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We investigate the effect of a memristive element on the dynamics of a chaotic system. For
this purpose, the chaotic Chua’s oscillator is extended by a memory element in the form of
a double-barrier memristive device. The device consists of Au/NbOx/Al2O3/Al/Nb layers and
exhibits strong analog-type resistive changes depending on the history of the charge flow. In
the obtained system we observe strong changes in the dynamics of chaotic oscillations. The
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otherwise fluctuating amplitudes of Chua’s system are disrupted by transient silent states.
Numerical simulations and analysis of the extended model reveal that the underlying dynamics
possesses slow–fast properties due to different timescales between the memory element and the
base system. Furthermore, the stabilizing and destabilizing dynamic bifurcations are identified
that are traversed by the system during its chaotic behavior.

Keywords : Chaotic system; memory; memristive device; memristor; transient silent states.

1. Introduction

The field of nonlinear dynamics, chaos, and com-
plexity has attracted increasing interest from the
point of fundamental science and engineering during
the last decades [Schuster & Just, 2005; Stro-
gatz, 2015]. Classical and well-explored nonlinear
phenomena form a fundamental scientific reper-
toire to shed more light on novel interdisciplinary
research areas such as complex network systems.
To name but a few, this includes spatiotemporal
pattern formation in chemical reactions, pulse cou-
pled oscillators, chaotic weather formation or time-
delay systems [Epstein & Showalter, 1996; Pikovsky
et al., 2003; Yanchuk & Giacomelli, 2017]. Cur-
rently, time-varying networks, neuroscience, and
social dynamics are areas of intense research efforts
in nonlinear science [Sporns, 2011; Osipov et al.,
2007; Skarda & Freeman, 1987; Buzsaki, 2006].
Furthermore, nonlinear systems with experimen-
tally observable chaotic signatures have received
much attention, as they are widely distributed over
many different fields including optical, mechanical
and chemical systems [Epstein & Showalter, 1996;
Gilet & Bush, 2009; Ievlev et al., 2014; Brzeski
et al., 2015; Buzsaki, 2006]. In this context, elec-
tronic systems are of particular interest. Rather
simple analog circuits allow the study and control
of chaos and nonlinear dynamical phenomena. The
fast and easy access to system parameters in exper-
iments through the variation of passive elements of
the circuit, i.e. resistances, inductances and capaci-
tances, is an effective way to tune the circuit dynam-
ics and to observe the results in real time. The
first chaotic circuit was realized by Leon Chua in
the 1980s, consisting of three energy storing ele-
ments and a nonlinear electronic device. The circuit
exhibits a classical period-doubling route to chaos
as well as a chaotic double-scroll attractor [Mat-
sumoto, 1984; Chua et al., 1993].

In this paper, we present a realization of Chua’s
circuit comprising a semiconductor device which

shows memrisitve properties [Vaidyanathan &
Volos, 2017]. Memristive devices are currently inves-
tigated from the perspective of nonvolatile memo-
ries and promising devices to mimic basal synaptic
mechanisms in neuromorphic circuits [Ielmini &
Waser, 2016; Tetzlaff, 2014; Kozma et al., 2012;
Adamatzky & Chua, 2014]. In general, a memristive
device connects the current I and voltage V nonlin-
early. The resistance of such a system depends on
a mechanism relating the voltage to a change of an
internal state z:

I = G(z) · V, (1a)

ż = f(z, V ). (1b)

In its simplest form such a device consists of
a metal-insulator-metal capacitor-like structure.
Here, an applied voltage can lead to the movement
of ions within the insulator, resulting in a change
of the resistance [Strukov et al., 2008]. Thus, the
history of the applied voltage is connected to the
current state of the device. As a result, the current–
voltage characteristics or I–V curve of a memristive
device exhibits a hysteresis loop. For more details
about memristive devices and the underlying physi-
cal and chemical mechanisms, see [Ielmini & Waser,
2016].

Recently, a variety of interesting dynamics
evoked by the implementation of a memristive
device into autonomous oscillators have been found
and proposed. The observed dynamics range from
the addition of multiple scrolls into a chaotic system
[Wang et al., 2017], multiple wings in a 4D sys-
tem [Zhou et al., 2016; Zhou et al., 2018b] to var-
ious attractors in a memrisitve augmented Twin-
T Oscillator [Zhou et al., 2018a]. Furthermore,
also techniques for the analyses of such systems
have been developed further. These include the
Flux-Charge Analysis technique which can have
advantages regarding the description of the sys-
tem and its numerical solution [Corinto & Forti,
2017]. However, due to limited availability of robust
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memristive devices, nearly all approaches have in
common that they rely on idealistic theoretical
memristive models as well as sophisticated circuits
mimicking their behavior. Nonetheless, nanoscale
memristive devices are promising candidates to
improve energy efficiency and increase the integra-
tion density of electronic systems. Therefore, in this
article we investigate experimentally and theoreti-
cally the effects of a more realistic memristive device
with asymmetric characteristic curve. Starting from
experimental observations (Sec. 2) we propose a
detailed mathematical model (Sec. 3) and analyze
its dynamics (Sec. 4). In particular, we show how
the slow–fast chaotic oscillations emerge.

