
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Radioelectronics

Object Detection in Video Signal

Ladislav Kršek

Supervisor: prof. Ing. Pavel Zahradník, CSc.
Field of study: Communications and signal processing
August 2020



ii



Acknowledgements

Děkuji panu profesorovi Pavlu Zahrad-
níkovi za vedení mé diplomové práce.

Declaration

I declare that I completed the presented
thesis independently and that all used
sources are quoted in accordance with me-
thodical instructions that cover the ethical
principles for writing academic thesis.

In Prague, 13. August 2020

Prohlašuji, že jsem předloženou práci
vypracoval samostatně, a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských prací.

V Praze, 13. August 2020

iii



Abstract

This diploma thesis deals with object de-
tection in a video signal, implemented for
Raspberry-Pi platform using C program-
ing language. Object detection is based on
"Histogram of Oriented gradients" (HOG)
algorithm and "Support Vector Machine"
(SVM) classification. The introductory
contains description of the Raspbery-Pi
platform and describes HOG and SVM al-
gorithms. The following chapter contains
code design specification and the informa-
tion about the implementation to reach
the desired detection.

Keywords: Detection, videosignal,
HOG, SVM, Raspberry-Pi, camera, C,
Matlab

Supervisor: prof. Ing. Pavel Zahradník,
CSc.
katedra telekomunikační techniky,
Technická 1902/2,
Praha 6

Abstrakt

Tato diplomová práce se zabýva detekcí
objektu ve videosignálu, implementova-
ného pro platformu Raspberry-Pi v pro-
gramovacím jazyce C. Detekce objektu
funguje na základě algoritmu "histogramu
orientovaných gradientů" (HOG) a klasifi-
kátoru "support vector machine" (SVM).
V úvodní části obsahuje popis platformy
Raspbery-Pi a algoritmů HOG a SVM. V
následující časti je zdokumentována im-
plementace a popis dosažení požadované
detekce objektu.

Klíčová slova: Detekce, videosignál,
HOG, SVM, Raspberry-Pi, kamera, C,
Matlab

Překlad názvu: Detekce objektu ve
videosignálu

iv



Contents

1 Introduction 1

2 Raspberry Pi Platform 3

2.1 Used aliases in next sections . . . . 3

2.2 Camera Hardware . . . . . . . . . . . . . 4

2.2.1 Rolling Shutter . . . . . . . . . . . . . 4

2.3 Multi-Media Abstraction Layer
(MMAL) Application Programming
Interface (API) . . . . . . . . . . . . . . . . . . 6

2.3.1 MMAL API Components . . . . 6

2.3.2 MMAL API Ports . . . . . . . . . . . 7

2.3.3 Buffer Headers . . . . . . . . . . . . . . 8

3 Description of algorithms used in
detection 9

3.1 Histograms of Oriented Gradients
(HOG) . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Feature Descriptors . . . . . . . . . 9

3.1.2 Introduction to HOG . . . . . . . . 9

3.1.3 Algorithm Overview . . . . . . . . 10

3.2 Classification of Data . . . . . . . . . 13

3.2.1 Introduction . . . . . . . . . . . . . . . 13

3.2.2 Support Vector Machine
(SVM) . . . . . . . . . . . . . . . . . . . . . . . 14

4 Code Design Specification 19

4.1 Assembling MMAL API
Components . . . . . . . . . . . . . . . . . . . 19

4.1.1 The Camera component . . . . 21

4.1.2 The Encoder component . . . . 23

4.1.3 The Render component . . . . . 24

4.1.4 The HOG component . . . . . . . 25

4.2 Implementation of the HOG
component . . . . . . . . . . . . . . . . . . . . . 25

4.2.1 Custom MMAL API component
information . . . . . . . . . . . . . . . . . . . 25

4.2.2 HOG component
implementation . . . . . . . . . . . . . . . 27

4.3 Main process . . . . . . . . . . . . . . . . . 32

4.4 Flow chart and sequence diagrams 33

4.5 Classification . . . . . . . . . . . . . . . . . 37

4.5.1 SVMlight Library . . . . . . . . . . 37

4.5.2 Training and testing data . . . 38

v



4.6 Addition information about
implementation . . . . . . . . . . . . . . . . . 39

4.6.1 Data structures . . . . . . . . . . . . 39

4.6.2 Specifications of the
implementation . . . . . . . . . . . . . . . 42

5 Testing of the detection 45

6 Conclusions 47

Bibliography 49

A CD Contents 51

B Project Specification 53

vi



Figures

2.1 Data Processing on the BCM2837 5

3.1 Images used to demonstrate HOG 10

3.2 Gradients of the image . . . . . . . . 11

3.3 Visualization of the 8× 8 cells . . 12

3.4 Image patch rectangular block
normalization . . . . . . . . . . . . . . . . . . 13

3.5 Linear SVM 2-D (2 features)
example . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Connection of components for the
Render Mode . . . . . . . . . . . . . . . . . . . 20

4.2 Connection of components for the
Encoder Mode . . . . . . . . . . . . . . . . . . 20

4.3 Sequence diagram of the thread
synchronization . . . . . . . . . . . . . . . . . 33

4.4 Flow chart diagram of the thread
processing pipeline . . . . . . . . . . . . . . 34

4.5 Flow chart diagram of the main
process . . . . . . . . . . . . . . . . . . . . . . . . 35

4.6 Flow chart diagram of visualizing
the detected objects . . . . . . . . . . . . . 36

4.7 Indexing of the patches and cells
limits . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1 Example of the video frame, while
detecting vehicles 1 . . . . . . . . . . . . . 46

5.2 Example of the video frame, while
detecting vehicles 2 . . . . . . . . . . . . . 46

vii



Tables

viii



Chapter 1

Introduction

Nowadays the automation is a trend, which is noticeable in almost every
branch, even in those that were recently only domain of humans. One of
the many parts of automation can also be an object or person detection in
a video signal, which is plenteously utilized in manufacturing, automotive,
surveillance or entertainment industry. Therefor it is required to create and
improve the object detection systems, so they can perform its purpose as best
they can.
The goal of the thesis is to implement the detection algorithm histograms
of oriented gradients for the Raspberry-Pi platform, which records on-line
video signal at 60 frames per second. Since a Raspberry-Pi has convenient
proportions and can be powered from an external battery, as the tracked
objects were chosen vehicles. Therefore it could be used as monitoring of
traffic capacity of certain areas or as the counter of traffic density. However,
the object of interest can be easily modified by training the classifier on
different data.
The detection pipeline uses algorithm histograms of oriented gradients, which
describes each local object shape in the captured frame by the distribution of
gradients of edge directions. The values produced by the algorithm are called
features and are provided to classification algorithm which compares them
with the features in the database. The shape with the most similar features
is proclaimed as the local object present in the frame.
The next chapter 2 describes the Raspberry-Pi platform, used model for the
implementation, the camera hardware used for capturing the video signal and
the application programming interface needed for handling incoming frames.
The chapter 3 contains information about the Histogram of Oriented Gradients
and Support Vector Machine algorithms, which are needed for successful
detection. The chapter 4 provides information about implementation details
of the processing pipeline. Testing of the application is described in chapter

1



1. Introduction .....................................
5 and the thesis summary is written in the chapter 6.

2



Chapter 2

Raspberry Pi Platform

Raspberry-Pi is a series of single-board computers developed by Raspberry Pi
Foundation. It is mainly used for teaching purposes and research projects. Its
advantages are low cost, portability and its own operation system Raspberry
Pi OS, which is free operating system based on Linux Debian distribution,
optimized for the Raspberry Pi hardware. The hardware uses Micro SD card
as the on-board storage and offers connection for external peripherals via USB
ports. Raspberry-Pi also allows connection of external monitor via HDMI
cable and the camera hardware via CSI-2 (Camera Serial Interface 2). The
hardware contains system on chip Broadcom BCM2711, which has integrated
Quad-core Cortex-A72 (ARM v8) 64-bit, 1.5 GHz CPU and the VideoCore
IV GPU. Specification of all the hardware present on the used Raspberry Pi
4 model can be found at [3].

