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The stress state in the volume of contacting bodies may essentially influence the material

behavior. For evaluating various modes of inelastic behavior and/or failure, such as

plastic deformation, crack initiation, and propagation or fatigue, the complete stress

tensor beneath the contact interface may be of importance. For many geotechnical and

biomechanical applications, the hydrostatic pressure gradient beneath the contact is

of interest as well. However, most theories for normal and tangential contact provide

only few stress components in the contact surface. In the present paper, we show that

the full stress state in the half-space can be easily found for axisymmetric bodies. We

provide expressions in form of one-dimensional integrals for all components of the stress

tensor and the hydrostatic pressure gradient inside the half-space. In terms of numerical

complexity, the proposed method can be advantageous to other elaborate methods.

Keywords: stress state, pressure gradient, normal contact, tangential contact, friction, axial symmetry, method of

dimensionality reduction

INTRODUCTION

Since Huber’s (1904) solution of the Hertzian contact, it is known that the von Mises equivalent
stress and, thus, the endangered region for plastic failure, lies beneath the surface of the indented
half-space. It was later shown that the same holds for the tangentially loadedHertzian contact under
sliding conditions for coefficients of frictions below 0.3 (Hamilton and Goodman, 1966) and for
other indenter shapes (Ciavarella et al., 1998). However, many solutions for contact problems are
limited to few components of surface stresses and, thus, do not allow for predictions with respect
to plastic failure or more complicated failure mechanisms.

Another example, where the stress state inside the half-space or, more precisely, the hydrostatic
pressure gradient is of interest, are natural joints such as knee or hip joints. When layers of
cartilage are in contact, it was found experimentally that dynamic compression that may result
from activities like walking and running promotes regenerative processes. In this loading scenario,
a high rate of in- and outflow of interstitial fluid in the surface zone of the porous, fluid saturated
medium is measured (Wong and Carter, 2003). It is believed that the fluid flow is responsible for
transport of nutrients and waste and is, thus, crucial for cartilage health (Zhang et al., 2009). Hence,
Popov (2019) proposed a growth law for cartilage based on the changing rate of the hydrostatic
pressure gradient. Here, following Darcy’s law for fluid flow in porous media, the hydrostatic
pressure gradient is considered a measure for fluid flow.
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Forsbach Stress Tensor Under Axisymmetric Bodies

The brute force method to obtain the stresses in the half space
is to use superpositions of the point force solutions by Boussinesq
(1885) and Cerruti (1882). However, the resulting numerical
integrations are very expensive in terms of computational
complexity. On a three-dimensional n×n×n grid, the complexity
of this method is (On5). This is inconvenient, whenever the
stresses must be computed repeatedly due to changing indenter
shapes (in case of wear or growth) or due to variations in loading.
Of course, more elaborate methods with lower complexity exist.
An example with the complexity (On3 log n) is the FFT-
based boundary element method (BEM) for the half-space
(Pohrt and Li, 2014).

In the present paper, we employ the superposition idea
first described by Mossakovski (1963) to derive expressions in
form of one-dimensional integrals for the whole stress tensor
in the half-space. Starting point for the frictionless normal
contact problem is the complete analytical solution for the
Hertzian contact by Huber (1904). For the tangential contact
problem, we operate in the Cattaneo-Mindlin approximation
and base our derivation on the Hertzian solution by Hamilton
(1983). The resulting expressions may be used to numerically or
analytically determine stresses and hydrostatic pressure gradients
for arbitrary axisymmetric indenters and arbitrary loading
histories. Employing the same method, Willert et al. (2020)
derived simple analytic expressions for the stresses and the
hydrostatic pressure gradient, but only for contact plane. In
terms of complexity, we show that the proposed method can be
advantageous, even compared to elaborate methods such as the
FFT-based BEM.

