLink, so the decision was to use these two protocols.

Higher-level protocols and messaging systems, such as Kafka, ZeroMQ,
or RabbitMQ were not used, since the communication protocol needs to be
highly integrated with other FM components and the company wants full
control over how the protocol works and behaves. It would be possible to
adapt some already existing networking framework, but this would bring an
unnecessary and unwanted dependency to additional external software solutions
and additional undesired complexity.

3.6 Messages

As opposed to stream protocols, FMLink is a protocol based on the concept of
messages, a so-called messaging protocol. Every bit of information that FMLink
sends or receives is represented by a message. These messages need some way
to be represented in the FMLink library and also in network communication.

3.6.1 IMessage

At lower levels, all messages sent through FMLink are implemented as classes
with the IMessage interface. This interface has only two public methods:
serialize and deserialize. Every type of message sent through FMLink needs
to implement this interface, so it can be sent via a serial link. This interface
guarantees that every instance of a message can be serialized and deserialized
just by calling the interface methods. However, since FMLink doesn’t handle
serialization of these message objects, every class needs to implement the
serialization by itself. This brings the benefit that the serialization can store
the data very efficiently since it is written individually for each class as opposed
to universal serialization.

19

3. Design

3.6.1.1 Transport Message

Figure 3.2: Transport Chunks and Transport Messages

After the IMessage object is serialized, some additional information is
added in front of the stream of serialized data in form of a header. The
header contains ChannelID (the concept of channels will be explained later)
and TypeID. TypeID is used mainly during the deserialization and it tells
the deserializer the actual class type of the message being deserialized. Each
message class implementing the IMessage interface has assigned a unique
TypeID.

The whole header and the serialized IMessage object are together called
TransportMessage in the context of FMLink and consist of a single array of
bytes ready to be sent.

3.6.2 Transport Chunks

FMLink will often need to send very large message objects through the network.
On the internet, the fundamental unit of data is the packet. These packets
are often very small, in most conditions, these are only 1500 bytes (2304 B
for WLAN, 1500 for Ethernet, 1492 for PPPoE). When sending any data
through the Internet, the information will be divided into packets and then
reconstructed on the other side. This applies to every network solution using
the Internet. The trivial solution would be to use some existing protocol’s
ability to divide and reconstruct the data and just send the whole stream of
bytes at once. This is exactly what TCP can do since it is a streaming protocol
and it hides the concept of packets from the user.

20

3.7. Sending Messages

During the design phase of FMLink, it was decided to send the data in
smaller chunks, even if not required by the underlying network protocol. This
brings one big advantage of greater control of sending and receiving data.

One such advantage is the ability to assign different priorities to messages.
Let’s say we have two messages to be sent, one very large (for example 3D
model), but a low priority, and another one much smaller, but higher priority
(text message). Using traditional TCP connection, if the user would first try
to send the big, low-priority message, he would have to wait until it is finished
sending in order to send the high priority message. In the context that FMLink
operates in, this is unacceptable, since high-priority massages couldn’t be sent
very quickly.

FMLink splits the messages it wants to send into smaller chunks. These
chunks should be the same size as MTU of the network in order to mini-
mize protocol overhead. In computer networking, the maximum transmission
unit (MTU) is the size of the largest protocol data unit (PDU) that can be
communicated in a single network-layer transaction.[6]

Each chunk is a part of a serialized TransportMessage and consists of two
parts – header data and actual payload data. The header has three fields:
MessageID, ChunkID, and Lenght. Length is straightforward, it denotes the
length of the chunk’s data. MessageID is used so that chunks are correctly
assigned to the right TransportMessage during the receiving process and
ChunkID is used so that chunks are assembled in the correct order. Since
the chunks have the order number inside them, they can even arrive in a
different order they were sent in. TCP would not allow this, since it checks
if the messages being sent are delivered in the correct order and it might
require retransmission. UDP would not detect packets in the wrong order at
all. FMLink is able to detect this and still use the data if the only issue is that
packets are being delivered in the wrong order since it contains the Chunk and
Message IDs and uses them to correctly reassembly the message.

3.7 Sending Messages

This section will discuss the process of sending the actual TransportMessages
and TransportChunks. For this reason, two interfaces and their implementa-
tions were created: IFMLinkSocket and IFMLinkClient.

3.7.1 IFMLinkSocket

The main purpose of this interface is to send and receive small bundles of
binary data. It was created as an interface (or abstract class in C++), in
order to allow FMLink to be network protocol agnostic and to allow different
implementations and easy unit-testing. Actual implementations are allowed
to use any specific network protocol, such as UDP, TCP, or even something

21

3. Design

higher-level such as ZeroMQ or WebSocket, as soon as the protocol allows
sending and receiving binary data.

This interface is not responsible for ensuring the message actually gets
delivered, since that is handled at higher levels of FMLink. It is also not
responsible for splitting, merging, or serializing the data. However, implemen-
tations of this interface need to handle the creation and closure of the network
connection if required by the underlying protocol.

The interface contains two public methods, Send and Receive. It is expected
that chunks will be sent one by one in a blocking fashion, so the Send method
should not return until it has finished transmitting the binary data. The
same goes for the Receive method, which accepts the number of bytes as an
argument and the method will return only when the requested number of bytes
has been received.

Only one IFMLinkSocket instance will be used by the FMLink connection
and it is the only point in the whole FMLink library where the actual platform-
dependent network APIs are called, therefore IFMLinkSocket is a bridge
between FMLink and network layer APIs available on a given platform.

3.7.2 IFMLinkClient

Interface IFMLinkClient was designed to create the actual instance of IFM-
LinkSocket object and to send and receive TransportChunk objects, for which
it uses the created IFMLinkSocket object. It was designed as an interface, but
in this case, the only reason to do so was to allow easy unit-testing so that the
actual implementation can be swapped for a mock class.

FMLinkClient was designed to take TransportChunk instances, serialize
them and send them through IFMLinkSocket. This process just serializes the
TransportChunk header data (chunk size, ChunkID, and MessageID), prepends
it to the TransportChunk binary payload, and forwards the whole data bundle
to IFMLinkSocket. This process works similarly for the Receive method, which
receives binary data through IFMLinkSocket. First, it tries to receive header
data of a fixed size (3 integers – 12 bytes). This tells the FMLinkClient the
length of the incoming chunk data, which then tries to receive the payload of
the chunk. After the whole chunk including its header was received, this data
is stored back in the TransportChunk instance. Similarly to IFMLinkSocket,
the Receive method blocks until a TransportChunk is actually received and
returned to the caller.

This interface also exposes interface methods for getting the connection
state. IFMLinkClient can have four states - Created, Open, Failed, and Closed.

Every IFMLinkClient starts in the Created state. As soon as the IFM-
LinkClient obtains IFMLinkSocket instance with an open connection, it changes
the state to Open and it signals that the client is ready to use. If the con-
nection fails during creation or in any other phase,the client goes into Failed
state permanently and new IFMLinkClient should be created (and thus a new

22

3.8. Channels

Figure 3.3: FMLinkClient connection state machine

connection opened). When the client is gracefully closed successfully, it goes
into Closed state.

