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Abstract 15 

Two of the mesh-based numerical approaches suitable for geotechnical large deformation problems, the multi-16 

material ALE (MMALE) and the Coupled Eulerian-Lagrangian (CEL) methods are investigated. The remeshing 17 

step in MMALE is claimed to hold advantages over CEL, but its effects on application problems are not studied 18 

in detail. Hence, the possible capabilities and improvements of this step are studied in three large deformation 19 

geotechnical problems with soil-structure interaction. The problems are validated and verified using experimental 20 

and analytical solutions, respectively. By using the remeshing step in MMALE, a smoother material interface, 21 

lower remap-related errors, and better computation cost are achieved. 22 

Keywords 23 

Multi-Material Arbitrary Lagrangian Eulerian, Coupled Eulerian-Lagrangian, large deformations, remeshing, 24 

interface reconstruction 25 

Introduction 26 

Small deformation geotechnical problems can be adequately analyzed by using conventional 27 

Lagrangian FEM. However, such an approach exhibits considerable shortcomings when the soil 28 

undergoes significant deformation. Examples include pile penetration, soil cutting, slope failures, and 29 

liquefaction events. Hence, efforts were made to develop methods that simulate the numerical problems 30 

associated with large material deformation.  31 
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There are various methods to handle such numerical problems which can be categorized into two clas-32 

ses, point-based and mesh-based methods (here only methods derived from continuum mechanics as-33 

sumption are considered). Examples of point-based methods are material point method (MPM) 34 

(Bardenhagen et al., 2000) and smoothed particle hydrodynamics (SPH) (Gingold and Monaghan, 35 

1977), whereas classical FEM (small-strain Lagrangian), Eulerian, ALE, and CEL methods are listed 36 

as mesh-based methods (Aubram et al., 2015). Concerning methods that rely on a computational mesh, 37 

the most promising approaches include the Coupled Eulerian-Lagrangian (CEL) method and the Arbi-38 

trary Lagrangian-Eulerian (ALE) method, which is chosen for this study. The latter can be subdivided 39 

into Simplified ALE (SALE) and Multi-Material ALE (MMALE) methods. These methods are popular 40 

in fluid dynamics yet not well-known and extensively used in the context of geomechanics. Therefore, 41 

the motivation of this paper is to evaluate the possible advantages of MMALE over CEL in case of 42 

large deformation geotechnical problems. 43 

Two categories of ALE are generally distinguished, based on a number of materials that might be 44 

present in a single element (Fig. 1). Simplified ALE (SALE) approaches resolve material boundaries 45 

(free surfaces or material interfaces) in a Lagrangian way using edges and faces (in 3D) of the 46 

computational mesh. Therefore, each mesh element is filled with only one material. Unlike SALE, 47 

MMALE allows multiple materials to be defined in each element such that material boundaries can 48 

flow through the mesh. This method reconstructs the interfaces between multiple materials, making it 49 

is suitable to model more complicated and large deforming problem. Fig. 1 provides a schematic 50 

comparing all the methods discussed in the present study.  51 

There are various applications of CEL in literature concerned with large deformation problems in 52 

geomechanics and geotechnical engineering, e.g., (Bakroon et al., 2019; Heins and Grabe, 2017). One 53 

of the earliest works is that done by Qiu et al. (2011), where three numerical benchmarks were used to 54 

assess CEL. It was argued that CEL is well suited for large geotechnical problems. Similar conclusions 55 

were drawn in a comprehensive and thorough study conducted by Wang et al. (2015) concerning three 56 

different numerical approaches, including CEL.  57 

Concurrent to CEL studies, several works were done in applying the ALE method to geotechnical 58 

problems. One of the earliest works in application of such similar methods in geotechnical engineering 59 
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is the “remeshing and interpolation technique with small strain”, RITSS method developed by Hu and 60 

Randolph (1998a). In this method, after 10-20 steps of simple infinitesimal strain incremental analysis 61 

a rezoning step is performed. Since then, this method is subjected to many improvements and 62 

applications such as inclusion of an h-adaptivity rezoning (Hu and Randolph, 1998b) which is then used 63 

to simulate pullout test (Song et al., 2008). Similarly, in a series of works done at the university of 64 

Newcastle for instance by Nazem et al. (2008) and Sabetamal et al. (2014), an ALE method with 65 

coupled formulation was developed to simulate problems such as offshore large deformation problems. 66 

In a work done by Aubram et al. (2015),  an advanced SALE formulation is implemented, and its 67 

performance is evaluated by simulating shallow and pile penetration into the sand. A good agreement 68 

between numerical results and experimental measurements was observed.  69 

On the other hand, Bakroon et al. (2018) assessed the feasibility of SALE in large geotechnical 70 

deformation problems. It was concluded that for extremely large problems, the SALE exhibits 71 

shortcomings, unlike MMALE which converged to a solution. Therefore, MMALE was suggested to 72 

be considered as an alternative approach to SALE for solving complex large deformation problems. 73 

Consequently, studies focused on applying the MMALE to geotechnical problems.  74 

The structure of this study is as follows. In Section 0, details of the numerical implementation of CEL 75 

and MMALE algorithms such as operator splitting, remeshing, and remapping steps, and soil-structure 76 

coupling are described. Section 0 presents three numerical examples to investigate the performance of 77 

CEL and MMALE, including a discussion of the results. Concluding remarks are provided in Section 0. 78 

Details of MMALE and CEL  79 

The original CEL method was developed by Noh (1964). In this method, the material regions are treated 80 

as Eulerian, while the region boundaries are defined as polygons which are then approximated by 81 

Lagrangian meshes overlapping the Eulerian mesh. The Eulerian mesh is fixed throughout the analysis. 82 

Some commercial codes implemented variants of the original CEL approach. In the particular CEL 83 

method used in this study, a Lagrangian step is first conducted which solves the physics of the problem 84 

by using a mesh which deforms with the material. In the case of the pure Lagrangian as well as the 85 

Lagrangian step in SALE, MMALE, and CEL, employed in this work, the updated Lagrangian (UL) 86 
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(Belytschko et al., 2000; Hallquist, 2006) is used. Concerning the utilized objective stress rate, the 87 

Jaumann rate is used (Hallquist, 2006; Livermore Software Technology Corporation, 2015). 88 

After performing the Lagrangian step, the mesh is rezoned to its initial configuration to maintain mesh 89 

quality (rezoning/remeshing step). Subsequently, the solution is transported from the deformed mesh to 90 

the updated/original mesh (remapping/advection step). This method is different than the CEL method 91 

developed by Noh (1964) where the Eulerian solution is not divided into a rezone and remap step 92 

(Benson, 1992).  93 

The Arbitrary Lagrangian-Eulerian (ALE) method has been developed by Hirt et al. (1974) and Trulio 94 

and Trigger (1961) to address the mesh distortion issue attributed to classical Lagrangian approaches. 95 