2.1 Used aliases in next sections

The following aliases are used in next chapters:. Camera hardware. The actual Raspberry Pi Camera v2.1 hardware that is connected
to the Raspberry Pi board.. See the next section 2.2 for more information.. Camera component.MMAL API component, which is C language structure of the type
MMAL_COMPONENT_T. The structure represents an object

3



2. Raspberry Pi Platform.................................
that is created and destroyed during run-time of the process and is
used to control the Camera hardware, receives the frames from the
driver and forwards them for further processing within the running
process.. See the section 2.3 for more information.

2.2 Camera Hardware

The used camera hardware is Raspberry Pi Camera v2.1, which contains Sony
IMX219 sensor. The sensor captures images using method rolling shutter.
As mentioned earlier the camera hardware is connected via CSI-2 (Camera
Serial Interface 2). The Raspberry Pi offers MMAL API for convenient
controlling of the camera hardware [2].

2.2.1 Rolling Shutter

The rolling shutter is a method of image capture or video recording. Each
frame is not captured at the same time instant by scanning the entire scene,
but scanning the scene rapidly, either vertically or horizontally. The full frame
is then constructed from all the rows or columns. The disadvantage of this
method is that it can create distortions, when capturing fast moving objects
or rapid flashes of light. On the other hand the image sensor can gather
protons for longer period of time, thus increasing the sensitivity. Rolling
shutter is mostly used in digital cameras using CMOS sensors [12].

Exposure Time

Exposure time is duration during which the image sensor is exposed to light.
The sensor elements detect photons and built up charge, that is converted
via Analog-to-digital-converter (ADC) to the digital numbers. The digital
numbers are saved for each pixel. The camera hardware performs two basic
operations:. Read the row/column. The row/column is put into the whole frame (matrix). Reset the row/column

4



.................................. 2.2. Camera Hardware

. The row/column is reset to initial values so that the camera hard-
ware can react on changes of the scene

The exposure time is controlled by altering the periods of both operations.
The periods don’t have to be the same, but they are synchronized. [6]
The minimum exposure time is: expmin = N · readtime, where N is
number of row/columns and readtime is the limitation of the hardware to
read one row/columns.
The maximum framerate is then: fpsmax = 1

expmin

Data Processing

The CPU is running Linux based OS and the GPU uses Real-time-OS ThreadX.
The communication between both processors is provided by kernel driver
VideoCore Host Interface Queue (VCHIQ) [7]. The VCHIQ is then used
via Multi-Media Abstraction Layer (MMAL) API, which provides camera
hardware control for user applications. (see section 2.3 for more information
about MMAL API)
The memory of the Raspberry Pi is split between both processors [6]. See
figure 2.1.

BCM2837 SoC

GPUCPU

RAM

Linux OS Real-time OS

RAM split

User application

MMAL API

VCHIQ

DMA

processing

Figure 2.1: Data Processing on the BCM2837

The data processed in the following way [6]:

5



2. Raspberry Pi Platform.................................
. The configured camera sensor streams lines of the frame (rows/columns)

over the CSI-2 interface to the GPU. The GPU constructs the frames from the streamed lines and performs
post processing tasks:. transposition, resizing, digital-gain etc.. The user application requests the recorded frames using the MMAL API.MMAL API request the recorded frames using the VCHIQ driver. The GPU performs direct memory access (DMA) transfer from its RAM
partition to the CPU’s RAM partition. The GPU sends information to CPU via VCHIQ that the transformation
is completed. The MMAL API is informed and passes the information to the user
application

2.3 Multi-Media Abstraction Layer (MMAL)
Application Programming Interface (API)

The Raspberry Pi Camera hardware is controlled using the MMAL API [8]
developed by Broadcom Europe Ltd. It is written in C programing language
and offers solutions for following tasks:. Controlling the camera hardware. Encoding/decoding video and audio. Encoding/decoding images
The API is based on the concept of components, ports and buffer headers.
The components provide ports (output/input), which produce/receive buffer
headers containing the actual data and auxiliary data needed for processing.
The components are objects (structures) that are created during rune-time of
the program and provide such services as mentioned earlier. See section 4 for
code implementation detail.

2.3.1 MMAL API Components

Components are C structures of type MMAL_COMPONENT_T, that can
either produce or process the data contained in buffer headers. The pro-
cessed data can be passed to another component or simply saved on the
filesystem etc. The example of a component could be camera component,
which controls and receives frames from the camera hardware (see figure 2.1)
and returns them at the output port as buffer headers. Another example

6



...... 2.3. Multi-Media Abstraction Layer (MMAL) Application Programming Interface (API)

could be video encoder component, which receives incoming plain frames at
the input port and returns encoded frames at the output port. The com-
ponents are created using MMAL API function mmal_component_create(),
which accepts the component name as an argument and pointer to allo-
cated MMAL_COMPONENT_T structure. The predefined components
have defined names in API header mmal_default_components.h. [8]

2.3.2 MMAL API Ports

Ports are structures MMAL_PORT_T, that are created by the components
automatically. They contain pointer to MMAL_ES_PORT_T, which is
structure that defines format of the port. Example of the port format could
be resolution of the captured video or the encoding bit rate. Format of
output ports are usually set automatically, when the component has sufficient
information about the data it produces. The format of input ports has to
be set by user via function mmal_port_format_commit(). Two MMAL API
components can be connected together via connecting output port of the first
one and input port of the second one. The procedure is dona via function
mmal_port_connect(). [8]

Setting Port Parameters.
The parameters are defined by integer indexes. Since the C language
does not allow overloading, the actual parameter values are represented
as binary data and later casted to the specific type based on the ID of
the parameter. The structure MMAL_PARAMETER_HEADER_T en-
capsulates general parameters. Setting of the ports parameters is done
using function mmal_port_parameter_set(). Eventually the parameters
can be set using functions that are specific for the type. For example
mmal_port_parameter_set_int32().

Enabling the Ports.
Ports are enabled via function mmal_port_enable(), with pointer to callback
function as the parameter. The callback function is invoked, when the
component is done processing the buffer header. When the ports are connected
together to callback parameter to mmal_port_enable() function has to be
NULL. Connected output ports also have assigned callback, which just simply
passes the buffer header to the associated input port. This way the port just
simply calls provided callback and does not have differentiate between those
cases. [8]

7



2. Raspberry Pi Platform.................................
2.3.3 Buffer Headers

Buffer headers are structures MMAL_BUFFER_HEADER_T used to ex-
change data between components. The structure contains address of the
actual data being transferred. The reason for this approach is ability to
provide any type of user data. The buffer headers are created from the pools
(structures MMAL_POOL_T). The pools allocate fixed number of buffer
headers and contain a queue (structures MMAL_QUEUE_T ), which is basic
FIFO queue that provides thread-safe implementation. The queues are simply
maintained by the functions mmal_queue_get() and mmal_queue_put(). [8]

8



Chapter 3

Description of algorithms used in detection

3.1 Histograms of Oriented Gradients (HOG)

3.1.1 Feature Descriptors

Feature descriptors (features) are information, used in image processing,
which contain relevant data about the image or part of the image (patch).
Features may be specific structures in the image such as points, edges or
objects. They are produced by algorithms, which can be highly dependent
on the application.