3.8 Channels

When sending messages through FMLink, the user might want to send some
messages with high priority and some with lower priority. In order to enable do-
ing that, the concept of channels was introduced to FMLink – FMLinkChannel.
A channel is a virtual link that can be opened from one side of an already
established communication and it will be opened on both sides. A channel
is characterized by its name and channel ID. Channels were designed as an
exclusive way to send messages, every message needs to be sent and received
through some channel.

For this reason, every open FMLink connection always has one channel
created on both sides by default. This channel has the name ”Main” and an
ID of 0 and is always present. It is not visible or usable by the user, since its
purpose is for sending and receiving messages created by the FMLink itself. It
is used for commanding the other connected FMLink instance to open channels,
starting/stopping of synchronizations, or to close the connection. Messages
received from this channel are handled exclusively by FMLink and not passed
down to the user.

Channels were introduced so that the user can send messages with different
parameters. For now, only the priority parameter can be changed for the chan-

23

3. Design

nel, however, in the future, channels might feature optional data compression,
optional encryption, or automatic persistent storage of messages. FMLink
architecture with channels allows me to easily implement these features later
when needed.

Each FMLink connection has a list of currently open channels. This
collection is managed by the ChannelManager class. Users of FMLink are
able to open and close the channels. When a user opens the channel, a new
FMLinkChannel instance is created and inserted into collection managed by
ChannelManager. The other party is then notified (through the ”Main” channel)
about this new channel, so the other party also creates their FMLinkChannel
instance.

FMLinkChannel is the main entry point for sending messages through
FMLink. For this reason, FMLinkChannel was designed with a method to send
an IMessage instance and an event that notifies the user that some message
has been received on that particular channel from the other party. However,
when the user calls the SendMessage method on FMLinkChannel, the message
is not sent immediately. Instead, it is serialized (into the TransportMesage
object), placed in the channel’s outgoing buffer queue, and waits for further
processing.

3.9 FMLinkQueue

FMLinkQueue is a class designed as a bridge between FMLinkChannels and
FMLinkClient. The main problem this class was designed to solve was that
there can be many FMLinkChannels created but there should always be just
one FMLinkClient for a given connection, which means that channels have to
compete for the outgoing connection. FMLinkQueue decides, which channel
should be able to send its message – this message is already serialized and in
the form of a TransportMessage, which contains the serialized IMessage data.

The process starts with FMLinkQueue deciding, which channel should be
selected for transmission, depending on various criteria. It then takes the front
TransportMessage of the selected channel’s outgoing message queue. Each
TransportMessage object keeps track of how much of it was transferred. Taking
this information into consideration, FMLinkQueue takes a TransportChunk out
of this message, forwards it to IFMLinkClient and upon successful transmission,
it marks the given TransportMessage that the aforementioned chunk was
transmitted. If the TransportMessage is fully transmitted, it is popped from
the outgoing message queue of the channel. This process then repeats again in
an infinite loop.

It must be noted that a different channel might be chosen for transmis-
sion, even if its front message is not yet fully transmitted, with some chunks
still remaining for transmission. Since the chunks are small, this allows the
FMLink to quickly transmit messages from high priority channels even if

24

3.10. FMLinkSession

other messages haven’t finished transmitting yet. This design also allows
for a pseudo-simultaneous transmission of multiple messages at once on a
single(TCP) connection.

3.10 FMLinkSession

Since all the basic building blocks of FMLink design have been described,
FMLinkSession can be introduced. It is the main point of contact for the
user to use the FMLink API. It exposes most of the main methods the user
will need, so most of the architecture, such as clients, sockets, and queues
can be hidden from the user(private). Since the target of FMLink is to
provide synchronization and messaging services, it’s interface reflects this. It
exposes methods for channel creation and retrieving and methods supporting
synchronization.

Figure 3.4: Simplified internal structure of FMLink

FMLinkSession represents an active FMLink connection. It is built as
a central point for FMLink and contains references to FMLinkClient, FM-
LinkQueue, and all the FMLinkChannels. It manages these objects and it

25

3. Design

also handles the synchronization services – it keeps a list of trees marked for
synchronization and executes commands that keep these trees synchronized.

To recapitulate previous sections, I will show what happens when a user
tries to create a channel and send a text message.

1. User will request a new channel from FMLinkSession.

2. FMLinkSession will inform the other party a new channel has been
created and provides the user with the new FMLinkChannel.

3. User will create a new instance of a message with the IMessage interface,
that contains the data he wishes to send

4. User sends this message to the provided FMLinkChannel

5. FMLinkChannel serializes this message (by calling the Serialize method
of the IMessage interface), bundles it in the TransportMessage object
and adds this message to its queue of outgoing messages

6. When it gets its turn, FMLinkQueue will take this message from the
front of the channel’s queue and it will send a chunk from this message
through FMLinkClient

7. FMLinkClient adds chunk header data to the chunk binary data and
forwards the final binary data (of the mentioned small size, approximately
1500 B) to the IFMLinkSocket

8. IFMLinkSocket transmits the binary data via the selected network inter-
face (TCP, UDP...)

9. This repeats until all the chunks of the message are sent

26

Chapter 4
Implementation

4.1 Platforms

Since FMLink was needed to be developed for two platforms, Universal Win-
dows Platform and .NET, the implementation process needed to reflect this.
The primary development started on the .NET platform since I was personally
most experienced with this platform and it was easiest for me to prototype and
develop on. After the implementation of the .NET version in C# has reached
a phase where basic functionality was working, I started porting the .NET
version to UWP, using WinRT/C++. WinRT/C++ will be from now on be
referenced only as C++ since it is based on the C++17 language standard.

4.1.1 Memory managemenent

The largest difference between .NET and C++ that I encountered during the
development phase, is that .NET provides garbage collection, while in C++,
the programmer needs to manage the program memory.

“.NET’s garbage collector manages the allocation and release of
memory for your application. Each time you create a new object,
the common language runtime allocates memory for the object from
the managed heap. As long as address space is available in the
managed heap, the runtime continues to allocate space for new
objects. However, memory is not infinite. Eventually, the garbage
collector must perform a collection in order to free some memory.
The garbage collector’s optimizing engine determines the best time
to perform a collection, based upon the allocations being made.
When the garbage collector performs a collection, it checks for
objects in the managed heap that are no longer being used by the
application and performs the necessary operations to reclaim their
memory.”[7]

27

4. Implementation

In order to simplify the porting process, smart pointers from the C++ language
standard were chosen as the best solution to imitate the architecture of FMLink
in .NET. In C#/.NET, object instances of classes are always stored as references.
To simulate this, everywhere in the .NET version where there was a reference to
an object, a shared ptr was used instead containing the object. This approach
worked most of the time, except for cyclical references. A shared ptr uses
reference counting to decide when to delete the referenced object :

“std::shared ptr is a smart pointer that retains shared ownership of
an object through a pointer. Several shared ptr objects may own the
same object. The object is destroyed and its memory deallocated
when either of the following happens:

the last remaining shared ptr owning the object is destroyed;
the last remaining shared ptr owning the object is assigned another
pointer via operator= or reset(). The object is destroyed using
delete-expression or a custom deleter that is supplied to shared ptr
during construction.”[8]

This works well for most of the scenarios, except when two objects reference
each other. While the garbage collector in .NET can detect this and remove
these objects when nothing else references them, a solution using shared ptr
would never delete this objects. This conflict of resolved by making one of
the references weak ptr and the other one shared ptr. This way the reference
counting cycle is broken because weak ptr isn’t using reference counting.