In each ALE calculation cycle, similar to CEL, the general strategy is to perform a three-step scheme 96 

consisting of a Lagrangian step, a remeshing (rezone) step, and a remapping step. After the Lagrangian 97 

step, the rezone step relocates the nodes of the mesh in such a way that mesh distortion is reduced. 98 

Unlike CEL, however, the updated mesh is not necessarily identical to the original mesh but could be 99 

obtained through the application of a smoothing algorithm (Donea et al., 2004). Finally, the remapping 100 

step transfers the solution variables from the old onto the new (rezoned) mesh.  101 

The focus of this paper is to evaluate the remeshing step in MMALE and CEL as the main distinguishing 102 

factor between these methods.  The general solving strategy has been discussed in section 0, which is 103 

also available in the literature (Benson, 1992).  104 

Therefore, the remeshing step, as well as some other features of MMALE and CEL, are described in 105 

this section. 106 

Operator splitting 107 

Generally spoken, operator splitting is a strategy to divide a complicated equation into a sequence of 108 

simpler equations (Benson, 1992). Operator splitting can be used to solve the general Eulerian 109 

conservation equation: 110 𝜕𝜙𝜕𝑡 + 𝛁 ∙ 𝚽 = 𝑺 (1)

Where 𝜙 is the field variable, 𝚽 is the flux function, and 𝑺 is the source term. This equation can be solved 111 

whether in one step (Bayoumi and Gadala, 2004; Donea et al., 1982) or alternatively in multiple steps 112 
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where the equation is broken up into a series of less complicated equations, i.e., into a Lagrangian term 113 

(డథడ௧ = 𝑺) and a Eulerian term (డథడ௧ + 𝛁 ∙ 𝚽 = 0) (Benson, 1992). The schematic view of operator splitting is 114 

drawn in Fig. 2.  115 

Remeshing step (Mesh smoothing algorithms) 116 

The main difference between CEL and ALE (SALE and MMALE) emerges when one compares the 117 

remeshing (rezoning) step in both methods. In case of remeshing step in CEL, the new mesh is trivially 118 

the original mesh at the beginning of the calculation, while in ALE, the remeshing step is performed by 119 

using mesh smoothing algorithms that produce a new, less distorted mesh based on the deformed mesh 120 

of the Lagrangian step. The new mesh is not necessarily the original mesh of CEL. 121 

To define a robust rezoning algorithm, two criteria must be satisfied. First, the quality of the grid 122 

elements must be maintained. Second, the grid should be focused on zones with a rapid variation of 123 

material flow to reduce computational errors, which is referred to as the adaptivity control criterion. 124 

While these goals seem easy to achieve, they expose a challenge in the derivation of a robust rezoning 125 

algorithm. If one considers quality maintenance as the only important factor, then accuracy in areas of 126 

high variations will be lost, since pretty similar sizes will be assigned to rezoned grid elements. 127 

Algorithms developed merely on this criterion may be strongly dependent on mesh quality, which may 128 

not provide a unique solution. Weighting each criterion is therefore difficult, and it may be problem 129 

dependent (Knupp et al., 2002).  130 

Rezoning/smoothing techniques can either change the nodal connectivity, such as h-adaptivity where 131 

new elements are generated, or keep the nodal connectivity and only relocate the nodes such as r-132 

adaptivity method where the node position are relocated to obtain a smoother mesh (Di et al., 2007). 133 

The focus here is to study those smoothing methods where the nodal connectivities are not changed. 134 

Such rezoning algorithms can be divided into different groups, each having its advantages and 135 

drawbacks. Coordinate- or grid-based algorithms can be applied to the gird locally or globally. In local 136 

coordinate-based algorithms, the nodes are moved based on local criteria (Benson, 1989; Donea et al., 137 

1982). For example, based on neighboring element areas around the node, a ratio of minimum to the 138 

maximum area as well as the maximum cosine value of the vertex angles connecting this node to other 139 
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nodes is calculated. By these two values, the movement requirement of the node will be determined 140 

(Benson, 1989). The shortcoming of this method is that it is based on ad hoc quality measures, which 141 

means this class of problems is only applicable to a specific group of problems. In addition, there is no 142 

guarantee that the resulting mesh is unfolded (Knupp et al., 2002).  143 

An example of a global smoothing algorithm is the one developed by Brackbill and Saltzman (1982), 144 

where they modified the Winslow algorithm (Winslow, 1967). Extra terms were added to make the 145 

smoothing algorithm stronger. However, the coefficients of such terms are assigned somewhat arbitrary 146 

and without a clear guide. In addition, this method is independent of the Lagrangian grid, which makes 147 

the resulting mesh, far from the Lagrangian mesh. To resolve this issue, an iterative approximate 148 

solution is used. However, it is not guaranteed if the resulting grid is unfolded. Besides, there is no 149 

theory to specify the number of iterations by the user (Knupp et al., 2002). 150 

There are numerous studies in remeshing techniques, but to the knowledge of the authors, this step is 151 

the least developed aspect of ALE methods. A short description of the three popular methods will be 152 

provided. 153 

Volume-weighted smoothing 154 

To better clarify the smoothing methods, Fig. 3 was drawn where the arbitrary node K, is supposed to 155 

be rezoned (relocated). Variables subscripted with Greek letters refer to element variables while 156 

subscripts with capital letters refer to local node numbering within an element. Also, the letter A is an 157 

arbitrary letter corresponding to the nodes of each element adjacent to node K. Therefore in case of the 158 

2D mesh in Fig. 3, A can be L or E, or K. 159 

In volume weighted smoothing, the new position of the node is determined by using the volume of each 160 

neighboring element sharing that node. The method is illustrated by Eq. (2) and (3).  161 

First, the nodal coordinates of each element adjacent to node K, 𝑥ሬ⃗  𝐴 are averaged using (2) to obtain the 162 

coordinate 𝑥ሬ⃗  𝛼 (the point is marked with red cross in Fig. 3). The parameter, N, corresponds to numbers 163 

of element nodes, which can be four or eight for two- and three dimensions, respectively. 164 
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The new position of the node K, 𝑥⃗ ௄∗ , is then obtained by the volume-weighted averaging as in Eq. (3) 165 

using the volume of each adjacent element, 𝑉ఈ, and the total number of adjacent elements, 𝑛௔ௗ௝ (Ghosh 166 

and Kikuchi, 1991): 167 

𝑥ሬ⃗  𝛼 = 1𝑁 ෍ 𝑥ሬ⃗ 𝐴𝑁
𝐴=1  (2)

𝑥⃗ ௄∗ = ∑ 𝑉ఈ 𝑥⃗ ఈ௡௡ೌ೏ೕఈୀଵ∑ 𝑉ఈ௡ೌ೏ೕఈୀଵ  (3)

Laplacian or Simple average smoothing 168 

In this method, the new position of the node K, 𝑥⃗ ௄∗ , will be simply defined based on the averaged 169 

position of the N’ nodes, 𝑥ሬ⃗  𝛼, directly connected to K (nodes L in Fig. 3). This means that four nodes 170 

are considered in two dimensional quadrilateral meshes and six nodes in three dimensional hexahedral 171 

meshes. The new location of node K is thus calculated by, 172 

𝑥⃗ ௄∗ = 1𝑁ᇱ ෍ 𝑥⃗ ௝ேᇲ
௝ୀଵ  (4)