3.1.2 Introduction to HOG

The histogram of oriented gradients (HOG) is a feature descriptor, which
counts occurrences of gradient orientation for each image patch. The basic
idea is that the local object shape in the image can be described by the
distribution of gradients of edge directions. The whole image is divided into
cells and a histogram of gradient directions is created from all the pixel within
the cell. The final feature descriptor is the vector of all the histograms. Since
the HOG operates only in local cells, it is less prone to photometric and
geometric transformations, except to object orientation. [1]

9



3. Description of algorithms used in detection........................
3.1.3 Algorithm Overview

Preprocessing

HOG feature descriptor used for pedestrian detection described in the original
article [1] is calculated on a 64× 128 (width×height) patch of an image. The
first step is to select the image patch and resize it to 64× 128.
According to [1] the gamma and color normalization have only a small effect
on performance, so they will not be considered. The image patch can be
transformed to gray scale, which reduces the amount of gradient computation,
but according to [1] reduces slightly the performance of the detector. The
illustration of the preprocessing part is shown in figure 3.1.

(a) : Original image of size 574 × 587 (b) :
Image
patch of
size 381 ×
161

(c)
:
Im-
age
patch
re-
sized
to
128×
64

Figure 3.1: Images used to demonstrate HOG

10



........................ 3.1. Histograms of Oriented Gradients (HOG)

Gradient Computation

The Cartesian gradients are computed by filtering the image patch with

following kernels:
[
−1 0 1

]
and

−1
0
1

, which produce two matrices with

x-direction gradients and the y-direction gradients. Afterwards the gradients
are converted to polar coordinates, producing two matrices with magnitudes
and directions of the gradients. [1]
If the image patch has multiple channels, the gradients are computed for
each channel and the one with the largest magnitude is selected as the pixel’s
gradient vector. The visualizations of the gradients are shown in the figure
3.2.

(a) :
Gradient x-
direction

(b) :
Gradient y-
direction

(c) : Gradi-
ent magni-
tudes

Figure 3.2: Gradients of the image

Computation of Histograms in 8× 8 Cells

The image patch is divided into cells and a histogram of gradients is calculated
for each of them. This approach makes the representation more robust to
noise. In [1] the HOG was used for human detection, therefor they selected
size of the cell as 8× 8. This size is big enough to capture interesting features,
such as face and the top of the head.

11



3. Description of algorithms used in detection........................

Figure 3.3: Visualization of the 8× 8 cells

The histogram is created from gradient orientations placed in the bins.
The bins are evenly spaced over [0, π] or [0, 2π]. If the [0, π] interval is used,
the signs of the gradients are ignored. In the original paper [1] is stated that
usage of the whole [0, 2π] interval with doubled number of bins (to keep the
same bin interval) decreases performance. The number of bins used is 9,
giving each one of them Π

9 rad for the [0, π] interval.
Each gradient orientation in the selected cell is bilinearly interpolated between
two adjacent bins [9]. The weights are simply the gradient magnitudes.
Computation of all histograms in the image patch of size 64× 128 with cell
proportions 8 × 8 pixels and 9 histogram bins, produces 9 · 8 · 16 = 1152
numbers. The visualization of the cells is shown in figure 3.3.

Normalization of gradients in greater blocks

The gradients are sensitive to illumination and foreground to background
contrast. Darker images have lower magnitudes of the gradients. If some part
of the image is darker then the other one, the histograms in each cell have
different intensity, even though they should have the same weights. The way
to reduce the contrast is to normalize the histograms in different blocks. The
easiest block as described in [1] is rectangular. The cells are simply grouped
into greater blocks of size 16×16 pixels, which equals to size 2×2 cells created
in section 3.1.3. The blocks overlap by 50% as shown in figure 3.4. Each
block is characterized by histograms of the cells in it. For aforementioned
size each of them is represented by vector of length 36. The normalization
can be done in various ways. According to [1] the one of the most effective is

12



................................. 3.2. Classification of Data

L2-norm:
vnorm = v√

||v||22 + ε2
(3.1)

where v is vector containing all the histograms in the block and ε is regular-
ization.

(a) : The first
block

(b) : The sec-
ond block

(c) : The
third block

Figure 3.4: Image patch rectangular block normalization

HOG Features for the Complete Image

After normalization in the blocks the total number of features is 9 · 4 · 15 · 7 =
3780 for the image patch of size 64× 128 pixels, 8× 8 pixel size of the cell,
16 × 16 pixel size of the blocks and 9 bins in each histogram. This vector
represents features of the patch and is sent for further processing.

3.2 Classification of Data

3.2.1 Introduction

In order to determine, whether the image patch contains desired object, the
features are provided to a classifier. The classifier estimates to which class
the input feature vector belongs. The number of classes can be variable, but
the object detection requires only two classes:

13



3. Description of algorithms used in detection........................
. "object is present" (represented by value 1). "object isn’t present" (represented by value −1)

In the original paper [1] they used the linear and Support Vector Machine
classifier to distinguish them.

3.2.2 Support Vector Machine (SVM)

SVM is learning algorithm, that analyzes the data and classifies them. In
the learning mode the algorithm is provided with training data examples,
which are identified with one of the classes. Based on the examples the
algorithm builds the model. The model is then used in the classification
mode, which assigns new data to one of the classes. The input data examples
are represented as vectors in N-dimensional space. The goal of the learning
mode is to find the hyperplane (figure 3.5, "hyperplane0"), that separates the
classes in the way, that the distance between them is maximized. [11]. In the
classification mode the new data fall to one side of the hyperplane.

4.5 5 5.5 6 6.5 7

x-coordinates of the data

1

1.5

2

2.5

3

3.5

4

4.5

5

y-
co

or
di

na
te

s 
of

 th
e 

da
ta

Linear SVM

hyperplane0
hyperplane1
hyperplane2
Train Class 1
Train Class -1
Test Class 1
Test Class -1

Figure 3.5: Linear SVM 2-D (2 features) example

14



................................. 3.2. Classification of Data

Support Vectors

The support vectors are the data that are the closest to the hyperplane
and influence it’s actual position and orientation. These vectors are used
to maximize the margin of the classification. When some of those vectors
are removed, the hyperplane changes its position. The vectors lie on the
"hyperplane1" and "hyperplane2" in figure 3.5.

Linear SVM

The given training data examples are set of vectors : (xi, yi), where the xi is
the real vector representing each data (features of the image) and yi is either
1 or −1 depending on class, the data belong to. The goal of the learning
mode is to find the hyperplane, which separates both classes with maximum
margin. Hyperplane in N-dimensional Euclidean space is defined:

w · x + b = 0 (3.2)

where w is the normal vector to the hyperplane.
If the data are linearly separable, the two parallel hyperplanes can be found,
that separate two classes of data as demonstrated in example figure 3.5. The
distance between those hyperplanes is called the margin. They are defined as:

w · x + b = 1 (3.3)
w · x + b = −1 (3.4)

The margin is equal to 2
||w|| , where the ||w|| is norm of the normal vector

to the hyperplanes. All the training data have to lie outside of the margin,
which is defined as:

w · xi + b ≥ 1, for yi = 1 (3.5)
w · xi + b ≤ −1, for yi = −1 (3.6)

which can be rewritten as:

yi(w · xi + b)− 1 ≥ 0 (3.7)

The maximal margin between the pair of hyperplanes is found by minimizing
||w||2 with constraints 3.7. The mentioned optimalization problems can be

15



3. Description of algorithms used in detection........................
solved with Lagrange multipliers. The Lagrangian is given by:

L = 1
2 ||w||

2 −
n∑
i=1

αi
(
yi(w · xi + b)− 1

)
(3.8)

L = 1
2 ||w||

2 −
n∑
i=1

αiyi(w · xi + b) +
n∑
i=1

αi (3.9)

where αi, i = 1, .., n are Lagrange multipliers and n is equal to number of
training examples. The L has to be minimized with respect to w and b.
The 3.9 is a convex quadratic programming problem, because the objective
function 1