A smart decision needs to be made in every case, which one is going to be
shared ptr and which one weak ptr. In most cases, this can be quite simple,
since one object usually creates the other, in which case the parent object
should be shared ptr.

4.1.2 Interfaces

Up until now, I have been referring to IMessage and others as interfaces.
However, only C# supports interfaces, C++ doesn’t have a direct language
construct to represent them. Since interfaces are a very common design
construct, C++ supports them via abstract classes. These classes are defined
when at least one of the class methods is defined as a pure virtual method with
no implementation. When a class wants to implement this interface, it just
extends this class. This is enabled by the fact that as opposed to C#, C++
supports multiple inheritance and thus a C++ class can implement multiple
interfaces.

28

4.2. Usage example

4.2 Usage example

To better illustrate how the final implementation of FMLink is used, a code ex-
ample can be seen in figure 4.1. The client first specifies the IP address and port,
at which the server listens for incoming connections. ClientConnectionHandler
then creates a new FMLinkSession and returns it to the user.

Figure 4.1: Example usage of FMLink for .NET

The user then specifies the target Project and Node paths for synchroniza-
tion. FMLink adds these to its list of synchronized subtrees. After that, the
user modifies the Node attribute and Notifies the FMLink of the change. Note,
that the user doesn’t need to specify what exactly changed, since FMLink can
automatically detect the scope of change.

Another functionality the example demonstrates is the sending of messages.
The user requests a new channel ”messages”. FMLink then notifies the server
of this channel and the channel is opened and ready to be used on both sides.

29

4. Implementation

Figure 4.2: Example usage of FMLink for UWP

The user then sends a text message by calling the ”SendMessage” method on
the provided channel. If a server sends a message via this channel, a ”Received
message” text is displayed in the console window.

4.3 FMPatchableArchive

In order to support the new functionality of creating ”patch” updates for the
tree, a new version of the FMBinaryArchive was introduced. The V2 format
makes use of the Node start marker in the V1 format in order to add the new
features. It adds a new Node delete marker, which instructs the deserializer
to remove the marked Node from the tree. In order to remove an attribute
from a Node, a special new value type ”Delete” was created, which in turn
instructs the deserializer to remove the attribute from the Node. It doesn’t
matter that the actual value type of the deleted attribute is not specified, since
Nodes cannot have attributes with duplicate names.

30

4.4. Messages

4.4 Messages

FMLink can send various messages that include the IMessage interface. Some
messages can be of an internal character, only the FMLink itself is expected to
send and use them and they are sent over the ”Main” channel. These messages
inform the other party of the synchronization trees, channel creation/destruc-
tion, etc. In order to simplify the handling of these messages on arrival, they
not only include the data they transfer, but also an action that needs to be
performed when they arrive. For this purpose a new interface has been created,
IExecutableMessage, that extends the IMessage interface and adds one more
method, Apply(). When the message arrives, FMLink will call the Apply
method and supply the FMLinkSession object as a parameter. This means
that messages implementing this interface have access to the whole internals
of FMLink and can manipulate them.

4.4.1 Synchronization Messages

When a user requests a synchronization of some subtree from FMLink, the
other connected party needs to be informed of this. For this purpose, Start-
SynchronizationMessage and StopSynchronizationMessage message types were
implemented. They contain the local and remote addresses of the subtree to
be synchronized. These messages are executable, when a Start message arrives,
it creates a new entry in a list of synchronized subtrees. The Stop message
does the opposite, it removes the entry from the list of synchronized subtrees
from the FMLinkSession.

4.4.2 TreeDiffMessage

This type of message is sent by the FMLink each time the user calls the Notify
method. The Notify method will search for things that changed in the subtree
marked for synchronization and if any changes are found, they are serialized
into FMPatchableArchive and send a part of TreeDiffMessage. This message
also implements the IExecutableMessage interface. On arrival at the other
side of the connection, it is executed and the serialized tree patch is applied to
the local copy of the subtree a therefore it synchronizes the contents of these
two subtrees.

4.4.3 Channel Messages

For the purpose of channel creation and destruction, ChannelAddedMessage
and ChannelRemovedMessages were created. When one party opens or closes
a channel in their FMLinkSession, FMLink creates an instance of this message
and sends it to the other party, informing it of that action. For that, these
messages also implement the IExecutableMessage interface, so that they can
be executed and create/destroy a channel on arrival.

31

4. Implementation

4.4.4 Data Messages

For the purpose of transferring data from the user, ASCIITextMessage and
BinaryDataMessage were created. They are only containers for the data and
therefore are not executable. When the user wants to send a text message
via FMLink, he needs to create a new ASCIITextMessage instance, initialize
it with the desired string contents and send it via some existing channel.
ASCIITextMessage and BinaryDataMessage messages are currently the only
message types accessible by a user and not sent by FMLink internally.

4.5 Synchronization

For synchronization purposes, most of the synchronization orchestration is
handled by the FMLinkSession class. For this purpose, three methods were
implemented, StartSync, Notify, and StopSync.

4.5.1 Start/Stop Sync

Each FMLinkSession holds a list of subtrees that need to be kept synchronized.
Each subtree marked for synchronization is represented as a SubtreeSynchro-
nization object. This object contains the Shadow copy of the Node tree, local
and remote addresses in the Project tree where subtree is located in, and an
FMLinkChannel instance. Every time a user starts synchronization by calling
the StartSync function, a new SubtreeSynchronization instance is stored inside
a list of synchronized subtrees and StartSynchronizationMessage is sent to
the other party. A new channel is also created for this specific subtree. This
means that if the user synchronizes multiple subtrees, multiple channels will
be created. Since channels can have different priorities, synchronization of
different subtrees can also have different priorities.

4.5.2 Notify

The Notify function is called every time a user wants to update the synchro-
nization of the selected subtrees. The function goes over a list of SubtreeSyn-
chronizations and checks for changes in each of them using DiffUtils. When
there is a change detected in the subtree, the serialized archive produced from
the DiffUtils is sent as a TreeDiffMessage to the other party.

4.5.3 Detecting change

For detecting the change in a subtree and serializing it into a patch, DiffUtils
provides the function WriteDiff. This function creates an FMPatchableArchive
and recursively iterates through each Node of the subtree and compares it to
the Shadow tree. If a Node is found that is missing from the Shadow tree, this
Node is added to the archive and the same goes for attributes. If there is a

32

4.6. Interaction with Project

node present in a Shadow tree but not present in the current Node tree, this
Node is considered to be removed by the user and written as deleted to the
archive. The new FMPatchableArchive format supports this, since it not only
has markers for adding nodes/attributes as the old format did, but it also has
markers for node/attribute deletion and attribute change.

In order to deserialize the FMPatchableArchive, the DiffUtils class provides
the ReadDiff class. This class reads the archive a applies the changes described
in the archive to the user’s Node subtree. In the process, it also changes the
Shadow copy of the subtree to reflect the changes.

4.6 Interaction with Project

As mentioned before, every operation using the Project Node tree should use
the Project’s execution engine. This engine provides the Execute method,
which takes a function delegate and places it in the command queue. When
ready, this function is executed and the function can interact with the Node
tree. The Execute function can be called as exclusive or non-exclusive. When
the command is marked as non-exclusive, it is expected that it will execute
only read-only operations on the Node tree. This allows the execution engine
to run multiple non-exclusive commands in parallel since no data race can
happen and this can increase performance.