Equipotential smoothing 173 

This method is more complicated than the previous methods and is intended to smooth the whole mesh 174 

or a part of it globally. The equipotential method is based on the solution of the Laplace equation (5) 175 

associated with the logical, generally curvilinear coordinates representing the grid lines in structured 176 

meshes (Winslow, 1963). The concept is to solve (5) for the Cartesian coordinates of the mesh lines, 177 

that is x(ξi), (i=1, 2, 3) instead of the curvilinear coordinates ξ =(ξ1, ξ2, ξ3), resulting in Eq. (6). In this 178 

method, all the element faces which share the node K are considered in the calculation (Nodes L and E 179 

in Fig. 3). Therefore, in two dimensions, eight nodes will be studied while in three dimensions, eighteen 180 

nodes will be studied (Fig. 3). For more information regarding the calculation process, the reader is 181 

advised to see the work done by Souli et al. (2000).  182 ∇ଶξ = 0 (5)𝛾ଵ𝜕కభకభ𝐱 + 𝛾ଶ𝜕కమకమ𝐱 + 𝛾ଷ𝜕కయకయ𝐱 + 2𝛽ଵ𝜕కభకమ𝐱 + 2𝛽ଶ𝜕కభకయ𝐱 + 2𝛽ଷ𝜕కమకయ𝐱 = 0 (6)

where 183 
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𝛾௜ = 𝜕క೔𝑥ଵଶ + 𝜕క೔𝑥ଶଶ + 𝜕క೔𝑥ଷଶ 𝑖 = 1, 2, 3, (7)𝛽ଵ = ൫𝜕కభ𝐱 ⋅ 𝜕కయ𝐱൯൫𝜕కమ𝐱 ⋅ 𝜕కయ𝐱൯ − ൫𝜕కభ𝐱 ⋅ 𝜕కమ𝐱൯𝜕కయ𝐱𝟐 (8)𝛽ଶ = ൫𝜕కమ𝐱 ⋅ 𝜕కభ𝐱൯൫𝜕కయ𝐱 ⋅ 𝜕కభ𝐱൯ − ൫𝜕కమ𝐱 ⋅ 𝜕కయ𝐱൯𝜕కభ𝐱𝟐 (9)𝛽ଷ = ൫𝜕కయ𝐱 ⋅ 𝜕కమ𝐱൯൫𝜕కభ𝐱 ⋅ 𝜕కమ𝐱൯ − ൫𝜕కయ𝐱 ⋅ 𝜕కభ𝐱൯𝜕కమ𝐱𝟐 (10)

To investigate quantitatively the effectiveness of each smoothing method, a simple numerical model 184 

was developed, as shown in Fig. 4. The model consists of nine elements where the upper right node is 185 

subjected to a displacement in both horizontal and vertical directions. The left lateral and the lower edge 186 

of the model is fixed. An elastic material model is assumed. After displacement, the deformed mesh is 187 

evaluated based on the so-called Jacobian distortion index ranging from 0 to 1. This index describes the 188 

deviation of the element from its ideal rectangular form. A value close to 1 indicates an element whose 189 

shape is close to its ideal form, while a value of 0 indicates a heavily distorted element (Plaxico et al., 190 

2009). In Fig. 4 the distortion index is shown in percentage.  191 

Without using any smoothing method, representing a purely Lagrangian mesh, the deformation is 192 

significant in the upper right element and its three adjacent elements. On the other hand, by using the 193 

smoothing methods, the distortion is decreased. In this simple example, all smoothing methods provided 194 

acceptable results. Another model was also developed where further displacement was applied. In the 195 

upper right element, a non-convex element was obtained, and none of the smoothing methods could 196 

handle the non-convex element and provided a folded mesh. 197 

Indeed, the present example is too simple to study the performance of each smoothing method 198 

thoroughly. The smoothing methods will be later discussed using a benchmark model in section 0. 199 

Remapping step 200 

After generating a new grid, the solution variables have to be transferred to the new mesh. There are 201 

several methods to remap the solution from the Lagrangian mesh onto the new mesh (Benson, 1992; 202 

Margolin and Shashkov, 2003). Because the mesh topology does not change in both ALE and Eulerian 203 

methods, the remap can be stated as an advection problem which can be solved using conservative finite 204 

difference or finite volume methods. In such advection algorithms, the difference between the reference 205 

and the rezoned grid is interpreted as volume flux, that is, the change of element/cell volume equals the 206 
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sum of in- and outfluxes across the cell boundary. The updated value of cell-centered solution variables 207 

is then determined by calculating the influx and outflux of this variable in each cell using the 208 

information of the adjacent cells. Conventionally, each advection algorithm is applied in one coordinate 209 

direction and then extended to two or three dimensions using the operator-split technique (Benson 1992; 210 

Souli and Benson, 2013). 211 

Another group of remapping algorithms treats the intersection of the reference and rezoned grid as 212 

polygons or polyhedra (Berndt et al., 2011; Kucharik and Shashkov, 2012; Margolin and Shashkov, 213 

2003). One of the main differences between these two concepts is the way to treat mixed/multi-material 214 

cells. When using advection algorithms, the mixed cells are treated differently than the pure cell, while 215 

in intersection-based remapping, both pure and mixed cells are treated alike. For more information 216 

about the remapping method based on polygons and polyhedra, the reader is referred to (Berndt et al., 217 

2011; Chazelle, 1989, 1994; Kucharik and Shashkov, 2012; Margolin and Shashkov, 2003). 218 

The current remapping algorithms used in geotechnical engineering are mostly based on advection 219 

algorithms. A more detailed description regarding the most utilized advection algorithms, namely the 220 

first-order accurate donor cell and second-order accurate Van Leer (MUSCLE) scheme is available the 221 

literature (Benson, 1992). 222 

Soil-structure coupling 223 

Almost all problems in geotechnical engineering are characterized by soil-structure-interaction and 224 

contact between different materials. Multi-material elements in CEL or MMALE naturally handle 225 

contact without contact elements or algorithms (Benson and Okazawa, 2004). These elements use the 226 

same velocity for all materials, which is a manifestation of the “no slip” contact condition in mixture 227 

theory. However, in many soil-structure-interaction problems, like pile penetration, interfacial slip, and 228 

frictional contact play an important role. Moreover, in many situations, the soil undergoes large 229 

deformations while deformation of the structure is moderate. Coupling between Lagrangian and non-230 

Lagrangian parts becomes necessary in such cases.  231 

A penalty contact scheme is utilized in most codes owing to its simplicity and robustness. As a simple 232 

description, the penalty method applies springs between nodes of Lagrangian and the Eulerian parts. 233 