The paper is organized as follows: sections Frictionless
Normal Contact and Tangential Contact in the Cattaneo-Mindlin
Approximation are concerned with the normal and tangential
contact problem, respectively. In both sections, we first obtain
the respective solution for the cylindrical flat punch from
the Hertzian solution and then derive expression for arbitrary
indenter shapes by superposition of flat punch solutions. In
case of the tangential contact, we also discuss the states of
partial and full slip and arbitrary loading histories. In the end
of both sections, the von Mises stresses and hydrostatic pressure
gradients are shown for some examples. The paper closes with a
discussion and some conclusive remarks.

FRICTIONLESS NORMAL CONTACT

In this section, we derive expressions for the stress
state and the pressure gradient in the half-space for
the axisymmetric Boussinesq problem. As suggested by
Mossakovski (1963), the solution for arbitrary axisymmetric
profiles can be obtained by superimposing incremental flat
punch solutions.

Conversely, this superposition idea can also be employed to
obtain the flat punch solution from any known axisymmetric
solution. Thus, we first derive the flat punch solution inside the
half-space using the well-known Hertzian solution provided by
Huber (1904) and later use this solution to derive expressions for
arbitrary axisymmetric profiles.

Hence, the stress components for the indentation by a rigid
cylindrical flat punch (superscript FP) with the radius a can be
derived from the Hertzian solution (superscript H) using

σ FP
ij = δ

∂σH
ij

∂δH
= δ

∂σH
ij

∂a

da

dδH
= δ

∂σH
ij

∂a

R

2a
, (1)

with the indentation depth δ and δH = a2 / R in the Hertzian case.
The obtained flat punch solution is presented in Appendix A.

Now, we consider the case of general axisymmetric profiles.
Under the assumption of a convex smooth profile f = f (r),
the relation between penetration depth and contact radius is a
unique function

δ = g (a) . (2)

In the framework of theMDR (Popov andHeß, 2015), it is shown
that this function can be derived from the profile f (r) by the
simple Abel integral transform,

g(x) = |x|
|x|
∫

0

f ′(r)√
x2 − r2

dr . (3)

By again employing the superposition idea described above,
we obtain expressions for the general axisymmetric profile
(superscript AS) via

σAS
ij =

∫

dσAS
ij =

a
∫

0

∂σAS
ij

∂δ

dg

dã
dã =

a
∫

0

∂σ FP
ij

∂δ

dg

dã
dã. (4)

Thus, we interpret the indentation process as a series of
incremental indentations of flat punches with increasing contact
radii. The obtained expressions read

σAS
zz (r, z; a) = − E∗

π

a
∫

0

(

z√
u

)3 (

3− ãua

2u
− 2

ã2z2 + ãuua

u2 + ã2z2

)

ãu g′ (ã)
u2 + ã2z2

dã,

σAS
rr (r, z; a) = 1− 2ν

2πr2
FN (a) − σAS

zz (r, z; a) + E∗

π

a
∫

0

{

(1− 2ν)
ã2

r2

(

z√
u

)3 (

ãua

2u
− 1

)

+ z

2
√
u

[

2ãua

u
− 4+ (1− ν)

(

ã2 − u
)

(ãua − 2u)
(

u+ ã2
)2

+ (1+ ν)
2u− ãua

u+ ã2

]}

g′ (ã)
ã

dã,

σAS
ϕϕ (r, z; a) = − E∗(1+ ν)

π

a
∫

0

ãz

u

2u− ãua

ã2 + u

g′ (ã)√
u

dã− σAS
rr (r, z; a) − σAS

zz (r, z; a) ,

σAS
rz (r, z; a) = − E∗

π

r

z

a
∫

0

(

z√
u

)3 u

u+ ã2

(

3+ ãua

2u
− 2

ã2z2 + ãuua

u2 + ã2z2

− 2ã2 + ãua

u+ ã2

)

ãu g′ (ã)
u2 + ã2z2

dã, (5)

where u as well as its derivative ua are shortcuts for

u = 1

2
(A+ S) , ua =

∂u

∂ ã
= −ã

(

1+ A− 2z2

S

)