During the development of FMLink, one downside of the execution engine
was encountered – it is not known by default, when the command actually
starts execution and when the command fully executes. Since FMLink needs to
wait for the execution of some of the commands, a new function was introduced,
ExecuteAsync. This new function returns the user a Task object immediately
and when the command actually completes, the Task object is notified. This
means that the user just needs to await this Task. Both C# and C++17
support asynchronous Task programming in the current versions. In the C++
implementation, the IAsyncAction interface from the Windows Runtime was
used to facilitate asynchronous programming.

4.6.1 Multiple variants of API

Some of the public methods of FMLinkSession class are expected to be changing
or reading the contents of the Project tree and there this code needs to be
executed inside a Project Command. Two main functions that require this
are Notify and StartSync. The issue with running the Commands is that
they cannot be executed and waited on inside another Command, since that
would cause a deadlock scenario. And when running some code, it is currently
impossible to tell if the code is already running as a Command.

For this reason, the Notify and StartSync functions have three variants.
The first variant NotifyAsCommand creates it’s own Command and executes
the Notify function inside it. It returns an awaitable task that tracks the

33

4. Implementation

progress of this Command, so the function returns immediately and it cannot
be run inside another command. Since this method returns a Task, it can be
waited on until the Notify function is completed.

The second variant is NotifyUnsafe. The Unsafe postfix suggests that as
opposed to NotifyAsync, this function doesn’t create its own Command but
assumes it is already running inside one. Therefore, this method must be called
from inside the Command.

The third variant is Notify (without any prefix or postfix). This variant
also creates a new Command, but it doesn’t wait on it and returns immediately.
Although this version has a benefit that it can be called from both the inside
and outside of the Command, it cannot be waited on and therefore it is
harder to tell when the function has completed the execution. One solution
is to schedule a Command right after the Notify method call. As soon as
the scheduled command is executed, we know, that Notify has been already
executed, since the Execution engine respects the order of Commands.

All three variants are also created for the StartSync function since it also
accesses the Project tree, similarly to the Notify function.

4.7 Implementing the IFMLinkSocket and
choosing network layer

At the lowest level, the decision needed to be made of which network protocol
to use. The first proposal was UDP.

4.7.1 UDP

UDP offers many advantages over TCP which the FMLink could use, such as
lower protocol overhead.

“The main difference is that UDP doesn’t require the recipient
to acknowledge that each packet has been received. Any packets
that get lost in transit are not resent. This enables computers to
communicate more quickly, but the data received might not exactly
match the data sent.

UDP packets don’t have sequence numbers, so they can arrive
out of order. They do have checksums, though, so the packets
that do arrive are protected against corruption or modification in
transit.”[9]

However, UDP also brings many disadvantages. The most common dif-
ference between UDP and TCP people remember is that UDP is unreliable
and fragments can arrive out of order. Both of these are solved by using the
TransportChunks, so this is not an issue for FMLink. The much larger issue
I have encountered was that UDP doesn’t handle congestion control – this

34

4.8. Establishing connections

means that the user needs to control how fast he sends UDP datagrams to the
network. If he sends them too fast, a lot of them will get lost, if he sends them
too slowly, the full capability of the network will not be used. I have discovered
that congestion control algorithms are too complicated for the scope of the
project and after a long discussion in the company, the decision was made to
use only TCP.

4.7.2 TCP

TCP was chosen instead of UDP mainly because it already includes a network
congestion-avoidance algorithm. This means it was possible to develop FMLink
much faster since TCP already offers many services that FMLink would need
to reimplement if it would use UDP. However, since IFMLinkSocket is an
interface and any implementation can be used, it is possible to add support
for UDP later in the future, if it’s deemed worthwhile.

TCP also satisfies the reliability requirements of FMLink. It includes check-
sum, which prevents the possibility of receiving a corrupted piece of information.
It also includes out-of-order preventions and automatic retransmission of lost
data.

4.8 Establishing connections

TCP is a connection-oriented protocol and it requires one party to act as a client
and one party to act as a server to establish a connection. This means that
FMLink inherits this trait and when establishing a connection over TCP, one
instance of FMLink needs to act as a server and listen for incoming connections
and one needs to act as a client and connect to a server. This behavior
is implemented in ClientConnectionHandler and ServerConnectionHandler
classes.

The ServerConnectionHandler contains only a single static public method
”AcceptClientSession”. This method creates a new instance of FMLinkClient
that creates and starts a TCP listener on the desired IP endpoint based on pro-
vided arguments. When a client connects to this endpoint and TCP connection
is established, FMLinkClient contains a connected FMLinkTCPSocket (TCP
implementation of IFMLinkSocket) instance. A new instance of FMLinkSession
is then created, with the FMLinkClient as a parameter. This instance is then
returned by the AcceptClientSession method and is considered to be initialized
and ready to be used.

The ClientConnectionHandler works similarly, but instead of listening,
the FMLinkClient tries to connect to a TCP listener on a given IP endpoint.
After the connection is successful, ClientConnectionHandler also returns an
initialized instance of FMLinkSession.

It is important to mention, that although for establishing a connection,
one FMLink instance needs to assume a role of a server and one assumes a

35

4. Implementation

role of a client, after the connection is established, both FMLink endpoints
are equal and no longer categorized as server/client.

4.9 Security

From the functional and non-functional requirements, a need to encrypt the
actual network traffic emerged. I considered several security solutions, but in
the end, I decided on Transport Layer Security (TLS), the most standard and
probably the most secure standard available.

The TLS standard is widely supported on all major platforms and operating
systems. It handles all the encryption automatically and the application using
TLS doesn’t have to choose the specific encryption to be used. When opening a
connection between a client and server, the TLS protocol automatically checks
for the strongest encryption methods on both sides and uses it. This means,
that in the future, if the currently used cipher becomes compromised, TLS will
stop using it and customers will only need to update their operating system or
runtime in order to keep the system secure.

The actual implementation used in FMLink doesn’t use a specific version
of TLS – it automatically uses the newest version available for the runtime.
As of the time of writing, .NET core build of FMLink was using TLS version
1.2 but it is expected that during the following year, the TLS version should
automatically get updated to version 1.3 with advanced security features
without any additional work needed on FMLink.

The implementation of TLS connection handling is in class FMLink-
TLSSocket, which implements the IFMLinkSocket interface. This means
that FMLinkClient can easily use secure TLS communication just by using a
different implementation of the IFMLinkSocket interface.

When the TLS handshake was inspected using Wireshark, FMLink was
using Elliptic-curve Diffie–Hellman algorithm for key exchange and then AES
with a 256-bit key to encrypt the TCP traffic. These security standards
are currently considered highly secure and they are supported by all major
operating systems and platforms. AES encryption can be hardware-accelerated
on most modern CPUs, thus adding only very little CPU overhead.