These springs have seeds and anchors. The seeds are attached to the Lagrangian nodes, while anchors 234 
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are attached to the Eulerian nodes. In practice, it is better to have more nodes in the Lagrangian part 235 

interface, to ensure that at least one Eulerian node is tracked by one Lagrangian node. The spring forces 236 

are calculated based on the relative penetration of master and slave parts, and the calculated contact 237 

spring stiffness. 238 

Numerical Examples  239 

In this section, three application problems are presented which exhibit specific challenges in numerical 240 

simulation. Such classical examples are crucial for comparison of different numerical methods since 241 

they have a reduced number of complexities. These examples are modeled using MMALE and CEL, 242 

and the corresponding results are compared. The comparison includes the calculation time, and the 243 

effect of mesh density on it, accuracy in terms of leakage, interface, and energy loss, which will be 244 

described during the section. Table 1 lists the comparison criteria and their specific purpose for each 245 

numerical example discussed in this section. 246 

For all simulations mentioned in this study, the calculations were carried out in the commercial code, 247 

LS-DYNA®, on a server with two 2.93GHz quad-core Intel CPU X5570 processors and 48 GB of RAM. 248 

A short description of the element technology and time stepping is provided for completeness. For 249 

SALE, 1-point ALE elements are used while for MMALE and CEL, 1-point reduced integration 250 

elements are used. Among the various smoothing methods, equipotential smoothing for the MMALE 251 

simulations is applied. This smoothing algorithm is commonly used and provides more stable results 252 

compared to other methods. For the advection step, van Leer method is chosen over donor cell since it 253 

benefits from second-order accuracy (Benson, 1992).  254 

Most CEL and ALE methods use explicit schemes to advance the solution in time. In explicit methods, 255 

to maintain stability and acceptable accuracy, an appropriate time step size must be assigned. The 256 

critical time step can be estimated by 257 

∆𝑡௘ = 𝐿௦𝑐  (11) 

where Ls is the characteristic length of the element, and c is the sound speed in the corresponding 258 

material. Determining a suitable time step size is crucial in geotechnical applications. In MMALE and 259 
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CEL methods, the maximum time step size is also restricted by the advection algorithm: the distance of 260 

material transport should be less than one element.  261 

Strip footing  262 

The strip footing problem is a well-known benchmark. In this problem, the soil undergoes significant 263 

deformation, which challenges the classical Lagrangian methods.  264 

Problem Description 265 

In this problem, large soil deformations are induced by displacement-controlled penetration of a rigid 266 

footing. The resulting pressure under the footing can be verified with the analytical solution provided 267 

by Hill (1950) using plasticity theory. The footing is initially placed above a container filled with soil. 268 

The problem is modeled as plane strain, the lateral boundary nodes of the soil are fixed in the horizontal 269 

direction, and the bottom nodes are fixed in the vertical direction. The footing is assumed rigid with 270 

smooth (zero friction) sides and a perfectly rough (no slip) base.  271 

Fig. 5 illustrates the initial and boundary conditions of the problem. The strip footing and the soil 272 

dimensions are 2 × 1 𝑚 and 4 × 4 𝑚, respectively. Only half of the symmetric problem is modeled. 273 

The Tresca failure criterion is adopted according to which plastic deformations occur when shear 274 

stresses reach the value 𝑐 = 10 𝑘𝑃𝑎, the undrained shear strength of the soil. The Poisson’s ratio and 275 

the Young’s modulus are assigned as 𝑣 = 0.49 and 𝐸 = 2980 𝑘𝑃𝑎, respectively. For the ratio of 276 

footing base over soil width = 0.5, the maximum punch pressure for this problem can be calculated 277 

from 𝑞௨௟௧ = 2𝑐(1 + ଵଶ 𝜋) (Hill 1950).  278 

Numerical model consideration 279 

The problem is analyzed using four different methods: Lagrangian, SALE, CEL, and MMALE. The 280 

element size in the uniform mesh is 5 cm, with a total number of elements of 3200. The initial mesh 281 

configuration is shown in Fig. 5. The footing in all models is simulated as a rigid body. Frictionless 282 

penalty contact between the sides of the footing and the soil is defined.  283 

To assess the dependency of results to mesh size, several models with different element sizes were 284 

analyzed in another work (Bakroon et al., 2017). The models were solved using SALE method. 285 
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Compared to the analytical solution, the optimum mesh size for this problem was reported to be 5 cm. 286 

Therefore, 5 cm mesh size is chosen for all the simulations of this problem. 287 

Results 288 

The methods are compared based on pressure results and computation time. A Lagrangian model is also 289 

developed to highlight the huge mesh distortion. Fig. 6 shows the pressure results under the footing 290 

versus penetration depth for Lagrangian, SALE, CEL, and MMALE compared to the analytical 291 

solution. By using the Tresca failure criterion, the pressure should reach a constant value after small 292 

penetration. Considering the accuracy of results, the Lagrangian and SALE solution differ from the 293 

analytical result by approximately 15% and 10%, respectively. The observed inaccuracy in case of the 294 

Lagrangian and SALE can be attributed to several points. The resulting pressure from CEL and 295 

MMALE curves follow the same trend as the analytical result, unlike the curves obtained from the 296 

Lagrangian and SALE method. It should be noted that initial results included noises which are inevitable 297 

in the explicit formulation (Dassault Systèmes, 2016).  298 

One may argue that the error is caused due to the element locking (Heisserer et al., 2007). It should be 299 

noted that the reduced integration elements are used, which overrules the possibility of element locking. 300 

Another possible reason may be the proximity of the boundaries. Comparing the results obtained from 301 

the MMALE and CEL and their accurate results, this argument cannot be valid for this problem. 302 

Considering the MMALE and CEL results, the distorted element near the corner should be the cause of 303 

this problem. 304 

The resulting deformation for Lagrangian, SALE, CEL, and MMALE analysis is shown in Fig. 7a. 305 

During the Lagrangian solution, the mesh is heavily distorted under the corner of the footing and above. 306 

Nevertheless, the simulation continued until the termination time. By using SALE, the overall mesh 307 

distortion is alleviated. By using different rezoning methods (e.g., volumetric, equipotential, etc.), 308 

different meshes are obtained, but no change in pressure results are observed. In SALE, there are still 309 

problems associated with areas around the footing corner where the material encounters significant 310 

deformation. These elements are still distorted even with the applied rezoning step. In CEL and 311 

MMALE, however, since the material can flow through the mesh, this issue is appropriately addressed. 312 

In CEL, the initial mesh is maintained while in MMALE, a new arbitrary mesh is generated. 313 
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The instantaneous material velocity field at 0.5 m penetration depth is plotted in Fig. 7b. The results of 314 

the Lagrangian simulation show a sharp change of the velocity distribution near the lateral boundary of 315 

the footing. This is somewhat reduced when using SALE. When using CEL and MMALE, the velocity 316 

field is almost uniform in all regions, indicating that the soil particles are moving smoothly 317 

counterclockwise from the bottom of the footing to the side and then to the top.  318 