2 ||w||
2 is convex itself and the constraint points which satisfy 3.7

also form a convex set [11]. This means that the Lagrangian dual problem:

max
α

inf
w,b

(1
2 ||w||

2 −
n∑
i=1

αi
(
yi(w · xi + b)− 1

))
(3.10)

αi ≥ 0, i = 1, .., n (3.11)

can be solved as Wolfe dual problem, which is following:

max
w,b,α

(1
2 ||w||

2 −
n∑
i=1

αi
(
yi(w · xi + b)− 1

))
(3.12)

∇w,b
(1
2 ||w||

2)− n∑
i=1

αi∇w,b
((
yi(w · xi + b)− 1

))
= 0 (3.13)

αi ≥ 0, i = 1, .., n (3.14)

Solving the equation 3.13 :[
w, 0

]
+
[
−

n∑
i=1

αiyixi,
n∑
i=1

αiyi
]

=
[
0, 0

]
(3.15)

which gives:

w =
n∑
i=1

αiyixi (3.16)

n∑
i=1

αiyi = 0 (3.17)

Substituting 3.16 and 3.17 into 3.9 gives:

L = 1
2 ||

n∑
i=1

αiyixi||2 −
n∑
i=1

αiyi(
n∑
j=1

αjyjxjxi)− b
n∑
i=1

αiyi +
n∑
i=1

αi (3.18)

L = −1
2

n∑
i=1

n∑
j=1

αiαjyiyjxixj +
n∑
i=1

αi (3.19)

The function L has to maximized with constraints:
n∑
i=1

αiyi = 0 (3.20)

αi ≥ 0, i = 1, .., n (3.21)

16



................................. 3.2. Classification of Data

Solving the Optimalization Problem

The quadratic programming problem 3.19 can be solved in Matlab using
function quadprog from Optimalization toolbox. The 3.19 has to be rewritten
into [10]:

min
α

1
2α

THα+ 1Tα such that
{
−1 · α ≤ 0
y · α = 0

(3.22)

where H = (y · yT ) ∗ (x · xT ), ∗ is element wise multiplication ,

1T =
[
1, 1, .. 1

]
, 0T =

[
0, 0, .. 0

]
, 1 =


1, 0, .. 0
0, 1, .. 0
: : .. :
0, 0, .. 1


The returned vector α from function quadprog is then used to find the weights
w using equation 3.16. In addition the value b is computed from equations 3.3
and 3.4 using support vectors (they lie on one of the hyperplanes, depending
on the class, so they have to meet one of the equations). The support vectors
have αi equal to some positive value. Other vectors have proportionally
smaller value, because they don’t contribute to the actual position of the
hyperplanes.
The result of the simple data with two features, 90 training data and 10
testing data is shown in the figure 3.5. The data are linearly separable.
Implemented Matlab code can be seen in enclosed CD (see section 4.6.2 for
the directories hierarchy)

17



18



Chapter 4

Code Design Specification

4.1 Assembling MMAL API Components

The processing pipeline consists of four MMAL API components
(MMAL_COMPONENT_T ) connected together. The implementation sup-
ports two modes: Render and Encoder (see section 4.3 for more information
and figures 4.1 and 4.2, which visualize the connection of the components).
The Camera component is provided by the MMAL API. This component pro-
duces buffer headers from incoming frames captured by the camera hardware
and forwards them on two output ports. The second component is Encoder
component, which encodes the captured video into H.264 format and saves
the captured frames on the file-system. The HOG component is user written,
which takes incoming frames, computes HOG feature descriptors (see section
3.1 about HOG) and marks the detected object. The last component is video
Render, which displays on-line the captured video.

19



4. Code Design Specification ...............................

Camera component
Output port 0 Output port 1

HOG component

Input port 0

Encoder Component

Input port 0

Output port 0

Save
Callback

Render component

Input port 0

Output port 0

Figure 4.1: Connection of components for the Render Mode

Camera component
Output port 0 Output port 1

Encoder Component

Input port 0

Output port 0

Save
Callback

Render component

Input port 0

HOG component

Input port 0

Output port 0

Figure 4.2: Connection of components for the Encoder Mode

20



.......................... 4.1. Assembling MMAL API Components

4.1.1 The Camera component

The purpose of this component is to control and set-up the camera hard-
ware, receive the incoming frames and send them to other connected compo-
nents for the further processing. The implementation of the component is
already provided by the MMAL API itself. The Camera Component structure
MMAL_COMPONENT_T is created using functionmmal_component_create()
with parameter name equal to macroMMAL_COMPONENT_DEFAULT_CAMERA.
The creation of the component is handled in the source file CameraCom-
ponent.c.

Camera initialization

Initializing camera control port. The camera component contains control
port of the type MMAL_PORT_T, which is used for setting basic parameters
of the camera. Minimal settings are:. Camera ID. ID of the camera (zero index if only one camera is connected). Defined by the structureMMAL_PARAMETER_CAMERA_NUM_T. Video or still image resolution. Defined by the structureMMAL_PARAMETER_CAMERA_CONFIG_T
Parameters above are set using the functionmmal_port_parameter_set() with
the camera control port and the pointer to item hdr contained in the structure.
The control port is enabled by using the function mmal_port_enable() while
providing the pointer to control port and the control callback. The callback
is triggered, when the parameters of the camera change during runtime (e.g.
video resolution, frames per second, etc.).

Initializing output ports. The component uses three output ports, which
are connected to input ports of other components based on current mode:. Camera port. Render Mode. This port produces frames forwarded to Encoder component

for further processing. Encoder Mode. This port produces frames forwarded to HOG component for
further processing. Preview port. Render Mode

21



4. Code Design Specification ...............................
. Outputs frames forwarded to HOG component for further pro-

cessing. Encoder Mode. Outputs frames forwarded to Render component for further
processing. Still port.Outputs still images.. This port is not used in the implementation.

Camera and preview ports need additional information about the format
of the outputs. The format parameters are contained in the structure
MMAL_PORT_T. The required ones are:. encoding. The desired encoding of the output frames. used: MMAL_ENCODING_I420. Video resolution. Video cropping. Frames per second

The values that have been set are confirmed by the function
mmal_port_format_commit().

Setting additional camera parameters. Additional parameters of the cam-
era in the implementation are:. Defined by structure MMAL_PARAMETER_RATIONAL_T. Saturation. Defined by the ID MMAL_PARAMETER_SATURATION. Sharpness. Defined by the ID MMAL_PARAMETER_SHARPNESS. Contrast. Defined by the ID MMAL_PARAMETER_CONTRAST. Brightness. Defined by the ID MMAL_PARAMETER_BRIGHTNESS. Defined by int32_t. Rotation. The parameter is set because the camera hardware is mounted

in the rack upside-down.. Defined by the ID MMAL_PARAMETER_ROTATION

All the mentioned parameters are set using the pointer to camera control
port and functions mmal_port_parameter_set_rational() or
mmal_port_parameter_set_int32() respectively.

22



.......................... 4.1. Assembling MMAL API Components

4.1.2 The Encoder component

The purpose of this component is to encode the capture video into the H.264
format. The implementation of the component is already provided by the
MMAL API itself. The Encoder Component structureMMAL_COMPONENT_T
is created using function mmal_component_create() with parameter name
equal to macro MMAL_COMPONENT_DEFAULT_VIDEO_ENCODER.
The creation of the component is handled in the source file EncoderCom-
ponent.c. The Encoder component has one input port, which receives the
video frames and one output port. The output port has set function callback,
which is invoked when the component is done with encoding of the current
buffer header. The purpose of the callback is to save the data into output
file, which is opened by using function fopen() before assigning to port.

Initializing of input port

The format of the input port is determined after connecting the camera
output port. Therefore it doesn’t have to be set.