(a) (b)

(c) (d)

Fig. 1. (a) Setup of Chua’s circuit comprising a DBMD. (b) A typical I–V curve of a DBMD. It consists of
Au/NbOx/Al2O3/Al/Nb thin layers. As a triangular voltage (inset) is applied to the device, the current characteristics
show the typical pinched hysteresis. (c) Experimental realization of the system shown in (a) (the device parameters are given
in Appendix A). (d) Photography of the experimental realization.

2. Experiment

Figure 1(a) shows the setup considered in this
work. The chaotic circuit as proposed by Leon
Chua is extended with a memristive device in par-
allel to Chua’s diode. Therefore, the solid state
device superimposes the necessary nonlinearity to
drive the chaotic circuit. The current flow through
the device discharges the capacitor resulting in an
additional negative feedback on it. As the state
of the double-barrier memristive device (DBMD)
depends strongly on the history of the applied
voltages across it, the strength of the additional
discharge of the capacitor varies chaotically with
time. In Fig. 1(b) a typical I–V curve of the used

2050125-3

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
02

0.
30

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 7
7.

18
9.

94
.1

55
 o

n 
07

/2
2/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



July 8, 2020 12:43 WSPC/S0218-1274 2050125

T. Birkoben et al.

(a) (b)

Fig. 2. (a) Time series measurements of Chua’s oscillator augmented with a DBMD. (b) Enlargement of one episode of a
transient damping. The episode of local damping is marked in red.

memristive device is shown. The internal structure
of the device consists of a Au/NbOx/Al2O3/Al/Nb
layer sequence [Hansen et al., 2015; Dirkmann et al.,
2016]. The pinched hysteresis, which is character-
istic for memristors, is well visible. This means,
that the application of a positive voltage changes
the state of the device. As a result, the measurable
current flow through the device changes depending
on the history of the applied voltage. This transi-
tion from a high-resistance state (HRS) to a low-
resistance state (LRS) becomes visible by applying
a positive voltage to the Au electrode in respect to
the Nb electrode. The device remains in the LRS
after the polarity of the applied voltage switches,
but changes its resistance again in an analog fash-
ion to a HRS, if the voltage is beyond a threshold
voltage [Hansen et al., 2015]. We emphasize that
this kind of device is filament-free, i.e. an interface-
based switching is responsible for the pinched hys-
teresis observed in the I–V curve. Furthermore, the
switching is not binary but continuous. Since the
change in the state of the memristive element in use
is sensitive to the duration of the applied voltage,
the intrinsic frequency of Chua’s oscillator needs to
be adapted. Therefore, the inductance and capaci-
ties need to be fairly big to decrease the frequency
into the single Hz range. A common strategy in
building a huge inductance experimentally is to use

a gyrator. In Fig. 1(c) the resulting experimental
setup is depicted (for details on the parameters of
the devices, see Appendix A). Besides the induc-
tance, Chua’s diode is built with active elements
as well. Two negative impedance converters built
in parallel show the characteristic curve of Chua’s
diode. The diode is necessary for the autonomous
oscillations of the chaotic oscillator. In Fig. 1(d) a
photograph of the experimental setup is shown. The
small chip with double-barrier memristive devices is
located in the top right of the printed circuit board.

The experimental results from the circuit shown
in Fig. 1(c) are depicted in Fig. 2. In (a) a long
time series measurement of the augmented system
is shown. Besides the chaotic oscillations of Chua’s
oscillator, the system shows transient episodes of
local dampening. These episodes occur irregularly
during the time evolution of the system. In Fig. 2(b)
an enlargement around one of these episodes is
shown. The transient dampening is highlighted in
red. In the (v1, v2) projection of the phase space, the
transition to an additional attractor is well visible.
The reduction in the oscillation amplitude refers
to the transition from the original chaotic attrac-
tor to the part of the attractor introduced by the
DBMD. In the following, we will present a model to
describe and analyze the observed dynamics in the
augmented system.
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3. Model