In Fig. 8 the effective plastic strain after penetration is shown, which represents the failure pattern of 319 

the soil. Despite the identical pressure results shown in Fig. 6, the MMALE provides a clear failure line 320 

under the footing. However, CEL underestimates the failure line by providing a discontinued line. This 321 

can be attributed to two improvements done by MMALE. First, more elements are present in the failure 322 

area. Second, less advection is conducted in MMALE due to remeshing, which avoids loss in accuracy 323 

caused by advection. 324 

The performance of each method also is assessed with regard to computation time. The Lagrangian 325 

method requires the least computation time among all methods, while the SALE required the most, 326 

about three times more than the classical Lagrangian method. The underlying reason is that in SALE 327 

two additional steps, remeshing and remapping, are included in the calculation. Another affecting 328 

parameter is the distortion of the elements in areas around the corner of the footing since the minimum 329 

time step is controlled by those deformed elements. The simple idea behind the implemented smoothing 330 

algorithms reduces mesh quality in such non-convex regions instead of improving it, i.e., the smoothing 331 

algorithms become unstable. The CEL and MMALE methods solve the problem much faster than SALE 332 

because mesh quality is easily maintained. In other words, the minimum time step size did not change 333 

significantly during the calculation, unlike SALE. Compared to calculation time obtained from CEL, 334 

MMALE is about 40% faster in spite of an additional rezoning sub-step.  335 

The resulting calculation times above for MMALE were based on the optimal set of solution parameters. 336 

By using the default settings, a new mesh is generated, and the solution is remapped after each Lagran-337 

gian step, which increases calculation time significantly. In many situations, however, the magnitude 338 

of deformation obtained after a time increment is small enough to perform several Lagrangian cycles 339 

before executing one rezoning and remapping cycle without affecting results considerably. On the other 340 
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hand, if the number of Lagrangian cycles before a rezoning and remapping cycle is increased, the mag-341 

nitude of element distortion may reduce the size of the critical time step, which results in more compu-342 

tation cost. Hence, to reach a minimum computation time, an optimum number of Lagrangian cycles 343 

should be assigned.  This optimum number is problem-dependent, and no predetermination can be 344 

made. 345 

To optimize the computation cost for the strip footing example, six models are developed where the 346 

number of Lagrangian cycles before a remap and rezone cycle varies, ranging from 1 to 30 Lagrangian 347 

cycles. To highlight the effect of a number of Lagrangian cycles on calculation time, the mesh size was 348 

reduced to 2.5 cm, resulting in 12800 elements. The corresponding calculation times in minutes are 349 

drawn in Fig. 9. With the default configuration of MMALE (1 Lagrangian cycle per each rezone and 350 

remap cycle), the computation cost is about 70 minutes while assigning 10-20 Lagrangian cycles; it is 351 

reduced by 70%. For a large number of Lagrangian cycles, on the other hand, reduction of the critical 352 

time step through mesh distortion becomes more pronounced, hence calculation time increases.  353 

In this example, by changing the number of Lagrangian cycles, up to 5% change in pressure results was 354 

observed. However, for each problem, the accuracy of the results should be checked since they may be 355 

affected by a number of Lagrangian cycles. 356 

To investigate this point further, the effect the calculated contact area of the pile with the soil is shown 357 

in Fig. 10. In penalty contact method, the contact force is calculated based on the force required to avoid 358 

the penetration of the two distinct parts. Generally, this constraint is not adequately maintained and one 359 

part “penetrates” or “leaks” inside the other part. In the case of excessive leakage, the contact force will 360 

not be accurately computed. To quantitatively investigate this matter, the parameter contact area is used. 361 

Theoretically, the value of the contact area should be maintained as of what is calculated at the begin-362 

ning of the simulation since during the simulation, only the bottom side of the footing is in contact. If 363 

this value is increased, it means that leakage has occurred and some of the elements in the second row 364 

of the footing has come into contact. In the case of CEL, an increase of 20% in the contact area is 365 

observed. On the other hand, by increasing the number of Lagrangian steps to 50, a significant leakage 366 

occurs. Nevertheless, values below this number are providing an acceptable range of leakage. This cri-367 

terion can be hence used as a limiting factor for a proper number of Lagrangian steps.  368 
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In addition, one can see the amount of leakage using a parameter referred to as “flux,” which indicates 369 

the volume of material passed through the Lagrangian part, in this case, the footing. A high value of 370 

flux indicates that a significant volume of material has passed through the Lagrangian part, and there-371 

fore, the errors attributed to leakage are significant. This introduces inaccuracies in the simulation. The 372 

computed value of flux is shown in Fig. 11 for both MMALE and CEL. As the simulation continues, 373 

the cumulated volume leaked through the Lagrangian footing increases with a faster rate for CEL, which 374 

indicates a possibly less accurate result for this method. 375 

The effect of mesh size on computation cost for MMALE and CEL is illustrated in Fig. 12  for various 376 

cases where the mesh is refined up to 8 times. In addition, the corresponding computation time of ad-377 

vection for each method is drawn. The computation cost of CEL model is normalized to 1 for each case.  378 

he remaining computation times (MMALE, advection in MMALE and CEL) are relatively drawn. In 379 

all cases, the MMALE is about 20-40% faster. However, the trend is not linear, i.e., in the case of one-380 

fourth of the original size, the computational gain is the least. In all cases of CEL, more than 40% of 381 

the time is spent on advection whereas in case of MMALE it is less than about 30%. The underlying 382 

reason is the remeshing step, which reduces the advection calculation by providing a mesh which fol-383 

lows the material deformation pattern. 384 

In the context of the numerical modeling, it is desired to keep the mesh as Lagrangian as possible since 385 

the advection procedures introduce errors in the calculation, one of which is the loss of kinetic energy 386 

during the advection. Typically, the momentum is preferred over the kinetic energy to be conserved 387 

during the advection to maintain the monotonicity of the solution. Maintaining both the momentum and 388 

kinetic energy is not possible as it invalidates the monotonicity conditions. This leads to kinetic energy 389 

loss during the simulation (Souli and Benson, 2013). To compare the performance of MMALE and 390 

CEL regarding this matter, the kinetic energy and the loss of kinetic energy are shown in Fig. 13. The 391 

use of remeshing results in a reduction of energy less to almost one-fourth of one calculated by CEL. 392 

In the case of kinetic energy curves, the one obtained from CEL is oscillating, which may indicate some 393 

instabilities in the method compared to the smooth curve of MMALE. 394 
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Sand column collapse 395 

The collapse of the sand column on a rigid horizontal plane is an experimental test which has various 396 

engineering applications such as determining the angle of repose. In the context of geotechnical 397 

engineering, this problem can simply represent problems such as a landslide. In such tests, a column of 398 

sand is held in a container, and the holding gate is suddenly released, allowing the sand to collapse by 399 

its own weight. For further information regarding sand column theories and experiments see the works 400 

done by Doyle et al. (2007); Lube et al. (2007); Staron and Hinch (2007). 401 

Problem Description 402 

An experimental study performed by Lube et al. (2005) has been chosen as a reference model to analyze 403 

the robustness of numerical methods. The experimental results of run-out distance and height of the 404 

sand column are compared to the obtained numerical values. This problem has been extensively used 405 

for performance evaluation of numerical methods such as the work done by Solowski and Sloan (2013). 406 