Initializing of output port

The output port needs additional information about the format. The format
parameters are contained in the structure MMAL_PORT_T. The required
ones are:. encoding. Set to enum MMAL_ENCODING_H264. bitrate. Set to values depending on video resolution. buffer_size and buffer_num. Both set to predefined recommended values

The values that have been set are confirmed by the function
mmal_port_format_commit().

23



4. Code Design Specification ...............................
Initialization of buffer headers pool

Encoder component needs allocated memory for buffer headers
(MMAL_BUFFER_HEADER_T), which contains the video frames. The
memory is allocated using the function mmal_port_pool_create(). The pool
of buffer headers is then provided into the output port callback function.
The pool is provided via item userdata contained in the MMAL_PORT_T
structure.

Enabling the Encoder output port

The output port of the encoder has to be enabled using the functionmmal_port_enable().
The parameter also takes the pointer to the function callback described below.

Encoder output port callback. The callback has signature:
void (*)(MMAL_PORT_T*, MMAL_BUFFER_HEADER_T*).
The callback function checks whether the buffer header contains valid data
and saves them to provided file using the function fwrite(). Before returning
the callback has to release the used buffer header back to the pool using the
function mmal_buffer_header_release(). As mentioned earlier the callback
data are provided using the item userdata contained in the MMAL_PORT_T
structure. Implemented callback requires two variables:. Pointer to the file (data type FILE) obtained by function fopen(). Pool of buffer headers
Both of the variables are encapsulated into the structure EncoderCallback-
Data_t defined in header file Constants.h. The structure is then casted
into struct MMAL_PORT_USERDATA_T and passed to the output port
callback.

4.1.3 The Render component

The purpose of this component is to display on-line the captured video
and detected objects when the Render Mode is enabled. This component
has only one input port and doesn’t have any output ports (the incom-
ing buffer headers with video frames are just displayed and then auto-
matically released back to the internal buffer headers pool). The Render
Component structure MMAL_COMPONENT_T is created using function

24



......................... 4.2. Implementation of the HOG component

mmal_component_create() with parameter name equal to macro
MMAL_COMPONENT_DEFAULT_VIDEO_RENDERER. The creation of
the component is handled in the source file RendererComponent.c.

Render input port initialization

The only parameter set for input port is provided in structure
MMAL_DISPLAYREGION_T, which contains information about display
size and position. Implementation supports the same size of the window as is
the video resolution.

4.1.4 The HOG component

The HOG component is custom MMAL API component. For general infor-
mation about creation of the custom MMAL API component see the section
4.2.1. For the specific implementation of the HOG component see the section
4.2.2.

4.2 Implementation of the HOG component

4.2.1 Custom MMAL API component information

The custom component can be created and registered into MMAL API using
function mmal_component_supplier_register() with some prefix and function
which will create the component. The function has to have signature:
MMAL_STATUS_T(*)(const char*, MMAL_COMPONENT_T*)

Custom component private data

The component structure MMAL_COMPONENT_T has private item
MMAL_COMPONENT_MODULE_T which is used to preserve essential

25



4. Code Design Specification ...............................
data during lifetime of the component. The custom component can define its
own items of this structure.

Creating input and output ports

The component has to allocate its own memory for the input and output
ports. The function for this purpose is mmal_ports_alloc(), which associates
the desired number of ports with the component.

Setting the actions of the ports

Each port requires functions that are triggered when certain actions appear.
The functions are contained in the structure MMAL_PORT_PRIVATE_T.
The items of the structure used in HOG component are following:. pf_set_format. This function is used when the user calls the functionmmal_port_format

_commit().. pf_disable. This function is used when the user calls the functionmmal_port_disable().. pf_flush. This function is used when the user calls the functionmmal_port_flush().. pf_send. This function is used when the user calls the functionmmal_port_send
_buffer().. pf_parameter_set. This function is used when the user calls the functionmmal_port_parameter
_set().

Registering the action of the component

The component needs to register an action using functionmmal_component_action_register(),
which is triggered when the component calls the functionmmal_component_action_trigger().
The signature of the function is void(*)(MMAL_COMPONENT_T*). The
registered action is run in a separate thread.

26



......................... 4.2. Implementation of the HOG component

Destroying the component

The component structure has also an item which stores the function for
destruction. The function is triggered, when mmal_component_destroy() is
called with the address of the component.

4.2.2 HOG component implementation

The custom MMAL API component is provided in source file SecondCom-
ponent.c and the implementation of the object detection based on HOG
is located in HOG.c. The component suits as the interface for the object
detection core. During creation, it spawns threads and synchronizes them
during processing phase. Each thread has predefined limits of the frame and
does the HOG object detection inside these limits.

Component creation

Assigning port actions. The component first allocates data needed by the
MMAL API and assigns functions to the port actions, which are the following:. Port action: pf_set_format. The function checks that the format encoding is MMAL_ENCODING_I420,

which represents UYV420 color format. pf_disable. If the function is called for the first time, it instructs the threads to
exit, joins them and calls the function, which is saved on the item
pf_flush. pf_flush. The function obtains the input or output buffer headers queue
(depending on the port) and sends all the remaining buffer headers
to the connected port.. pf_send. The function triggers the assigned action (processing of the incoming
frame)

Private component data. After assigning the port actions, the private data
structure of the component is allocated. The structure contains following
data:

27



4. Code Design Specification ...............................
. Data needed by the threads (arrays with size equal to number of threads).

See the section 4.2.2. Data type thread_t. Data type thread_data_t. Structure defined in header HOG.h. Contains important in-
formation needed by each thread. (see 4.6.1 for detailed infor-
mation about this structure). Data type sem_t. Semaphore that informs thread that it can continue with the
processing pipeline. See the sequence diagram 4.3. Data type sem_t. Semaphore which is used by the thread, when it is done with
part of the processing pipeline. See the sequence diagram 4.3. Data type limits_simple_t. Structure defined in header HOG.h. Contains total frame
limits for each thread. Initialized during component creation
(see 4.6.1 for detailed information about this structure). Data type limits_all_t. Structure defined in header HOG.h. Contains array of patches
limits for each thread. Initialized during component creation
(see 4.6.1 for detailed information about this structure). Data type detection_data_t. Structure defined in header HOG.h. Contains detection infor-
mation for each thread. Initialized during component creation
(see 4.6.1 for detailed information about this structure). Data type visualize_data_t. Structure defined in header HOG.h. Contains information
about position of the object in the frame. (see 4.6.1 for detailed
information about this structure). Shared memory between threads. Pointer to data type float. Memory containing all the histograms for the frame. Allocated
during component creation.. Pointer to data type float. Memory containing all the features for the frame. Allocated
during component creation.. Pointer to data type uint8_t. Memory containing boolean value whether the patch from the
current frame contains detected object. Pointer to data type uint8_t. Memory containing accumulated value of each patch, which is
used for preventing some of the false positives (see the section
4.2.2 for more information how the values are used). Pointer to data type MODEL

28



......................... 4.2. Implementation of the HOG component

. The model created by light_svm library. (see section 4.5.1 for
more information about the library). Data needed by the MMAL API component. Data type MMAL_QUEUE_T. The buffer header queue needed by the input port. Created
during component creation.. Data type MMAL_QUEUE_T. The buffer header queue needed by the output port. Created
during component creation.

Providing registered actions. The component provides the function for
processing the incoming frames (see section 4.2.2 for more information about
main thread processing)

Initializing limits of all threads. At first the whole frame resolution is
divided equally between all the processing threads so they do not overlap,
using the function dealThreadLimits().

Initializing patches positions. Each thread maintains patches which are
bound by the limits dealt in previous step. The patches are of the size 64×64
pixel. The positions of all the patches for each thread are determined by the
function init_limits(), which also take parameter that sets their overlapping.
The presence of an object in the patch is determined by the trained support
vector machine (see section 3.2.2 about SVM)

Initializing detection and visualization data. Initialization is done via
functions init_detection_data() and init_visualization_data(). For detailed
information about both structures see section 4.6.1.