In order to prevent man-in-the-middle (MITM) attacks, FMLink uses
certificates for TLS authentification. Each computer that is desired to be
an FMLink server, needs to own a private/public key pair to enable TLS
authentification. If the certificates are self-signed, they also need to be installed
on each client device, so the client devices recognize and trust the public
certificate of the server. The self-signed certificated can be generated using
the following Powershell script :

New - SelfSignedCertificate -CertStoreLocation
Cert :\ LocalMachine \My -DnsName " HOST_NAME "
-FriendlyName " MySiteCert "

36

4.9. Security

-NotAfter (Get -Date). AddYears (10)

The DnsName parameter needs to have a real hostname as a value. This
hostname can be easily obtained by running the ”hostname” command in
Windows Powershell. When the client connects to the server, it will compare
the computer hostname and the hostname from the provided public certificate,
which must match, otherwise, the TLS handshake will fail.

In order to not require the installation of every server certificate on each
client, the server must be signed by some certificate authority (CA). This
authority can be created internally by the company. In that case, only the CA
certificate needs to be installed on clients and each client will automatically
trust every server certificate signed by the company’s CA.

Another common solution is to get a certificate from some well-known
certificate authority. These kinds of certificates are usually a paid option. Since
public certificates of well known CA’s are already pre-installed in certificate
stores of most operating systems, the clients will not need installation of any
additional certificates.

Since using TLS for key-exchange and encryption is the most standard way
of securing communication, it was easiest to integrate with FMLink. In the
future, when FMLink will be tested for security by outside auditing, the use of
standardized security solution will greatly simplify this process.

37

Chapter 5
Testing

5.1 Wireshark

During the implementation and testing phase of FMLink, various network
analyzing tools were used to debug the network protocol. One of them was
Wireshark, a highly popular network analyzing tool.

“Wireshark is the world’s foremost and widely-used network protocol
analyzer. It lets you see what’s happening on your network at a
microscopic level and is the de facto (and often de jure) standard
across many commercial and non-profit enterprises, government
agencies, and educational institutions. Wireshark development
thrives thanks to the volunteer contributions of networking experts
around the globe and is the continuation of a project started by
Gerald Combs in 1998.”[10]

However, since FMLink is a binary format, vanilla Wireshark was not very
useful for inspecting the contents of FMLink packets, it was even hard to
find FMLink communication in the huge amount of traffic that usually flows
through a network adapter. Luckily, Wireshark is open-source and expandable
via its plugin system.

Wireshark uses the concept of dissectors. Dissector is a component that
parses and extracts information from the relevant part of the network frame –
each frame can be parsed by several dissectors at different layers. The dissector
at the application level was needed since FMLink works at that level.

There are two major ways of developing Wireshark plugins/dissectors –
native plugins and Lua plugins. In order to develop a native plugin, it is
required to download the whole Wireshark source code and learn how to
compile it. This proved to be an overly difficult task, so an easier solution was
required. I personally am not too familiar with Lua scripting, so this option
was also not viable. Finally, there is a third, less common option of writing
Wireshark dissectors – WSGD.

39

5. Testing

5.1.1 Wireshark Generic Dissector

Wireshark Generic Dissector is a plugin developed for the easy creation of
Wireshark dissectors without programming in C++ or Lua. WSGD instead
uses a descriptive approach when parsing network protocols. It requires the
protocol to be described using the WSGD syntax and uses this description to
parse relevant information and display it in the Wireshark Interface.

It must be noted that WSGD has one large downside, it has a very small
and chaotic documentation. A trial and error approach had to be used in order
to write a very basic dissector for FMLink.

Each dissector written for WSGD needs two files – one with .wsgd extension
and one with .fdesc extension. As far as I understood from the context, the
.wsgd file provides metadata information and basic structure, while .fdesc file
is used for actual parsing of the protocol data. The .fdesc file format is a
custom format of WSGD, however, some parts of it look like C++ language.
It uses a concept of data structures, where each field has a defined data type.
This is an excerpt from the .fdesc file for the FMLink protocol :

Figure 5.1: Part of .fdesc FMLink format

Currently, this dissector properly dissects only FMLink messages that fit
into one frame. If the message is divided into multiple chunks, this dissector
will properly parse the chunk ID and length, but other information will be
parsed incorrectly. It would be possible to write a proper dissector in WSGD,
but since the documentation is very insufficient, this would take a lot longer
and in the end, it might be easier to just write a native dissector.

However, for the testing purposes of FMLink, even the basic dissector
created has proven to be highly useful, since it displays the message and chunk
IDs of the messages and the type of messages, as opposed to raw binary data
that was originally displayed. For some message types, it even displays the
parsed message content.

40

5.2. Creating various test conditions

Figure 5.2: Wireshark Interface with FMLink plugin

5.2 Creating various test conditions

One of the basic objectives of FMLink is resiliency to degraded network
conditions since the Fata Morgana platform will be deployed in environments,
where the devices might be connected to each other via an unreliable network.
Wi-Fi wavebands are highly vulnerable to disruption since they operate at 2.4
and 5 GHz. These radio frequencies are populated by many other wireless
protocols, which often compete for these radio bands. They also have issues
with penetrating solid objects such as walls. In this case, 2.4 GHz usually has
a longer range and can more easily pass through walls, but at the cost of lower
network throughput than 5 GHz Wi-Fi and higher radio frequency occupancy.

These wireless network conditions are hard to replicate and it would be hard
to repeatedly and deterministically test FMLink for these conditions. However,
software proxy servers that can emulate these conditions exist and can be used.
The most common issues with these network connections that could affect
FMLink and need to be emulated are delay and packet loss scenarios.

5.2.1 Test environment

In order to perform the tests, a testing environment was required to be set up.
In this case, these tests are going to be performed manually. In the future,
automated tests will be developed to automatically test the code.

The testing environment consists of two computers, both connected in one

41

5. Testing

Machine Lenovo ThinkPad P52 Dell Precision T1600
Type Laptop Desktop Workstation

CPU Intel i7-8750H Intel Xeon E3-1270
2.2-4.1 GHz, 6-Core/12 Threads 3.4 GHz, 4-Core/8 Threads

Memory 24 GB, DDR4 8 GB, DDR3
OS Windows 10, Build 18362

.NET .NET Core, Build 3.1.202

Table 5.1: Test Machine Configurations

network. One computer was a Lenovo Laptop and the second one a Desktop
Workstation. The exact specifications are listed in table 5.1.

These two computers were then connected to the TP-LINK TL-SG108
gigabit network switch via Gigabit Ethernet. This switch was then connected
via Gigabit Ethernet to the TP-LINK Archer C1200 Wi-Fi router, which was
connected to the Internet. The drawing of the network can be seen in figure 5.3.
Since the router has four LAN ports and the test scenario requires only two
LAN ports (for the laptop and desktop), the switch might seem unnecessary.
The reason for the inclusion of the switch between the devices and router was
to enable faster and more reliable communication between the desktop and the
laptop. I have had issues with fully saturating the gigabit network interface in
the past when communicating on the local network since the router doesn’t
have enough processing power. The deployment of the switch helped to resolve
these issues and allows the traffic to flow only via the switch and outside the
slower router.

Figure 5.3: Scheme of the test network

42

5.2. Creating various test conditions

5.2.2 Testing the environment

To test the quality of the network connection between the two computers,
psping utility from the company sysinternals was used. This networking utility
allowed me to easily measure latency and bandwidth of the connection between
two computers. An instance of the psping program was executed on both
computers, one as a server and one as a client.