In the experiment, the sand column is placed in a rectangular container. Then, one side of the rectangular 407 

container is lifted fast to impose the 2D flow condition. The initial width of the soil column is di =0.0905 408 

m with a height to the width aspect ratio (height to width) of 7. The depth of the test soil in a direction 409 

normal to flow is 0.2 m. The friction of the horizontal plane (flowing surface) is equal to internal friction 410 

of the sand.  411 

Numerical model consideration 412 

Fig. 14 shows the initial configuration of the numerical model. A uniform mesh with an element size of 413 

15 mm is used for the MMALE and CEL simulations. Purely Lagrangian and SALE models were also 414 

developed for reasons of comparison. All the models are three-dimensional, defining a slice with one 415 

element in a direction normal to the plane. The CEL and MMALE models contain a void region defined 416 

to let the soil material flow to these elements after the collapse starts, unlike SALE model where no 417 

void elements are needed. Elements with 1-point integration are used, and Mohr-Coulomb is chosen as 418 

the material model. Unfortunately, no data regarding the properties of the test sand are reported by Lube 419 

et al. (2005). Therefore, the soil properties are assumed as follows, the density, 𝜌 = 1600 𝑘𝑔/𝑚ଷ, the 420 

friction angle, 𝜙 = 33°, the dilatancy angle of 𝜓 = 0, the cohesion, 𝑐 = 0.01 𝑘𝑃𝑎, the Poisson’s ratio, 421 
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𝜈 = 0.3, and the elastic modulus, 𝐸 = 840 𝑘𝑃𝑎,. The gravity acceleration is 9.806 m/s2. The left 422 

boundary (wall of the container in the experiment) was modeled using a frictionless rigid body part 423 

which was removed after the stresses were initialized. The bottom surface was modeled by a rigid body 424 

part as well, having tangential penalty friction equal to soil internal friction angle. The run-out distance, 425 

as well as the height of the sand column, were measured at different times and compared to numerical 426 

results.  427 

Results 428 

To express the shortcomings of the classical simple based formulations against multi-material based 429 

formulations, the problem was also simulated with SALE methods. In this case, the mesh became highly 430 

distorted, and the calculation stopped. The mesh clearly tracked the material particles, which can be 431 

justified by the concentration of mesh elements as shown in Fig. 15. Due to local rezoning inside the 432 

material domain, the mesh quality is to some extent uniform, but elements are severely stretched in the 433 

horizontal direction due to the constraints imposed by the material boundary on the remeshing 434 

capability. Therefore, after reaching approximately 15% of the calculation time, the time step size 435 

decreased significantly so that the calculation could not be continued. 436 

In the case of both CEL and MMALE, simulation continued until the final runout distance of the sand 437 

column was reached because of the advection technique, i.e., the material can flow through the mesh. 438 

Fig. 16 shows that the remeshing capability of MMALE concentrates the mesh in areas of interest, i.e., 439 

where the free surface of the sand is located. The newly generated mesh takes the trend of the material 440 

movement and deformation. Hence, the resulting interface is smooth, which is not the case when using 441 

the CEL method. The difference in concentration of mesh nodes also affects the final shape of the 442 

collapsed sand column, i.e., the final interface of MMALE is curved, whereas the interface of CEL is 443 

almost linear. The advantage of MMALE over CEL is also highlighted in Fig. 16, where the volume 444 

fraction of sand is plotted. In elements completely filled with sand, the volume fraction equals one, 445 

which is represented by blue color. Void elements are drawn in red color, and those elements intersected 446 

by the free surface are partially filled with sand, thus have a volume fraction between zero and one. 447 

MMALE produces an almost smooth interface, whereas the interface obtained with CEL has a stepped 448 

shape and is more diffusive. The diffusion thickness of the interface obtained from CEL is about three 449 
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times more than the one of MMALE. The difference can be attributed to errors caused by remapping. 450 

In advection-based remapping methods, only principal directions (normal to element edges) are 451 

considered for calculating the advection, neglecting the advection in diagonal directions. Through the 452 

MMALE rezoning capability, the element directions are to some extent adjusted to flow directions 453 

which results in less remapping errors due to diagonal advection. Moreover, the total advected material 454 

volume using an MMALE mesh is usually smaller than for a comparable CEL mesh because the 455 

difference between the rezoned mesh and the mesh after the Lagrangian step is reduced. 456 

To compare both methods with the experimental measurements, Fig. 17 is plotted, which draws the 457 

shape of the sand regime at several times measured during the experiment and calculated by numerical 458 

simulations. During the whole simulation, the obtained run-out distance from CEL is underestimated, 459 

which becomes more evident at the further stages of the simulation. On the other hand, the MMALE 460 

provides a good agreement in the run-out distance with the experiment. Also, at later stages of the 461 

simulation, there is a difference in a sand shape calculated by each method. The final sand shape 462 

predicted by MMALE is closer to the experimental values than with CEL.  463 

By evaluating the kinetic energy loss during advection in Fig. 18, Similar to the strip footing problem, 464 

the CEL results in about four times more energy loss than MMALE. This may explain the 465 

underestimated run-out distance calculated by CEL which highlights the role of the remeshing in 466 

addressing the issues associated with complex and high-speed deformation problems. 467 

Nevertheless, the height of the final deformed shape is underestimated, which can be attributed to the 468 

employed material model. In any case, the fact that the remeshing step devised in MMALE improved 469 

the accuracy, the interface resolution, and the overall deformed shape is highlighted in this problem. 470 

In Fig. 19, the location of several material points tracked through the simulation is drawn. In case of 471 

ALE, the displacement of any point would be averaged from the displacement of its neighboring mesh 472 

nodes in the element containing the point during the Lagrangian step. In the vertical direction, unlike 473 

the horizontal direction, both methods predict the same position. The location of the points near the 474 

right side of the column changes more notably. The maximum variation between the calculated 475 

positions is attributed to point P4 with almost 30 cm difference. In this point, the change in both 476 

horizontal and vertical direction is extreme and in the diagonal direction of the initially generated 477 
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Eulerian mesh. By close observation of the final mesh of the MMALE, it is observed that the elements 478 

are arranged in a way to capture the movement of the sand column in this direction. Concerning the fact 479 

that a considerable amount of particles undergoes such movements, the MMALE may be a better choice 480 

over CEL for this problem. 481 

Soil cutting by blade  482 

Soil cutting tests are conventionally used to design cutting blades. Such problems can also be a good 483 

indicator of the ability of a numerical approach to treating material separation, which is similar to the 484 

case of pile installation. Different semi-empirical relations are available in the literature for predicting 485 

the horizontal and vertical cutting force of the blade (McKyes, 1985). However, these relations are often 486 

too simple to deliver acceptable results because the complexity of real soil behavior is not adequately 487 

modeled (Onwualu, 1998). Moreover, conducting parametric studies using experiments is costly and 488 

time-consuming.  489 

Since the material is split during cutting, i.e., new free surfaces are generated, this test is considered as 490 

a challenging large deformation problem. In a purely Lagrangian simulation, this would mean that the 491 

mesh elements must be separated from each other during the blade progression. Efforts have been made 492 

to model such problems using advanced numerical techniques. An application similar to soil cutting by 493 

the blade is the penetration of a hollow pile, where the soil is cut by installing the pile. 494 