Loading the light_svm model. The model is loaded using functions read_model()
and add_weight_vector_to_linear_model(). For more information about
both functions, see section 4.5.1 about svm_light library.

Initializing and spawning threads. Addresses of previously allocated data
are provided to structures thread_data_t, which are then passed to function
pthread_create(), used to spawn threads. To assure that all the threads were
successfully initialized, the component waits for all the threads to confirm
success by posting to the semaphore.

29



4. Code Design Specification ...............................
Component creation failure. If any of the allocation/ initialization fails
during the HOG component creation, the destruction functions is called and
the functions returns status indication failure.

Component destruction. The function that destroys the component frees
all the allocated memory during component creation, instructs the threads to
exit and joins them.

Component processing

As mentioned earlier the HOG processing is done when the component triggers
the registered function (main thread), which happens for each frame. It takes
the buffer header from the queue using the function mmal_queue_get(). The
address of frame pixel values is provided to all threads and they are instructed
to start the computation. The function consecutively waits for threads to
finish the computation and instructs them continue three times in order
to assured thread safety and synchronization (for more details see section
4.2.2 about thread processing). For the sequence diagram of the component
processing and thread processing see figure 4.3.

Visualizing detected object. The main thread evaluates the data received
from the other threads by checking, which patches contain detecting object.
The patches which contain the object are highlighted by the box, which is
made by alternating the pixels on the edge of the patch.

Filtering out standalone false positives. The classification of the objects
doesn’t have 100% accuracy. To avoid some of the misclassified objects each
patch accumulates current number of positive samples. The accumulated
value is increased each time the object is detected and decreased when the
object is not present in the patch. The accumulated value has lower and upper
boundaries to limit the memory. When the object is detected the sum of
accumulated values of neighboring patches is computed. If the sum is greater
than the specified threshold, the patches (from the same neighborhood) which
contain the object in the current frame are highlighted. The processed patches
are than marked to prevent from further processing. See flow chart digram
in figure 4.6.

30



......................... 4.2. Implementation of the HOG component

Sending the processed frame to the output port. After highlighting the
detected objects the buffer header is replicated to the output queue using the
function mmal_buffer_header_replicate(). At the end the used buffer header
is released into its pool.

Thread processing pipeline

Processing function of each thread is divided into three phases:. Computation of histograms. Each thread has defined fixed boundaries in the frame. The frame
boundaries of one thread doesn’t overlap with boundaries of other
ones. In this boundaries the threads compute histograms of gradi-
ents. Each histogram represents gradients of cells with 8× 8 pixel
size. All the histograms are stored in the shared memory array.
Each thread writes only into its own part of the array. This way
thread safety is assured. After computation, each thread notifies
the main thread using the semaphore and waits for the notification.. Computation of features. The features are computed from the histograms by taking four
neighboring cells and normalizing the vector (see section 3.1.3 about
histogram normalization for more information). On the edges of the
boundaries the required histograms are shared between neighboring
threads. Because of that, the threads are synchronized from the
main thread in the previous step, to ensure that all the histograms
are computed before computing the features. All the features are
stored in the shared memory array and each thread writes into its
own part. After computation, each thread notifies the main thread
using the semaphore and waits for the notification.. Detecting the objects. Each thread has already computed boundaries for each patch of size
64× 64 pixels. The patches overlap to provide better detection den-
sity. For each patch the thread reads features from the shared buffer
and provides them to light_svm library (see section 4.5.1), which
classifies whether the patch contains the object. The classification
is done using function classify_example_linear(). The function
returns value of type double, which represents distance from the
separation hyperplanes (see section 3.2.2 for more information about
Support Vector Machine). Based on the distance the thread decides
whether the object is present. Because the patches limits reaches
out of the thread frame boundaries, they are synchronized in the
previous step to ensure that the neighboring thread has already
finished computation of the features. After going through all the
patches, the thread notifies and waits for the next frame to arrive.

31



4. Code Design Specification ...............................
The thread iterates aforementioned steps until the main thread changes value
of the shared flag. The implementation is provided in source file HOG.c in
function thread_job(). See flow chart diagram in the figure 4.4.

4.3 Main process

The main process is responsible for creating, connecting and destroying all
the components. It is implemented in source file Main.c. The compiled
binary accepts arguments with following switches:

. "-t". The switch is followed by unsigned integer value defining the video
capture duration (in milliseconds). Default value is 5000. "-m". The switch is followed by unsigned integer value defining whether
the detected objects are highlighted in the video render or saved to
file using the Encoder component.. 0 (default): Render Mode: The detected objects are highlighted in
Render component. else: Encoder Mode; The detected objects are highlighted in saved
file via Encoder component

See the flow chart diagram in figure 4.5.

32



........................... 4.4. Flow chart and sequence diagrams

4.4 Flow chart and sequence diagrams

Main thread Job threads

Take buffer header
from the queue

Provide pixel values

Notify Job threads

Compute histograms

Notify Main thread

Wait for all threads

Notify threads

Compute features

Notify Main thread

Wait for all threads

Notify threads

Detect object

Provide detection data

Notify Main thread

Wait for all threads

Alter the buffer header
and put it to output queue

Figure 4.3: Sequence diagram of the thread synchronization

33



4. Code Design Specification ...............................

Initialization

success

Compute histograms

Flag continue

Notify and wait

Notify and wait

Compute features

Notify and wait

Detect objects

Notify and wait

Clean-up

Flag stop

failure

Figure 4.4: Flow chart diagram of the thread processing pipeline

34



........................... 4.4. Flow chart and sequence diagrams

Process
cmd-line

Create
MMAL API

 components

Connect
 component

ports

success

Start
capturing

success

Sleep for 
desired 

msStop
capturing

Cleanup

failure

failure

Figure 4.5: Flow chart diagram of the main process

35



4. Code Design Specification ...............................

Object
detected

Sum accumulated
values of neighboring

patches

Select next
patch

Sum > 
threshold

Highlight the patches
in neighborhood

containing objects

Mark the processed 
patches to exclude them
from further processing 

All patches
processed

         True

False

True

False

True

False

Figure 4.6: Flow chart diagram of visualizing the detected objects

36



.................................... 4.5. Classification

4.5 Classification

4.5.1 SVMlight Library

Basic information

The effective implementation of the support vector machine provides svm_light
library [5]. The library provides two binaries:. svm_learn. Creates classification model based on provided training data. The

binary creates text model file, which contains training kernel param-
eters, dimension size of features and the values of support vectors.. svm_classify. Classifies the given test data. The binary loads specified model
from the file-system and based on the model classifies given testing
data. As the result, outputs number of misclassified samples and
the error rate.

Both training and testing data are loaded from the text file in the following
format [5]:

<target> <feature>:<value> <feature>:<value> ... <feature>:<value>
where:.<target> equals −1 or 1 (depending on the class that the example

belongs to).<feature> is integer index of the feature vector dimension. Indexing
starts from value 1..<value> is a float value of the feature vector at this index

Entry with <value> 0 can be omitted. SVMlight also provides a dynam-
ically linked library libsvmlight.so. The library provides following api for
classification:. Function read_model(). Loads the trained model from the file-system into structureMODEL;. Function add_weight_vector_to_linear_model(). Adds linear weights into the loaded MODEL structure. Needed

only for linear kernel.. Function classify_example_linear(). Classifies the given data based on the trained model (provided in
structure MODEL).

37



4. Code Design Specification ...............................
Usage of libsvmlight library in the implementation

The functions read_model() and add_weight_vector_to_linear_model() are
used in the HOG component during the creation. The model is then provided
to all the threads. Each thread initializes its own structure DOC, which is
needed by the function classify_example_linear(). The structure contains
classification parameters and the feature vector itself. The vector is filled
with current features of the patch from the frame.