, with
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Forsbach Stress Tensor Under Axisymmetric Bodies

A = r2 + z2 − ã2 and S =
√

A2 + 4ã2z2 . (6)

In Equation (5), FN is the total normal force,

FN (a) = 2E∗
a

∫

0

(

δ − g (ã)
)

dã , (7)

E∗ = E/
(

1− ν2
)

is the effective Young’s modulus and ν is the
Poisson’s ratio. In the contact plane (z = 0) and in the axis of
contact (r = 0), Equation (5) simplify significantly. The resulting
expressions are presented in Appendices B and C, respectively.
Using the same procedure as described above, the expressions of
the stress components at the surface were already presented by
Willert et al. (2020).

It is elemental that the superposition idea also works with
any linear operation on the stress components. As an example,
the hydrostatic pressure phs =

(

σrr + σϕϕ + σzz
)

/3 and the
components of the gradient of the hydrostatic pressure are
obtained as well. Again, we first calculate the flat punch solutions
from the Hertzian solution (presented in Appendix A) and then
obtain expressions for the axisymmetric case:

pAShs (r, z; a) = −E∗(1+ ν)

3π

a
∫

0

ãz

u

2u− ãua

ã2 + u

g′ (ã)√
u

dã,

dpAS
hs

dr
(r, z; a) = E∗(1+ ν)

3π

a
∫

0

z√
u

ã2

u+ ã2

(

uar + 3
ur

ã

−3

2

uaur

u
− 2ãur + uaur

u+ ã2

)

g′ (ã)
u

dã,

dpAS
hs

dz
(r, z; a) = E∗(1+ ν)

3π

a
∫

0

ã√
u

ã2

u+ ã2

[

uaz

(

z

ã
+ ãz

u

)

− 2

+ ua

ã

(

1+ ã2

u

)

− 2u

ã2
+ uz z

2u
(

2+ 6u− 5ãua

ã2
− 3ã ua

u

)]

g′ (ã)
u+ ã2

dã, (8)

with the derivatives

ur(r, z; ã) = ∂u

∂r
= r

(

1+ A

S

)

,

uz(r, z; ã) = ∂u

∂z
= z

(

1+ A+ 2ã2

S

)

,

uar(r, z; ã) = ∂2u

∂ ã∂r
= −4ãrz2

(

A+ 2ã2
)

S3
,

uaz(r, z; ã) = ∂2u

∂ ã∂z
= 4ãr2z A

S3
. (9)

The corresponding expressions at the contact plane and at the
axis of contact (r = 0) are, again, presented inAppendices B and
C, respectively.

Examples for the Frictionless Normal
Contact
The two already discussed indenter shapes, the paraboloid
(Hertzian contact) and the cylindrical flat punch, as well as two
more imperfect shapes, the paraboloid with a parabolic cap and
the cylindrical flat punch with rounded edges, serve as examples
for the frictionless normal contact in the following. The profiles
and the relation between penetration depth δ and contact radius
a are listed in Popov et al. (2019):

a) Paraboloid with radius of curvature R (see Figure 1A):

f (r) = r2

2R
and δ = g(a) = a2

R
. (10)

b) Cylindrical flat punch (see Figure 1B):

f (r) =
{

0 , r ≤ a
∞ , r > a

. (11)

c) Paraboloid with a parabolic cap with radius of the cap b and
radii of curvature R1 and R2 (see Figure 1C):

f (r) =
{

r2

2R1
, r ≤ b

r2−h2

2R2
r > b

and

δ = g(a) =
{

a2

R1
, a ≤ b

a2

R1
+ a2

R∗
√
a2 − b2, a > b,

(12)

where h2 = b2
(

1− R2

R1

)

and R∗ = R1R2
R1−R2

.

d) Cylindrical flat punch with rounded edges with radius of the
blunt end b and radius of curvature R (see Figure 1D):

f (r) =
{

0, r ≤ b
(r−b)2

2R , r > b
and

δ = g(a) =
{

0, a ≤ b
a
R

[√
a2 − b2 − barccos

(

b
a

)]

, a > b
(13)

With these relations, the integrals in Equations (5) and (8) and
are evaluated numerically, with exception of the flat punch where
stress components and pressure gradients are explicitly given in
Equations (26) and (28) of Appendix A.