Problem Description 495 

The test consists of a cutting blade with an inclination angle of 45°, which passes through a body of 496 

clay, as shown in Fig. 20. The horizontal component of the cutting blade velocity is initialized from 0 497 

up to 0.04 m/s in the course of two seconds to avoid instant loading, which induces shock load. 498 

Afterward, the velocity is kept constant until the end of the solution. The total simulation time is 24 499 

seconds.  500 

Numerical model consideration 501 

The soil model used in the simulation is assigned as an elastic-plastic material employing the von-Mises 502 

failure criterion which has a density, 𝜌 = 2000 𝑘𝑔/𝑚ଷ, the cohesion 𝑐 = 50 𝑘𝑃𝑎, the Poisson’s ratio 503 𝜈 = 0.25, and the elastic modulus of 𝐸 = 1000 𝑘𝑃𝑎. The parameters are taken from the example in 504 
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(Peng et al., 2017) with some modifications. The cutting blade is modeled as a rigid body to minimize 505 

the dependency of the model to the blade. The interaction between soil and cutting blade is assigned as 506 

a frictionless contact. A uniform mesh size, as shown in Fig. 20 was used with a size of 0.02 m. The 507 

model thickness in a perpendicular direction to the plane is 0.05 m. A rather large area of void elements 508 

around the elements filled with soil is required to allow the material to flow through the mesh during 509 

the cutting process.  510 

Results 511 

As a first step, the problem has been analyzed using the SALE method. In this method, the mesh deforms 512 

significantly, and the solution terminates only after the short amount of time since the elements cannot 513 

get “out of the way” of the cutting blade (Fig. 21). Consequently, it is not possible to handle such 514 

problems using SALE or Lagrangian methods. By contrast, the results obtained with both CEL and 515 

MMALE are reasonable. Fig. 22 shows the material deformation after cutting approximately 0.9 m of 516 

the soil. It can be seen that these methods pose no restrictions concerning the topological changes in the 517 

material domain (material separation) as cutting proceeds. The amount of material penetration into 518 

cutting blade elements (so-called material leakage) is limited and can be neglected. 519 

To verify the performance of both methods, a closed-form analytical solution suggested by McKyes 520 

(1985) is presented in eqs. (12)-(14) . FV and FH, therein are the required vertical and horizontal forces, 521 

respectively, to cut the soil. The problem is considered as plane strain. In addition, the tool is considered 522 

as smooth and rigid (McKyes, 1985).  523 

𝑃 = 𝑐𝑑 𝑐𝑜𝑡𝜙𝑠𝑖𝑛𝛼 ൤൬1 + 𝑠𝑖𝑛𝜙1 − 𝑠𝑖𝑛𝜙൰ 𝑒(ଶఈିగ)௧௔௡థ − 1൨ + 𝑞𝑑 ൬1 + 𝑠𝑖𝑛𝜙1 − 𝑠𝑖𝑛𝜙൰ 𝑒(ଶఈିగ)௧௔௡థ𝑠𝑖𝑛𝛼   (12)

𝐹ு = 𝑃𝑠𝑖𝑛(𝛼 + 𝜙) + 𝑐𝑑𝑐𝑜𝑡𝛼 (13)𝐹௏ =  𝑃𝑐𝑜𝑠(𝛼 + 𝜙) − 𝑐𝑑 (14)

Where P is the total force per unit width, c is the cohesion, and d is the cutting depth. Other parameters 524 

are shown in Fig. 23. Using the c = 50 kPa, d = 0.25 m, 𝜙 ≈ 0°, 𝛼 = 45°, q = 0 kPa, and considering 525 

the model width of 0.05 m, the forces are calculated as 𝐹ு = 893 𝑁 and 𝐹௏ = 356 𝑁. 526 

Fig. 24 shows the vertical and horizontal forces induced on the cutting blade for both CEL and MMALE, 527 

as well as the analytical solution. By assigning the same material model, both methods converge to a 528 
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similar value. Compared to the analytical solution, the horizontal and vertical forces from both methods 529 

are in good agreement.  530 

As a verification measure, internal and kinetic energy were checked. As a rule of thumb, the kinetic 531 

energy of the deforming material should not exceed the range of 5% to 10% of internal energy during 532 

the simulation (Dassault Systèmes, 2016).  533 

The internal energy in both MMALE and CEL converge to the same value (Fig. 25); however, in CEL, 534 

a sudden jump is observed. Also, a sudden increase is observed in kinetic energy in CEL. Considering 535 

the quasi-static condition of the problem, it is unlikely that such sudden variations possibly occur during 536 

the simulation. Therefore, it can be argued that MMALE provides more stable and smoother results. 537 

Nevertheless, the tolerance for internal to kinetic energy ratio is still in the range of 5% for both 538 

methods. 539 

In this problem, the same mesh size is used in both methods. Due to the quasi-static condition applied 540 

to the model, the amount of distortion at each time step is limited, which makes it possible to increase 541 

the number of a Lagrangian cycle per rezone step in MMALE. The optimized computation cost of 542 

MMALE was then almost half of CEL. 543 

Summary and Conclusions 544 

In this research, the effect of the remeshing step in MMALE is evaluated and compared against CEL, a 545 

particular case of MMALE where no remeshing is performed. The evaluation is based on the calculation 546 

cost optimization, accuracy, and stability. Three large deformation problems were presented and 547 

discussed, for which experimental or analytical results are available. By using the remeshing step, the 548 

following points were observed in those problems: 549 

• Computation cost optimization can be performed by modifying a number of Lagrangian cycles 550 

before a rezone and remap cycle. Therefore, in these cases about 20 - 40% reduction in calculation 551 

time, can be achieved. This is not the case in CEL, as shown in the strip footing and soil cutting 552 

problem. 553 
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• Using the MMALE, a better accuracy can be achieved compared to the CEL, for instance in the 554 

example of a sand column collapse, the error in the predicted run-out distance calculated by MMALE 555 

was 2% while in the case of CEL it was about 20%. 556 

• Due to the consideration of the material motion, the remeshing step helps to reach a better resolution 557 

of the material interface, as shown in the example of a sand column collapse where the diffusion 558 

thickness of the interface was three times less than CEL. 559 

• Owing to the remeshing step in MMALE less remap-related errors, including energy loss during 560 

advection and material leakage which deteriorate the simulation results, are produced, and better 561 

stability is achieved since less volume is transported during the remap step. In the case of the strip 562 

footing about 70% less energy loss and 30% less leakage was observed.  563 

Finally, it can be concluded that MMALE is suitable, though the highly sophisticated numerical method 564 

for applications in geotechnical engineering involving large material deformations and topological 565 

changes of the material domain.  566 

The problems discussed here were modeled using simple material constitutive equations. Further 567 

investigations are required to assess the performance of more complex material models in conjunction 568 

with MMALE. Moreover, the multi-phase simulation, such as the inclusion of pore water pressure has 569 

not been performed using MMALE element formulation. Further studies regarding problems with 570 

various drainage conditions are needed.  571 
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 706 

Tables 707 

Table 1: Comparison criteria and their purpose for the numerical examples  708 

Application Criterion Purpose   Ref. 
No. 