Since the memristive device is implemented exper-
imentally in parallel to Chua’s diode, the voltage
drop across the device is equal to the state vari-
able v1 of the original chaotic oscillator. Therefore,
the current flow through the DBMD discharges the
capacitor and functions as a negative feedback to
the first state-variable v1. The modified equations
of Chua’s system augmented by the memory ele-
ment are as follows:

v̇1 =
1
C1

(
v2 − v1

R
− f(v1) − is(vs, z)

)
, (2a)

v̇2 =
1
C2

(
v1 − v2

R
− i3

)
, (2b)

i̇3 = − 1
L

v2, (2c)

with Chua’s diode modeled as a piecewise-linear
function:

f(v1) = m0v1 +
m1 − m0

2
(|v1 + Bp| − |v1 − Bp|).

(3)

The DBMD consists of a multilayer structure
of different materials [see Fig. 1(b)], which can
be interpreted in terms of an equivalent circuit as
depicted in Fig. 3. The metal semiconductor tran-
sition is modeled as a Schottky contact followed by
a tunnel barrier. Thus, the equations describing the
equivalent circuit are as follows:

v̇e =
1
Ce

(
is(vs, z) − ve

Re(z)

)
, (4a)

v̇t =
1
Ct

(is(vs, z) − it(vt, z)), (4b)

ż = − Ẑω(z)
eϕa(v1,z)

sinh
(

vr(v1, vs, z) + ve − Vc

Ve

)
,

(4c)

Fig. 3. Equivalent circuit of the DBMD.

where ve and vt are internal voltage variables as
shown in Fig. 3. The memory component of the
DBMD is represented through the state variable z,
which refers to the average ion-position inside the
active layer, that is the NbOx solid-state electrolyte.
During the switching oxygen vacancies move and
consequently decrease and increase the potential on
the interface at the Schottky contact and the tunnel
barrier, respectively [Solan et al., 2017]. The volt-
age over the Schottky contact is vs = v1 − ve − vt

and leads to the total current is(vs, z) through the
device as:

is(vs, z) = Is exp

⎛
⎝−ϕs(z) − αf

√
|vs| − vs

αsVϑ

⎞
⎠

×
[
exp

(
vs

n(z)Vϑ

)
− 1

]
, (5)

with ϕs(z) as the state-dependent normalized
Schottky-barrier height, n(z) as an ideality factor
and αf as a fitting parameter for the Schottky-
effect denoted by the normalized Schottky-barrier
thickness αs. The amplitude of the current Is scales
the total current depending on the temperature
and device area, respectively [Solan et al., 2017].
The closed system (2)–(5) describes the dynamics
of the complete circuit augmented with a DBMD
(for additional information about the model see
Appendix B).

As one can observe from Fig. 4, the results
of the numerical simulation of the closed system
are in agreement with the measurement data (com-
pare Fig. 2). The purely chaotic dynamics are inter-
rupted by relatively long time intervals of almost
constant voltages and currents. After a period
nearly without any oscillations, an onset of the local
oscillations follows. Again, the local oscillations are
amplified until the trajectory switches to the oppo-
site side of the characteristic double-scroll attractor.
The strong diode-like characteristic of the DBMD
diminishes the influence of itself on the other side of
the chaotic double-scroll attractor. This results in
the asymmetric change of the system behavior. The
numerical solution demonstrates clearly the role of
the internal state variable of the DBMD.

In Fig. 5(a) the time series for one typical tran-
sient silent state (TSS) is shown in the (v1, v2, z)
projection of the phase space. The decrease of the
internal state z can be observed over time, which
leads to a higher conductance of the device and a
damping of the oscillations. It is followed by a steep
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(a) (b)

Fig. 4. (a) Numerical results of Chua’s oscillator augmented with a DBMD. (b) Enlargement of one episode of a transient
damping (red).

(a) (b)

Fig. 5. (a) (v1, v2, z) projection of phase space of one episode of damping and following amplification. Green and blue
diamonds mark the start and end of the trajectory, respectively. (b) Time derivative of z in dependence on v1, for the same
time interval as in panel (a).

increase when the resuming chaotic oscillations lead
to a negative voltage over the memristive device.
The derivative of z is depicted in Fig. 5.

4. Slow–Fast Motion

In the following, we show that the chaotic dynamics
with TSS events can be understood as a slow–fast
motion with the slowest timescale governed by the
memory z. More specifically, the variable z can be
considered as a control parameter for the remaining
faster variables, i.e. ż = 0 [Dumortier et al., 1996;

Krupa et al., 1997; Desroches et al., 2012; Kuehn,
2015; Jardon-Kojakhmetov & Kuehn, 2019].