As a common measure for plastic failure, we calculate the von
Mises equivalent stress

σmises =
√

1

2

{

(

σrr − σϕϕ

)2 +
(

σϕϕ − σzz
)2 + (σzz − σrr)

2 + 6 σ 2
rz

}

.

(14)

The von Mises stress normalized with the average pressure
in contact is plotted in Figure 1. Of course, the well-known
distribution for the paraboloid with the maximum at z/a = 0.5 is
simply the reproduction of the solution by Huber (1904). For the
paraboloid with a parabolic cap with b/a = 0.5 and R1 = 3R2,
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A B

C D

FIGURE 1 | Von Mises equivalent stress in the half-space normalized with the average pressure p0 assuming ν = 0.3 for different indenter shapes with indentation

depth δ: (A) Parabolical indenter, (B) Cylindrical flat punch, (C) paraboloid with a parabolical cup with b/a = 0.5 and R1 = 3R2, (D) Cylindrical flat punch with rounded

edge with b/a = 0.5.

the maximum is widened and is located below the surface as
well. Due to the small kink at b/a = 0.5 where the curvature
changes, the distribution beneath is distorted toward the surface.
The flat punch produces a stress singularity at the surface owing
to the sharp edge. The lowest maximum with a normalized von
Mises stress of 0.74 is obtained for the Cylindrical flat punch with
rounded edges. It occurs under the rounded outer area of the
indenter at a depth of z/a ≈ 0.3.

In Figure 2, the absolute value of the hydrostatic
pressure gradient,

∣

∣

∣

E∇p
∣

∣

∣
=

√

(

dpAS

dr

)2

+
(

dpAS

dz

)2

, (15)

is plotted. It is normalized by the pressure gradient in the
center of the contact plane produced by the equivalent

parabolical indenter with the same contact radius and
indentation depth,

p′0 =
2E∗(1+ ν)δ

3a2
. (16)

Unlike the von Mises stress, the pressure gradient reaches
its maximum at the surface in all cases. Maxima in form of
singularities are found at the contact edge and at places of
sudden geometrical change. Thus, the paraboloid with a parabolic
cup and the flat punch with rounded edges exhibit additional
singularities at r = b. Furthermore, the comparison of the
pressure gradient under flat and curved section shows that, apart
from the above-mentioned singularities, it is much larger for
small radii of curvature.
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A B

C D

FIGURE 2 | Normalized absolute value of the hydrostatic pressure gradient assuming ν= 0.3 for different indenter shapes with indentation depth δ: (A) Parabolical

indenter, (B) Cylindrical flat punch, (C) paraboloid with a parabolical cup with b/a = 0.5 and R1 = 3R2, (D) Cylindrical flat punch with rounded edge with b/a = 0.5.

TANGENTIAL CONTACT IN THE
CATTANEO-MINDLIN APPROXIMATION

In this section, we consider the stress state and pressure gradient
in the half-space due to tangential surface loads in the form

σyz = 0, σxz 6= 0, r < a. (17)

In the Cattaneo-Mindlin approximation, the tangential
contact can be reduced to superpositions of contact pressure
distributions resulting from the frictionless normal indentation
problem (Jäger, 1995). Thus, we can use the same procedure
as for the frictionless normal contact. Further, we will discuss
the cases of partial slip and complete slip, that is, if the stick
condition |σxz(r)| < µ p(r) is violated.