5.2.2.1 Bandwidth test

For the first network test, network bandwidth was measured. The utility was
configured to send 1000 requests, each with a size of 4 MB. These requests
were configured to be using TCP protocol. When executed, an average speed
of 113.9 MB/s was measured, which accounts for 911 Mbit/s of TCP data.
After accounting for the protocol overhead, the OS was reporting an average
transfer rate of 980 Mbit/s, which confirms that the connection can indeed
deliver a gigabit per second of bandwidth.

Figure 5.4: Output of the bandwidth test

5.2.2.2 Latency test

The second network test was measuring the latency when sending a message
from one computer to the other and back, counting the time of the whole
round-trip. The utility was configured to send 1000 requests over the TCP
protocol. The utility measured a minimum latency of 0.14 ms, maximum of
0.66 ms, and an average of 0.24 ms. Psping also allows to print the measured
data as histogram buckets. This data has been plotted in figure 5.5.

5.2.3 Emulating network conditions

For the purpose of emulating degraded network conditions, various software
solutions were tested. These solutions offer different functionality and often
work very differently. I will name a few of the solutions that were tested and
used.

43

5. Testing

Figure 5.5: Network latency histogram

5.2.4 Toxiproxy

Toxiproxy is a proxy server developed by Shopify to test for different network
conditions.

“Toxiproxy is a framework for simulating network conditions. It’s
made specifically to work in testing, CI and development environ-
ments, supporting deterministic tampering with connections, but
with support for randomized chaos and customization. Toxiproxy is
the tool you need to prove with tests that your application doesn’t
have single points of failure.”[11]

This proxy server can be run without root access to the system, doesn’t have
to be installed, and is multiplatform, with binaries available for Windows
and Linux. This is important so that Toxiproxy can be easily integrated into
existing testing environments. It can be operated via an HTTP interface, so it
can be easily manipulated from the test environment.

Toxiproxy is a TCP proxy and allows to manipulate mainly delay and
bandwidth of the connection. Unfortunately, it doesn’t have the capability to
simulate a random packet loss scenario. Another issue with Toxiproxy was
limiting the bandwidth, which accounted only for TCP payload data. When
sending a lot of small frames over Ethernet, the headers from the lower layers
of the network (Ethernet, IPv4) could add a lot of data. This meant that when
the bandwidth was limited to a certain amount, the actual bandwidth over

44

5.2. Creating various test conditions

the wire was larger and variable since this proxy doesn’t account for the lower
layers of the network. Because of this limitation, it was impossible to emulate
a network connection with fixed bandwidth.

Toxiproxy was initially integrated into the test toolkit, but since it doesn’t
support packet loss emulation, it had to be paired with another solution that
adds that capability. Since other solutions that offer packet loss emulation also
offer bandwidth and delay emulation, Toxiproxy was redundant and it was
removed from the test toolkit.

5.2.5 Clumsy

As opposed to Toxiproxy, Clumsy works as a transparent or invisible proxy –
the client is not aware of such proxy and doesn’t require a special configuration
of the client. Clumsy leverages the WinDivert library, which ”allows user-
mode applications to capture/modify/drop network packets sent to/from the
Windows network stack”[12]. This means that Clumsy affects not only the
TCP layer but works on the packet level of the Windows network stack, which
gives it more capabilities than a TCP proxy. It is able to add time delay to the
packets and randomly drop them. It is also possible to specify a probability of
dropping a packet, a setting, which is useful when testing network applications.

Clumsy was originally used in testing the FMLink protocol for both delayed
and lossy connection, but I have discovered a big issue with its packet delaying
capabilities. Although it was possible to set an amount in milliseconds by
which each packet should be delayed, I have discovered that this amount is
highly imprecise, as opposed to other software products and it was delaying
packets by a higher amount than requested. In order to get more precise
data, I had to use a different software product. Clumsy was kept for the tests
because it was the only solution I tested that could reliably drop packets.

5.2.6 TMnetsim

TMnetsim is a software product very similar with its capabilities to Clumsy.
Compared to Clumsy, it also allows the user to delay the packets, but it is
much more accurate. It works as a proxy server, so the client application needs
to be aware of this and needs to connect to a proxy, instead of the server. The
proxy server then forwards these packets to the FMLink server on another
computer. When specifying the delay for the packets, it can also specify the
jitter parameter, which is variability in delay. It can specify the statistical
distribution of this variability to Gaussian, Normal, and Markovian. Since
FMLink doesn’t need to be tested extensively for jitter, only a brief jitter test
with Normal distribution will be performed.

45

5. Testing

5.2.7 NetBalancer

”NetBalancer is a Windows application for local network traffic control and
monitoring”. NetBalancer is a complex product with many capabilities, but for
my use case, only the network monitoring and limiting capabilities were used.
NetBalancer is able to monitor and limit traffic on a per-application basis.
This allowed me to set a network bandwidth limit for a certain application
and not worry that some other application running (such as Spotify, Steam, or
Windows Update) might take this bandwidth from the test application and
invalidate the test results.

NetBalancer also works directly with the Windows networking stack, and
so the set bandwidth limit represents the actual bandwidth flowing through
the wire (other applications were often displaying incorrect readings). In the
following tests, NetBalancer will be used to limit the network bandwidth an
application can use and also for monitoring the amount of network traffic.

5.3 FMLinkTester

For the purpose of testing various test scenarios, FMLinkTester was developed.
It is a very simple command-line program, that can be run as a server or as a
client. This program can recreate two simple scenarios and it can test, how
the FMLink protocol behaves in problematic network conditions with the use
of previously mentioned programs Clumsy, TMnetsim and NetBalancer.

5.3.1 Ping-Pong Test Scenario

For the purpose of testing scenarios, where two clients are connected to each
other over a link with very high delay, I developed a very simple protocol,
built using FMLink and integrated into the FMLinkTester. When executed,
one instance of the application needs to be run as a server and one instance
needs to be run as a client. After a server starts listening for incoming
FMLink connections, the client should connect to the server and the protocol
communication can start.

The client first opens an FMLinkChannel and sends a text message to the
server with the text ”Ping:{counter}” over this channel, with the counter set
to initial value of 1. When the server accepts the ping message, it extracts
the counter number and sends back a text message ”Pong:{counter}” with the
same counter number. When the client receives the pong message, it checks if
the counter number is valid. It then increments the counter value and sends
another ping message. This repeats in an infinite loop.

In a separate thread, a monitoring loop is executed. This method monitors
the counter number in a specified time interval (in this case 5 seconds), which
allows it to compute the rate of ping-pong cycles per second. Each cycle is
one ping message from the client and one pong response from the server.

46

5.3. FMLinkTester

Figure 5.6: Ping-Pong protocol

5.3.1.1 Test results without network modifications

When running the Ping-Pong test scenario without any network modifications,
FMLink averaged around 1600 cycles per second, with a peak of 2000 cycles
and a minimum of 1000 cycles. This means that one cycle from one FMClient
to another and back took on average around 0.62 ms on a local network. This
can be considered a good result since it approaches the average latency of the
network, which was previously measured to be 0.24 ms.