4.5.2 Training and testing data

Extracting HOG features from images

Training and testing images have to transformed into the features correspond-
ing with svm_light library. A Matlab script mainHOG.m was created for
this purpose. The scripts loads each image, computes HOG features and
saves them into the text file. The script has programmable percentage of
testing/training feature ratio.

Training the model

The produced training examples are used to create model. The model is
created using svm_learn binary.

38



....................... 4.6. Addition information about implementation

4.6 Addition information about implementation

4.6.1 Data structures

Defined in Constants.h header

EncoderCallbackData_t. Structure containing information needed by the
Encoder component.. encoder_pool. Pointer to the MMAL_POOL_T used by the encoder callback. file. Pointer to the opened file to which the encoded video is saved.

CmdParameters_t. Structure containing information about command-line
parameters.. sleepTime. Value of type uint32_t defining duration (in milliseconds) of the

video capture.. detectComponent. Value of type uint32_t defining the current mode (Render or En-
coder)

Defined in HOG.h header

limits_all_t. Structure containing information about boundaries of more
cells or patches. See figure 4.7 to see visualization of the structure parameters..min_w.max_w. size_w. Number of elements in arrays min_w and max_w.min_h.max_h. size_h. Number of elements in arrays min_h and max_h

39



4. Code Design Specification ...............................
limits_simple_t. Structure containing information about frame boundaries
for each thread. See figure 4.7 to see visualization of the structure parameters..min_w.max_w.min_h.max_h
Since the frame is saved in a memory array the indexes of the corners are
computed as:

topleft = framewidth ·min_h+min_w (4.1)
topright = framewidth ·min_h+max_w (4.2)

bottomleft = framewidth ·max_h+min_w (4.3)
bottomright = framewidth ·max_h+max_w (4.4)

frame

patch

min_h

max_h

min_w max_w

Figure 4.7: Indexing of the patches and cells limits

detection_data_t. Structure containing information about object detection.. detected_size. Number of the elements in the arrays (number of patches processed
by the thread). detected_now. Array of boolean values for each thread defining whether the patches
contain an object. detected_total. Array of type uint32_t values defining total number of detected
objects during lifetime of the whole process for each thread. detected_max

40



....................... 4.6. Addition information about implementation

. Array of type double values defining maximum value returned by
function classify_example_linear() during lifetime of the whole
process. See section 4.5.1 for the information about aforementioned
function.. detected_now_all. Pointer to array of type uint8_t containing boolean value of all
the patches. The values represent information whether the patches
contain the object.. detected_accumulated_all. Pointer to array of type uint8_t containing accumulated values of
all the patches. The values are used when highlighting the detected
objects. See section 4.2.2 and flow chart diagram 4.6 for more
information.. patches_in_width. Number of the patches in the horizontal dimension. The value is
used to compute the indexes of the current frame.

visualize_data_t. Structure containing information about position of each
patch in the frame needed for highlighting the detected object.. detected_size. Total number of patches in the frame.. detected_w. Total number of patches in horizontal direction. detected_h. Total number of patches in vertical direction.mem_size_w. Size of the memory used by function memcpy() to highlight the

tracking box. video_w.Width of the video frame. size_h. Height of the tracking box. index_h1w1. Position of the top-left corner of the tracking box. index_h1w2. Position of the top-right corner of the tracking box. index_h2w1. Position of the bottom-left corner of the tracking box

thread_data_t. Structure containing data provided to each thread. limits. Structure limits_simple_t. all_patches_limits

41



4. Code Design Specification ...............................
. Boundaries of all the patches processed by the thread (structure

limits_all_t). det_data. Information about the object detection (structure detection_data_t). img. Pointer to array of type uint8_t containing current frame. frame_histograms. Pointer to array of type float containing computed histograms for
the current frame. frame_features. Pointer to array of type float containing computed features for the
current frame. thread_control. Boolean value defining information if the thread should continue or
cleanup and terminate. thread_init_success. Boolean value defining whether the initialization of the thread was
successful.m_done. Semaphore (type sem_t) used by the thread to inform main thread
the it is done with the part of computation (see flowchart diagram
4.4 for more information).m_go. Semaphore (type sem_t) used to notify the thread that it can
continue with the computation (see flowchart diagram 4.4 for more
information).model. Pointer to model (structure MODEL from the svm_light library, see
section 4.5.1 for more information) loaded by the HOG component

4.6.2 Specifications of the implementation

Object of interest selection

The implementation was configured to detect vehicles in traffic.

42



....................... 4.6. Addition information about implementation

Dataset of vehicles

The Support Vector Machine is trained from the GTI vehicle image database
[4]. The database contains about 4000 vehicle and 4000 non-vehicle (images
of roads, billboards, signs etc.) images. The vehicle images are divided into
four groups:. Images further away from the vehicle. Images taken closer from the vehicle. Images taken from the right side corder. Images taken from the left side corner
Each image is has size 64× 64 pixel and contains various vehicle types and
brands.

Implementation details to allow processing at 60 frames per second

Selection of the video resolution. The camera hardware is capable of
producing 60 frame per second (FPS) at maximum of 1280 × 720 pixel
resolution. Unfortunately at this resolution the processor is not capable to
maintain the frame rate. It is capable to run at 60 fps when the resolution is
set to 640× 320 pixels.

Overlapping of the patches. The patches are created from the shared
memory buffer, which contains HOG features of the whole frame. Each patch
of the size 64× 64 pixel is represented by 7× 7 arrays with length 36 (2× 2
normalized histograms with 9 bins). The normalized histograms are shifted
by the size of the cell (8× 8 pixels), therefore the minimum step of the shift
(patch overlapping) is [64, 64]

[8, 8] = [8, 8] pixels. Using the smaller patch shifting
(larger overlapping) achieves more continuous tracking, but also increases the
computation cost. At the video resolution 640× 320 the processor is capable
to maintain the smallest possible patch shifting.

Detecting only relevant part of the frame. Since the vehicles are not
expected in the every part of the frame some of the areas do not need to be
scanned for vehicle objects. Half of the vertical part and some portions of
horizontal part can be eliminated for this use case.

43



4. Code Design Specification ...............................
Directories hierarchy

The files provided in attachments (enclosed CD) have to following hierarchy:.matlab. HOG. Matlab script that extracts the HOG features from the training
images and inputs them to the text file in the format expected
by svm_light library (see section 4.5.1 for detailed description).. SVM. Matlab script that was used for creating figures in section
Support Vector Machine 3.2.2. FeaturesExtractionTesting. Matlab script that was used for testing features extraction. The
results from the C code implementation were compared with
the Matlab results.. HOGdetection. inc. Directory containing header files.. src. Directory containing source files.Makefile. Used for building the project. FeaturesExtractionTestingC.main.c. Source file used for testing features extraction. The results are
compared with the Matlab.. Results. Text file with link to website containing the testing videos.

44



Chapter 5

Testing of the detection

The application was tested in four following operational scenarios:. Slower moving vehicles detected from a sidewalk of the road. Faster moving vehicles detected from a sidewalk of the road. Slowing down vehicles - moving forward to a road crossing. Tracking of the vehicle from the car windshield

In all the aforementioned cases the application was able to detect the vehicles
and highlight them with the tracking boxes. See the figures 5.1 and 5.2
showing the example frames of the detected vehicles. The performance of
the detection can be improved by choosing exact placement of the camera
hardware. The advantages of placement knowledge in advance are:. The SVM classifier can be trained only for the expected vehicle rotation

and positions, which increases detection precision.. The precise part of the frame can be chosen for detecting to reduce
computational cost of the image features.

The captured MP4 files are available at the following http shared folder. The
link is also provided in enclosed CD (see section 4.6.2).