For the Hertzian contact, the tangential surface loading of a
globally sliding indenter is

σH
xz(r ≤ a; a) = µ

2E∗

πR

√

a2 − r2 , (18)

with the coefficient of friction µ. The resulting stresses were
given by Hamilton and Goodman (1966) as imaginary parts of a

complex function and, later, more conveniently, in explicit form
by Hamilton (1983) (note, that in the equation for σxx it should
be x2z2/S instead of x2z2/3).

With these expression, we, again, obtain the flat punch
solutions via Equation (1). The surface loading for a sliding flat
punch, for example, is

σ FP
xz (r ≤ a; a) = µE∗δ√

a2 − r2
. (19)

A flat punch can either completely slip or completely stick (Popov
et al., 2019). The solutions for the case of complete stick, are given
by the substitution

µE∗δ → G∗ux,0 , (20)

in the solutions for the sliding flat punch with the effective
shear modulus G∗ = 4G/ (2− ν) and the tangential rigid body
displacement ux,0. For the sake of brevity, the complete set of
equations for the tangentially loaded flat punch is not explicitly
presented here. It is more convenient to compute and store
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the derivatives in Equation (1) using a symbolic engine such as
Wolfram Mathematica.

For the axisymmetric sliding contact with a convex smooth
profile, we, again, determine the stresses from a superposition
of incremental sliding flat punch indentations with increasing
radii. Hence, the stresses in the half-space, resulting only from
the tangential surface loading, are given by Equation (4) and the
computed flat punch solutions. It should be noted that for the
full stress state, the stresses (5) caused by normal loading must
be added.

For monotonic tangential loading, under constant normal
force, partial slip will occur for convex profiles. Starting with
the tangential loading, slip will propagate from the edge of
contact. Following Jäger (1995, 1998) and Ciavarella (1998), the
surface stresses σxz in the partial slip case can be written as
a superposition

σAS
xz (r; a) = −µ

[

σAS
zz (r; a)− σAS

zz (r; c)
]

, (21)

with the surface stress due to normal loading σAS
zz given in

Equation of Appendix B and the radius c of the stick area, giving

σAS
xz (r; a) = µ

E∗

π

a
∫

max(r,c)

g′ (ã) dã√
ã2 − r2

. (22)

The radius of the stick area is determined by

G∗ux,0 = µE∗
[

δ − g(c)
]

or
Fx

µFN
= FN(a)− FN(c)

FN(a)
, (23)

Popov et al. (2019), with FN given in Equation (7). Hence, the
stresses in the half-space for arbitrary profiles resulting from the
tangential loading are given by a superposition of incremental
sliding flat punch contacts with radii increasing from the stick
radius to the contact radius,

σAS
ij (r, z; a) =

a
∫

c

∂σ FP
ij

∂δ

dg

dã
dã, (24)

with ij in
{

xx, yy, zz, xy, yz, zx
}

and the solutions for a sliding
flat punch σ FP

ij .

In the case of arbitrary loading histories, the solution is simply
a finite number of superpositions in the form of Equation (21).
Most conveniently, this can be modeled as one-dimensional
tangential spring deflections ux,1D in the framework of MDR (see
(Popov et al., 2019) for details), yielding

σAS
ij (r, z; a) = − G∗

µE∗

a
∫

0

∂σ FP
ij

∂δ

d

dã

[

ux,1D(ã)
]

dã. (25)

Obviously, as for the normal contact, the integral Equations
(24) and (25) also hold for the hydrostatic pressure and the
components of the hydrostatic pressure gradient, if the stress
components of the sliding flat punch σ FP

ij are substituted with

hydrostatic pressure phs and the components of the pressure
gradient, respectively.

Examples for Monotonic Tangential
Loading
As examples for the tangential contact, we discuss the parabolical
indenter and the cylindrical flat punch with rounded edges (see
section Examples for the Frictionless Normal Contact for details)
under monotonic tangential loading. For a coefficient of friction
of µ = 0.3 and tangential rigid body displacement of δ/4 and
δ/2, respectively, we obtain the cases of partial slip and complete
slip for both indenter shapes.