5.3.2 Testing delayed connection

For this test, TMnetsim proxy was used for the emulation of delay, and the
client test app connected to the proxy instead. For the first part, the delay
was set to 50 ms on both uplink and downlink. The theoretical round-trip
time for this case is 100 ms. When the Ping-Pong scenario was executed, it

47

5. Testing

achieved 9.8 cycles per second with no significant variance in the number of
cycles per second.

For the second part, the delay of the network was set to 1000 ms, which
can be considered a very significantly degraded network. In this case, FMLink
achieved stable 0.5 cycles per second, which is comparable to theoretical
achievable result. This confirms that in scenarios, where FMLink is deployed
in a network with very large delay, FMLink will not add any significant delay
to the communication.

5.3.3 Testing a connection with jitter

In this test, TMnetsim was used again. The emulated delay was set to 50 ms,
with 50 ms jitter with normal distribution. This meant, that packets were
delayed with times between 25 ms a 75 ms, averaging a 50 ms delay. When
I executed the Ping-Pong test with these settings, I have achieved averaged
9.8 cycles per second, almost exactly as without the jitter. This proved that
FMLink can work in a network with significant jitter.

Figure 5.7: Distribution of round-trip times over an emulated network with
delay and jitter

It must be noted, that although FMLink doesn’t increase jitter, it will
not decrease it. Figure 5.7 shows a distribution of 1000 recorded round-trip
times over FMLink and it approximates the normal distribution of delay times
emulated by the TMnetsim proxy.

48

5.3. FMLinkTester

5.3.4 Testing connection with packet loss

Another scenario in which the Ping-Pong protocol over FMLink was tested
was a network with significant packet loss. In order to simulate random packet
loss, Clumsy was chosen. I have tested 6 different scenarios, with increasing
packet loss percentage. The packet loss was set at 0.1 % for the lowest value
and then the test was repeated with 0.5 %, 1 %, 2 %, 6 % and 10 % packet
loss probabilities. The test was executed for 100 sec each time and I recorded
the response time of each ping-pong cycle. After 100 seconds, the cycle time
measurements were written to file. These measurements were then used to
create histograms of cycle times and they can be seen in figure 5.8.

Figure 5.8: Histograms of cycle times in a network with packet loss

When the packet loss was set to 0.1 %, the average cycle time was 1.64
ms and 71 % of cycles were under 1 ms. 63587 ping-pong cycles were sent
over the network, which accounts to around 635 cycles per second. Network
with 0.1 % packet loss can be considered already pretty unreliable, but since

49

5. Testing

FMLink currently uses TCP, the underlying transport protocol handled the
retransmission of missing messages, and no cycles were lost permanently, the
counter protocol was still increasing one-by-one.

After the increase of packet loss probability to 0.5 %, the average cycle
time dropped to 3.91 ms, with 26774 cycles during the test, less than half of
the previous test. With 267 ping-pong cycles per second, this is still usable for
most applications. I was gradually increasing the packet loss probability and
the number of cycles per second was significantly dropping. At a 10 % packet
loss ratio, which is considered to be highly disrupted network and unusable for
most activities, the ping-pong scenario recorded an average of 16 cycles per
second. As seen from the histogram, although the average was pretty good, 16
% of cycles took more than 200 ms.

Even with 10 % packet loss, the ping-pong test scenario kept working as
expected. This proved the resiliency of FMLink to packet loss conditions.
During each test, FMLink reported no errors, such as missing cycles or ping-
pong counters out of order. The reason that many cycles took over 200 ms
was the way TCP handles retransmissions. For each ACK (confirmation of
delivery) packet, TCP sets a time limit it expects this ACK to arrive in. For
many packets, this time limit, called RTO (retransmission timeout) was set to
200 ms and after this period, TCP sent the packet again. The RTO time limit
cannot be easily set manually and TCP protocol uses Karn’s and Jacobson’s
algorithms to estimate RTO values. If the FMLink would be implemented over
UDP, it would need to implement some form of RTO estimation algorithm,
which would greatly exceed the scope of the project.

5.3.5 Testing tree exchange

Another feature of FMLink that was needed to be tested was the capability to
synchronize Node trees. For this reason, I have implemented another part of
the test application, that simulates tree synchronization workflow.

This test scenario again first establishes a connection between the server
and the client. The client then creates a Project with just one Node. The Node
has one attribute, that has a Value of type byte array. This allows the attribute
to have variable and potentially very large size. The client fills the byte array
with random values but considers the first value to be a ”counter” (similar to
the ping-pong scenario), so it sets this first value to 0. The client then calls
Notify on the FMLinkSession, so that the provided Project is synchronized to
the server. After the server receives the Node tree, it reads the first value from
the byte array attribute of the aforementioned Node and treats it as the counter
from the Ping-Pong protocol. It then sends back an ASCIITextMessage over
some FMLinkChannel, which contains the counter. After the client receives the
text response, it can extract the counter value from the message and confirm
that it is equal to the first value of the byte array attribute and that the tree
synchronization was successful. The client then increases the counter, sets a

50

5.3. FMLinkTester

new randomly generated byte array to the Node attribute a Notifies the session
again. This repeats in an infinite cycle.

With each Notify called by the client, FMLink should send the whole byte
array from the attribute, since it’s value will be different each time and it will
require synchronization to the server so that the server has an up-to-date copy
of the Node tree. Since FMLink uses FMPatchableArchive as a container to
transport the data and it currently doesn’t support any compression of byte
array attributes, the actual number of transferred bytes by FMLink can be
easily obtained from the length of the byte array.

This scenario will allow to test how efficient is FMLink in utilizing the
provided network bandwidth.

5.3.5.1 Testing maximum possible network utilization

For the first test of this scenario, both client and server were connected directly,
each running on a different computer (the same as before, one running on the
laptop, and another one on the desktop). The client app was configured to
synchronize a tree, where the payload attribute has a size of 1 GB. I have then
measured, how much does the FMLink utilize the network resources during
the synchronization.

Figure 5.9: Utilization of the network

As seen from the measurements in figure 5.9, the measurements from the
NetBalancer monitor proved that FMLink is able to fully utilize the provided
gigabit network connection up to its limit. Blank intervals between uploads

51

5. Testing

Test Number Packet Loss Average[ms] Std Dev
1 0 % 4829 299
2 0.1 % 5113 128
3 0.5 % 5036 271
4 1 % 5317 533
5 2 % 6211 1072
6 3 % 8654 884
7 4 % 27520 2631

Table 5.2: Test result of tree synchronization with different packet loss scenarios

seen in the graph are caused by the client generating the large byte array,
serialization, and deserialization on the server – all these are limited by the
CPUs on the machines.

It is worth noting one interesting aspect seen in the screenshot, which is
that FMLink keeps open only one TCP connection, even though internally
it provides two communication channels available to the user (one for the
tree synchronization and one for the text messages for confirmation). This is
implied by the fact that the FMLinkClient uses only one FMLinkSocket for
sending and receiving the data while allowing the prioritization of messages
from different channels.

5.3.5.2 Tree synchronization over lossy network

For the next test, I have tried to emulate a scenario, in which the client is
connected to the server over a connection with packet loss and slower network
speed. The network throughput was limited to 50 MBit/sec by the NetBalancer
and on one of the computers, Clumsy was executed. For each test, a tree
update with a size of 25 MB was sent to the server thirty times and each tree
update was waiting for the confirmation from the server that the previous
update was successful. For each tree update, a stopwatch was started at the
time of Notify command from the client, and time was recorded to file when a
successful response was received from the server.