45

https://drive.google.com/drive/folders/106Rpr6CRrY5X-vKCzXRjOyZAJmWnu7Mg?usp=sharing


5. Testing of the detection ................................

Figure 5.1: Example of the video frame, while detecting vehicles 1

Figure 5.2: Example of the video frame, while detecting vehicles 2

46



Chapter 6

Conclusions

The purpose of this thesis was to implement object detection for the plat-
form Raspberry-Pi using algorithm histogram of oriented gradients. In the
introductory we got acquainted with all the necessary properties needed for
the successful completion of the goal. We explained algorithm histogram of
oriented gradients which extracts features from an image based on the direc-
tion of edges. In addition we described what does the classification algorithm
linear support vector machine, which builds model from the training images.
The trained model is then used to classify the current incoming frames. At
last but not least we showed how to use Multi-Media Abstraction Layer API
(MMAL API for short) developed by Broadcom to create processing pipeline.
Based on the gained theoretical background we successfully developed pro-
cessing pipeline for tracking vehicles, that runs on Raspberry-Pi platform
with 60 frames per second at real-time. Since the used APIs were provided
in C programming language, it was also selected for the implementation. In
order to assemble the pipeline, we created custom MMAL API component
that processes incoming video frames from the camera hardware and detects
the present vehicles. To utilize all the cores of on-board processor the cre-
ated component works with threads and synchronizes them for successful
coordination. To ensure that the C implementation used in the processing
pipeline produces expected features, their extraction was also implemented in
Matlab. The same Matlab code was used when producing feature vectors from
the training images. The final application was tested in real operation and
empirically optimized. The provided solution is functional and satisfies the
input requirements. All the created functions were documented in doxygen
format and the implementation was described in detail in the chapter 4.

47



48



Bibliography

[1] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for
human detection. IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2005.

[2] RASPBERRY PI FOUNDATION. Raspberry pi foundation. https:
//www.raspberrypi.org/, April 2020. Accessed on 2020-25-4.

[3] RASPBERRY PI FOUNDATION. Raspberry pi hardware.
https://www.raspberrypi.org/documentation/hardware/
raspberrypi/README.md, April 2020. Accessed on 2020-25-4.

[4] M. Nieto J. Arróspide, L. Salgado. Vehicle image database gti. http:
//www.gti.ssr.upm.es/data/Vehicle_database.html, January 2012.
Accessed on 2020-12-5.

[5] Thorsten Joachims. Svm-light support vector machine. http://
svmlight.joachims.org/, August 2008. Accessed on 2020-12-5.

[6] Dave Jones. picamera. https://picamera.readthedocs.io/en/
release-1.13/index.html, 2013 - 2016. Accessed on 2020-12-5.

[7] Creative Commons Attribution-ShareAlike 3.0 Unported License.
Raspberry pi videocore apis. https://elinux.org/Raspberry_Pi_
VideoCore_APIs, October 2015. Accessed on 2020-12-5.

[8] Broadcom Europe Ltd. Multi-media abstraction layer (mmal). draft ver-
sion 0.1. http://www.jvcref.com/files/PI/documentation/html/
index.html, 2012. Accessed on 2020-12-5.

49

https://www.raspberrypi.org/
https://www.raspberrypi.org/
https://www.raspberrypi.org/documentation/hardware/raspberrypi/README.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/README.md
http://www.gti.ssr.upm.es/data/Vehicle_database.html
http://www.gti.ssr.upm.es/data/Vehicle_database.html
http://svmlight.joachims.org/
http://svmlight.joachims.org/
https://picamera.readthedocs.io/en/release-1.13/index.html
https://picamera.readthedocs.io/en/release-1.13/index.html
https://elinux.org/Raspberry_Pi_VideoCore_APIs
https://elinux.org/Raspberry_Pi_VideoCore_APIs
http://www.jvcref.com/files/PI/documentation/html/index.html
http://www.jvcref.com/files/PI/documentation/html/index.html


Bibliography ......................................
[9] Satya Mallick. Histogram of oriented gradients. https://

www.learnopencv.com/histogram-of-oriented-gradients/, Decem-
ber 2016. Accessed on 2020-12-7.

[10] Inc. The MathWorks. quadprog. https://www.mathworks.com/help/
optim/ug/quadprog.html, 2020. Accessed on 2020-14-7.

[11] Inc. Wikimedia Foundation. Support-vector machine. https://en.
wikipedia.org/wiki/Support-vector_machine, May 2020. Accessed
on 2020-12-5.

[12] the free encyclopedias Wikipedia. Rolling shutter. https://en.
wikipedia.org/wiki/Rolling_shutter, December 2019. Accessed on
2020-12-5.

50

https://www.learnopencv.com/histogram-of-oriented-gradients/
https://www.learnopencv.com/histogram-of-oriented-gradients/
https://www.mathworks.com/help/optim/ug/quadprog.html
https://www.mathworks.com/help/optim/ug/quadprog.html
https://en.wikipedia.org/wiki/Support-vector_machine
https://en.wikipedia.org/wiki/Support-vector_machine
https://en.wikipedia.org/wiki/Rolling_shutter
https://en.wikipedia.org/wiki/Rolling_shutter


Appendix A

CD Contents

. Implemented C and Matlab Code (see the section 4.6.2 about the direc-
tories hierarchy)

51



52



ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

439577Osobní číslo:LadislavJméno:KršekPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra radioelektroniky

Otevřené elektronické systémyStudijní program:

Komunikace a zpracování signáluStudijní obor:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Detekce objektu ve videosignálu

Název diplomové práce anglicky:

Object Detection in Video Signal

Pokyny pro vypracování:
Seznamte se s metodou histogramu orientovaných gradientů (HOG) pro detekci objektu ve videosignálu. Tuto metodu
implementujte pro běh v reálném čase na platformě Raspberry Pi. Uvažujte rychlost zpracování odpovídající 60 snímkům
za sekundu.

Seznam doporučené literatury:
[1] Dalal, N. and B. Triggs, 'Histograms of Oriented Gradients for Human Detection', IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, Vol. 1 (June 2005), pp. 886–893.
[2] Teach, Learn, and Make with Raspberry Pi – Raspberry Pi [online]. Raspberry Pi Foundation [cit. 2019-09-16]. Dostupné
z: https://www.raspberrypi.org/

Jméno a pracoviště vedoucí(ho) diplomové práce:

prof. Ing. Pavel Zahradník, CSc., katedra telekomunikační techniky FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: _____________Datum zadání diplomové práce: 16.09.2019

Platnost zadání diplomové práce: 19.02.2021

_________________________________________________________________________________
prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
doc. Ing. Josef Dobeš, CSc.
podpis vedoucí(ho) ústavu/katedry

prof. Ing. Pavel Zahradník, CSc.
podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1


	Introduction
	Raspberry Pi Platform
	Used aliases in next sections
	Camera Hardware
	Rolling Shutter

	Multi-Media Abstraction Layer (MMAL) Application Programming Interface (API)
	MMAL API Components
	MMAL API Ports
	Buffer Headers


	Description of algorithms used in detection
	Histograms of Oriented Gradients (HOG)
	Feature Descriptors
	Introduction to HOG
	Algorithm Overview

	Classification of Data
	Introduction
	Support Vector Machine (SVM)


	Code Design Specification
	Assembling MMAL API Components
	The Camera component
	The Encoder component
	The Render component
	The HOG component

	Implementation of the HOG component
	Custom MMAL API component information
	HOG component implementation

	Main process
	Flow chart and sequence diagrams
	Classification
	SVMlight Library
	Training and testing data

	Addition information about implementation
	Data structures
	Specifications of the implementation


	Testing of the detection
	Conclusions
	Bibliography
	CD Contents
	Project Specification