Figure 3 shows the von Mises equivalent stress for both
indenters and loading scenarios in the x-z-plane. In all cases, the
tangential surface loading leads to an additional local maximum
at the trailing edge in the contact plane and the maximum
beneath the surface is shifted toward the leading edge. For
the parabolical indenter in the state of partial slip, the global
maximum is beneath the surface as for the frictionless normal
contact. In case of a complete slip, however, both maxima are
of similar magnitude. This corresponds with the statement of
Johnson (1985), that the maximum travels to the contact plane
for µ > 0.3 in the case of a sliding Hertzian contact. For
the flat punch with rounded edges in the partial slip scenario,
both maxima are of similar magnitude, while a distinct global
maximum at the trailing edge in the contact plane is found in
the case of complete slip.

Figure 4 shows the absolute value of the hydrostatic pressure
gradient for the same indenter shapes and loading scenarios.
In the case of complete slip, the gradient is increased at the
leading edge and decreased at the trailing edge compared to
the frictionless normal contact. However, the contribution of the
tangential contact is, at least for µ = 0.3, small in comparison to
the normal contact. In the case of partial slip, the discontinuity
due to the beginning slip area yields an additional minimum at
the leading edge and an additional maximum at the trailing edge.

DISCUSSION

The evaluation of the integral kernels of the one-dimensional
integrals (5) or (6) comes, of course, with some computational
cost. It is thus advantageous to evaluate the analytic expressions
∂σ FP

ij /∂δ numerically on a grid over the half-space domain of

interest and save the resulting matrices. These matrices can then
be used to calculate the stress state for arbitrary axisymmetric
indenters and loading histories.

For a grid of n × n points in the x − z plane, the
one-dimensional integrals can be reduced to n matrix-vector
multiplications of complexity O(nm), where m is the number
of flat punch superpositions. Thus, the overall complexity
simply scales with the number of points (in this case n2)
and flat punch superpositions, O(n2m). As it is not necessary
to compute the stresses in more points than needed, the
proposed formulation can be advantageous compared to other
effective methods such as the FFT-based boundary element
method (BEM) for the half-space (Pohrt and Li, 2014). For
this example, the FFT-based BEM is of complexity O(n3 log n)
because it requires evaluation of stresses on a three-dimensional
n × n × n grid. However, if stresses in n × n points in a
x − y plane beneath the surface are sought for, the proposed
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A B

C D

FIGURE 3 | Von Mises equivalent stress in the half-space at y = 0 normalized with the average pressure p0 assuming ν = 0.3 and coefficient of friction µ = 0.3 for

different indenter shapes with indentation depth δ and tangential displacement ux,0 = δ/4 for (A,C) and ux,0 = δ/2 for (B,D). Indenter shapes: (A,B) Parabolical

indenter, (C,D) Cylindrical flat punch with rounded edge with b/a = 0.5. Dashed red lines mark contact areas with slip.

method still has O(n2m), whereas the FFT-based BEM is only of
complexityO(n2 log ñ).

We used stresses derived with the superposition idea to
calculate the von Mises equivalent stresses for different indenter
shapes and loadings. The examples showed that the endangered
regions with respect to plastic failure often lie beneath the
surface. Further, we provided expressions for direct calculation
of the components of the hydrostatic pressure gradient. In
fluid saturated media like cartilage, pressure gradients promote
fluid flow which can be linked to tissue growth (Popov,
2019). The examples show that the absolute values of the
pressure gradient are higher under small radii of curvature
of the indenting body and singular at the surface, where
discontinuities such as contact radius, stick radius, or sudden
topography changes of the indenting body are located. It
should be noted that the superposition idea is not bound

to homogenous half-spaces, but can, for example, also be
used for layered, graded media like cartilage (Argatov et al.,
2018).