Strip footing 
(Section 0) 

Induced pressure under the 
footing  Quantitative comparison with an analytical solution Fig. 6 

Mesh distortion  Qualitative comparison of mesh quality 
maintenance  Fig. 7a 

Velocity field in the soil   Qualitative comparison of the uniformity in the 
velocity field  Fig. 7b 

Effective plastic strain  Qualitative comparison according to engineering 
judgment   Fig. 8 

Number of Lagrangian 
cycles in MMALE 

 Calculation time optimization without deterioration 
in the results  Fig. 9 

Contact area  Quantitative comparison with the ideal contact area  Fig. 10 
Flux/Leakage  Quantitative comparison with ideal zero leakage  Fig. 11 
Relative computation cost   Evaluation of remeshing and advection effects  Fig. 12 

Mesh density  Evaluation of the effects concerning the increase in 
the calculation time   Fig. 12 

Energy loss  Quantitative comparison with zero energy loss  Fig. 13 

Sand column 
0) 

Mesh distortion  Qualitative comparison of mesh quality 
maintenance  Fig. 15 

Interface reconstruction 
 

 Qualitative comparison of improvement in interface 
reconstruction   Fig. 16 

Run-out distance   Quantitative comparison with experimental 
measurement  Fig. 17 

Energy loss  Quantitative comparison with zero energy loss  Fig. 18 

Particle trajectories 
 Quantitative comparison of soil particle flow and 

evaluation of methods in capturing complex 
material movement 

 Fig. 19 
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Calculation time   Evaluation of the effect of remeshing in the 
reduction of calculation time  0 

Soil cutting 
(Section 3.3)  

Mesh distortion  Qualitative comparison of mesh quality 
maintenance 

 Fig. 21 
Fig. 22 

Induced vertical and 
horizontal forces on the 
blade  

 Quantitative comparison with an analytical solution  Fig. 24 

Internal and kinetic energy 
time histories 

 Qualitative comparison of the convergence of the 
results; verification of the steady state condition   Fig. 25 

Calculation time   Evaluation of the effect of remeshing in the 
reduction of calculation time 

 Section 
0 

 709 

Figures  710 

 711 
Fig. 1 Schematic diagram of different grid-based approaches comparing the remeshing step effects on 712 

grid distortion level. 713 

 714 
Fig. 2 Flowchart of the operator split scheme applied to the CEL and MMALE calculation steps 715 
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 716 
Fig. 3 The initial arrangement of the arbitrary node K in a grid in 2D (left) and 3D (right) used to 717 
illustrate the smoothing/remeshing methods described in Eq. (2-(10) 718 

 719 
Fig. 4 Comparison of different smoothing/remeshing algorithms based on the achieved grid quality 720 
improvement (the numbers in the squares represents the Jacobian distortion index in percent), the ele-721 
ments colored with red have an element quality less than 90% 722 
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      724 
Fig. 5 Numerical mesh configuration of the strip footing problem (Bakroon et al., 2017) 725 

 726 
Fig. 6 Comparison of the punch pressure curves obtained from the Lagrangian, SALE, CEL, and 727 

MMALE with the analytical solution 728 
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  729 
(a) 730 

 731 
(b) 732 

Fig. 7 (a) Mesh distortion and (b) velocity field after 0.5 m of strip footing penetration for different 733 
numerical methods  734 

SALE - Equipotential MMALECELSALE - VolumetricLagrangian

SALE - Equipotential MMALECELSALE - VolumetricLagrangian
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 735 

  736 
Fig. 8 The effective plastic strain after 0.5 m penetration for CEL (left) and MMALE (right) 737 

 738 
Fig. 9 MMALE time optimization achieved by changing the number of Lagrangian cycles in strip 739 

footing problem with 2.5-cm mesh element size 740 

 741 
Fig. 10 Change in the normalized contact area during the simulation as a criterion to investigate leak-742 

age 743 
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 744 
Fig. 11 The amount of material passed through the Lagrangian part (flux/leakage) during the simula-745 

tion 746 

 747 
Fig. 12 Relative comparisons of computation costs between CEL and MMALE with their correspond-748 

ing advection (The results are normalized according to those of CEL for each case)  749 

 750 
Fig. 13 Normalized kinetic energy and kinetic energy loss during the simulation for MMALE and 751 

CEL (the values are normalized with respect to the maximum value of kinetic energy loss curve for 752 
CEL) 753 
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 754 
Fig. 14 Initial configuration of the numerical model for the case of CEL and MMALE; the model size 755 

is 1.65x1.2 m but only the mesh of the detail A is shown 756 
 757 

 758 
Fig. 15: Mesh deformation for Lagrangian and SALE simulations of sand column collapse 759 

 760 

 761 
Fig. 16 (a) Final shape of the flowed soil as well as the mesh distortion in the sand column collapse 762 
for CEL (top) and MMALE (bottom), (b) Soil interface reconstruction in CEL (top) and MMALE 763 

(bottom), the contours represent the volume fraction of the soil in the elements; the results correspond 764 
to the detail B and not the whole model 765 
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 766 
Fig. 17 Comparison of the run-out distance obtained from the numerical models with the experimental 767 

measurements in the sand column collapse problem 768 

 769 
Fig. 18 Comparison of the normalized kinetic energy loss during advection for the sand column problem 770 
(the values are normalized with respect to the maximum value of CEL curve) 771 
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 774 
(b) 775 

Fig. 19 (a) soil particle trajectory, (b) Comparison of the displacement between several particles ob-776 
tained from CEL and MMALE 777 

 778 
Fig. 20 Schematic view of the soil cutting problem 779 

 780 
Fig. 21 Mesh distortion during the soil cutting using the SALE method 781 
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 782 
Fig. 22 Mesh distortion and soil deformation using CEL (above) and MMALE (below) methods in the 783 

soil cutting problem 784 

 785 
Fig. 23 Schematic of the assumed conditions in the soil cutting problem for deriving an analytical 786 

solution (McKyes, 1985) 787 

  788 
Fig. 24 Comparison of the induced horizontal and vertical forces on the blade obtained  from 789 

MMALE and CEL methods with the analytical solution in the soil cutting problem 790 
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 791 
Fig. 25 Comparison of the internal and kinetic energy curves of the soil cutting problem 792 
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