The test was executed 7 times, each time with different packet loss percent-
ages and the results can be seen in table 5.2. The results tell us that packet
loss up to 1 % made very little difference to the synchronization speed. What
is interesting, is that when the packet loss was increased further, the transfer
speed achieved started dropping considerably. At 4 % packet loss, it took
several times longer to transfer the same amount of data. It must be again
noted, that even though the transfer took longer, it was still successful and
the application was working as expected.

When I tried to increase the packet loss to 10 %, the achieved transfer
speed dropped to single kilobits per second and the test had to be terminated.

52

5.3. FMLinkTester

For this reason, I was testing only packet loss up to 4 % in this test scenario.
This is still considered a good result since such high packet losses are not
common in modern internet networks (when testing the network without any
packet loss emulation, no packet loss at all have been detected).

53

Conclusion

The main subject of this thesis is the synchronization of complex data over the
network in complicated situations and environments. The main target of this
thesis was to develop the FMLink library for the company Pocket Virtuality.

FMLink needed to be highly integrated into the existing Fata Morgana
platform and in order to do that, I first had to analyze the existing software
environment used for this platform. I described the basic building blocks
and needs of applications in the Fata Morgana ecosystem. This allowed me
to populate a clear list of requirements, that needed to be met to fulfill the
mission of the FMLink library.

The current FMLink library was designed with all these requirements in
mind and the implementation achieved all the functionality that was expected
from this solution. Comprehensive tests in the testing chapter proved that
FMLink is able to function even in highly degraded network conditions while
still working as expected. FMLink was tested not only by the tests described
in this thesis but also by countless hours of usage by other software developers,
which helped me to create a solution that the company Pocket Virtuality can
rely on.

From a personal perspective, I have chosen this topic for my thesis because
it allowed me to develop a software solution, that has real-world applications.
FMLink is currently already deployed and used by many Fata Morgana applica-
tions. During the whole development process, which took almost a year, I was
constantly engaging in conversations with other Pocket Virtuality employees,
in order to develop the solution that will meet their needs.

FMLink is still ongoing active development and it is expected that this
networking solution will be used for years to come. Some of the expected
improvements that will be further developed are the support of the UDP
protocol, discovery protocols to find other devices on the network, a security
audit, and many others.

55

Bibliography

[1] Bosveld et al. Optical Display Element For a Headset. June 2015. Available
from: https://pdfpiw.uspto.gov/.piw?Docid=D0740813

[2] OSI model vs TCP/IP model. Mar. 2020. Available from: https://
www.routexp.com/2020/03/osi-model-vs-tcpip-model.html

[3] Fata Morgana. 2020. Available from: https://
www.pocketvirtuality.com/products.php

[4] HoloLens 2 hardware. Sept. 2019. Available from: https://
docs.microsoft.com/en-us/hololens/hololens2-hardware

[5] C++/WinRT - UWP Applications. Apr. 2019. Available from: https:
//docs.microsoft.com/en-us/windows/uwp/cpp-and-winrt-apis/

[6] Postel, J. Internet Protocol. Sept. 1981. Available from: https://
tools.ietf.org/html/rfc791#page-25

[7] .NET Garbage collection. Apr. 2020. Available from: https://
docs.microsoft.com/en-us/dotnet/standard/garbage-collection/

[8] std::shared ptr. Available from: https://en.cppreference.com/w/cpp/
memory/shared_ptr

[9] Bischoff, P. UDP vs TCP: What are they and how do they differ?
Jan. 2019. Available from: https://www.comparitech.com/blog/vpn-
privacy/udp-vs-tcp-ip/

[10] About Wireshark. 2020. Available from: https://www.wireshark.org/
index.html#aboutWS

[11] Shopify. Shopify/toxiproxy. July 2020. Available from: https://
github.com/Shopify/toxiproxy

57

https://pdfpiw.uspto.gov/.piw?Docid=D0740813
https://www.routexp.com/2020/03/osi-model-vs-tcpip-model.html
https://www.routexp.com/2020/03/osi-model-vs-tcpip-model.html
https://www.pocketvirtuality.com/products.php
https://www.pocketvirtuality.com/products.php
https://docs.microsoft.com/en-us/hololens/hololens2-hardware
https://docs.microsoft.com/en-us/hololens/hololens2-hardware
https://docs.microsoft.com/en-us/windows/uwp/cpp-and-winrt-apis/
https://docs.microsoft.com/en-us/windows/uwp/cpp-and-winrt-apis/
https://tools.ietf.org/html/rfc791##page-25
https://tools.ietf.org/html/rfc791##page-25
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://www.comparitech.com/blog/vpn-privacy/udp-vs-tcp-ip/
https://www.comparitech.com/blog/vpn-privacy/udp-vs-tcp-ip/
https://www.wireshark.org/index.html##aboutWS
https://www.wireshark.org/index.html##aboutWS
https://github.com/Shopify/toxiproxy
https://github.com/Shopify/toxiproxy

Bibliography

[12] Windows Packet Divert. Available from: https://reqrypt.org/
windivert.html

58

https://reqrypt.org/windivert.html
https://reqrypt.org/windivert.html

	Introduction
	Analysis
	Fata Morgana
	Basic architecture of Fata Morgana
	Synchronization Requirements
	Data transfer
	Data synchronization

	FMCore
	Node
	Node addresses

	Project
	Messenger
	Execution engine

	Environment
	Supported Devices
	Microsoft Hololens
	Desktops and Servers

	Software platforms
	Universal Windows Platform
	.NET
	.NET Framework vs .NET Core

	Legacy solutions

	Requirements
	Functional Requirements
	Create connections between Fata Morgana devices
	Sending of messages
	Project Synchronization

	Non-Functional Requirements
	Compatibility
	Security
	Compliance
	Reliability
	Efficiency

	Design
	StartSync and Notify
	Node Shadows
	Finding tree changes
	Diff Utils

	Serialization
	FMCore BinaryArchive
	FMPatchatableArchive

	Choosing an internet layer
	Messages
	IMessage
	Transport Message

	Transport Chunks

	Sending Messages
	IFMLinkSocket
	IFMLinkClient

	Channels
	FMLinkQueue
	FMLinkSession

	Implementation
	Platforms
	Memory managemenent
	Interfaces

	Usage example
	FMPatchableArchive
	Messages
	Synchronization Messages
	TreeDiffMessage
	Channel Messages
	Data Messages

	Synchronization
	Start/Stop Sync
	Notify
	Detecting change

	Interaction with Project
	Multiple variants of API

	Implementing the IFMLinkSocket and choosing network layer
	UDP
	TCP

	Establishing connections
	Security

	Testing
	Wireshark
	Wireshark Generic Dissector

	Creating various test conditions
	Test environment
	Testing the environment
	Bandwidth test
	Latency test

	Emulating network conditions
	Toxiproxy
	Clumsy
	TMnetsim
	NetBalancer

	FMLinkTester
	Ping-Pong Test Scenario
	Test results without network modifications

	Testing delayed connection
	Testing a connection with jitter
	Testing connection with packet loss
	Testing tree exchange
	Testing maximum possible network utilization
	Tree synchronization over lossy network

	Conclusion
	Bibliography