The provided expressions for the stress state and pressure
gradient in the half-space beneath an axisymmetric indenter in
terms of the relation of indentation depth to contact radius δ =
g(a) can, thus, be seen as a useful addition to the framework
of the Method of Dimensionality Reduction (MDR) (Popov and
Heß, 2015). Here, the same function g(x) is interpreted as a one-
dimensional profile pressed into a spring bedding. The MDR
allows for rapid numerical simulations of profile changes due
to wear or growth (in biological joints). However, the presented
method of obtaining the full stress tensor can also be generalized
with regard to other contact solutions for arbitrary loading
histories such as the Method of Memory Diagrams (MMD)
(Aleshin et al., 2015).
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A B

C D

FIGURE 4 | Normalized absolute value of the hydrostatic pressure gradient at y = 0 assuming ν = 0.3 and coefficient of friction µ = 0.3 for different indenter shapes

with indentation depth δ and tangential displacement ux,0 = δ/4 for (A,C) and ux,0 = δ/2 for (B,D). Indenter shapes: (A,B) Parabolical indenter, (C,D) Cylindrical flat

punch with rounded edge with b/a = 0.5. Dashed red lines mark contact areas with slip.

CONCLUSIONS

By exploiting the superposition idea by Mossakovski (1963) and
Jäger (1998), we derived expressions in form of one-dimensional
integrals for the full stress tensor and the components of
the hydrostatic pressure gradient in the half-space beneath
normally and tangentially loaded axisymmetric contacts. These
expressions allow for efficient pointwise numerical evaluation
for arbitrary indenter shapes and are suitable for contact
simulations involving shape change due to wear or growth.
With respect to plastic failure, we showed the importance of
considering the whole half-space for selected indenter shapes and
loadings. Further, we calculated hydrostatic pressure gradient
distributions and discussed the relevance with respect to growth
in biological contacts.
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APPENDIX

Appendix A: Flat Punch Solution for the
Frictionless Normal Contact Problem
The stress components of the cylindrical flat punch are obtained
by Equation (1) with the Hertzian solution by Huber (1904):

σ FP
zz = −E∗δ

πa

(

z√
u

)3 a2u

u2 + a2z2

(

3− aua

2u
− 2

a2z2 + auua

u2 + a2z2

)

,

σ FP
rr = E∗δ

πa

{
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(
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, (26)

with the shortcuts

u(r, z; a) = 1

2
(A+ S) ,

ua(r, z; a) = ∂u

∂a
= −a

(

1+ A− 2z2

S

)

, (27)

where A = r2 + z2 − a2 and S =
√
A2 + 4a2z2 . With the

components in Equation (26), the hydrostatic pressure phs =
(

σrr + σφφ + σzz
)

/3 and the components of the hydrostatic
pressure gradient can be obtained as well:
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with the derivatives
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Appendix B: Axisymmetric Solution at the
Surface for the Frictionless Normal
Contact
At the surface (z = 0), the non-vanishing stress components in
Equation (5) simplify to

σAS
zz (r; a) = −E∗

π

a
∫

r

g′ (ã) dã√
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,

σAS
rr (r; a) = σAS

zz (r; a) + 1− 2ν

2πr2
FN (a)

−E∗ (1− 2ν)

πr2

a
∫

r

√
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The hydrostatic pressure and the pressure gradient components
in Equation (8) simplify to
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(31)

at the surface. All of the above equations except dpAS
hs

/dr were
already derived by Willert et al. (2020).

Appendix C: Axisymmetric Solution in the
Axis of Contact for the Frictionless Normal
Contact
In the axis of contact (r = 0), the non-vanishing stress
components in Equation (5) simplify to

σAS
zz (z; a) = −E∗

π

a
∫

0

ã3 + 3ãz2
(

ã2 + z2
)2

g′ (ã)dã,
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σAS
rr (z; a) = σAS
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(1+ 2ν) ã3 − (1− 2ν) ãz2
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The hydrostatic pressure and the non-vanishing pressure
gradient component in Equation (5) simplify to
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dã, (33)

in the axis of contact.
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