Figure 6(a) shows a bifurcation diagram for
v1 in dependence on z as a control parameter.
For the experimentally chosen value R = 1.6 MΩ,
the fast dynamics possess a stable stationary state
(ve(z), vt(z), v1(z), v2 = 0, i3(z)) for all values of z

in the interval 0.71 < z < 0.86, shown by the solid
blue line in Fig. 6(a). At the boundaries, z = 0.71
and z = 0.86, the branch becomes unstable in sub-
critical Hopf bifurcations. This set [solid blue line
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(a) (b)

(c)

Fig. 6. (a) Bifurcation diagram for v1 over control parameter z with stationary solutions in blue, periodic solutions in orange
and chaotic solutions in purple (stable = solid line, unstable = dashed line). The trajectory follows the arrows. (b) ż as a
function of z and ve for positive values of v1. (c) Position of the Hopf bifurcation points (HP) parametrized by R if z is varied
as a control parameter. The blue shaded area shows where a stable branch exists in the solution. During the experiment R is
fixed at 1.6 MΩ (dashed, horizontal line).

stable critical manifold [Kuehn, 2015], and the tra-
jectories of the full system are attracted to this man-
ifold on the fast timescale. Being close to the man-
ifold, the dynamics are then governed in Fig. 6(a)]
is called the by the single scalar equation (4c) for
the z variable with all fast variables being confined
to the manifold. With v1 > 0 Eq. (4c) reduces to:

ż = − Ẑω(z)
eϕa1+z(ϕa0−ϕa1)

sinh
(

ve − Vc

Ve

)
(6)

as vr(v1 > 0, vs, z) = 0 and ϕa(v1 > 0, z) = ϕa1 +
z(ϕa0 − ϕa1). From the differential equation (6) it
can be seen that z decreases on the slow manifold
as positive values for v1 lead to a negative sign of

the derivative [cf. Fig. 6(b)]. This corresponds to
motion along the manifold to the left.

These multiscale arguments explain parts of
the dynamics observed in the full system and are
shown in Fig. 6(a). Once the trajectory is attracted
to the slow manifold [point A in Fig. 6(a)], the
TSS episode starts and the memory variable z
decreases slowly until it reaches the Hopf point HP2

at z = 0.71. Beyond this point, the slow mani-
fold becomes unstable and the trajectory exhibits
amplified oscillations, while z still decreases further.
When the oscillations become sufficiently large, the
orbit leaves the neighborhood of the slow manifold
and the TSS episode ends. In fact, we observe here
a classical delayed stability loss, when the orbits
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remain for certain time close to the unstable part
of the slow manifold [Dumortier et al., 1996; Krupa
et al., 1997; Desroches et al., 2012; Kuehn, 2015;
Jardon-Kojakhmetov & Kuehn, 2019].

After the TSS has terminated, the voltages v1,
ve, and vt decrease and the variable z accelerates
and approaches the fast timescale [cf. Fig. 5(b)]
for the gradient ż along the trajectory. In this
way, a slow setting to a LRS and a faster reset to
a HRS drives the slow–fast dynamics behind the
TSS.

Figure 6(c) shows the positions of the Hopf
points on the slow manifold. These determine the
length of the TSS phases, depending on R. See
for instance, the intersection of the dashed line at
R = 1.6 MΩ with the stable area marked in blue.
The stable branch can be seen to expand with
increasing R, until the stability becomes indepen-
dent of z as HP1 and HP2 collide. For decreasing R,
the stable branch shrinks and vanishes with HP2

and HP3.

5. Conclusion

In summary, we have described the influence of a
new solid state memory device on a model sys-
tem exhibiting chaotic dynamics to study the influ-
ence of memory on chaos. Interestingly, the intrinsic
memory of the DBMD has a stabilizing and order-
ing effect on the otherwise purely chaotic motions
of the system. The experimental observation as well
as the subsequent theoretical treatment reveal the
underlying dynamics. We have observed that the
memory acts on the slowest timescale, and thus, it
can be considered as an intrinsic slowly-changing
bifurcation parameter. In particular, when the fast
chaotic motion of the system is interrupted by a
TSS, the dynamics can be considered as a steady
state, which is adiabatically changing with the slow
variation of the memory. Then, the chaotic oscil-
lations are dampened until the stability changes.
Such a change occurs when the memory reaches a
threshold, and a Hopf bifurcation of the fast sys-
tem leads to amplification of chaotic oscillations.
As the memristive device in use has two timescales
for the set and reset of the resistive states, this
damping and successive amplification is driven by
these slow–fast dynamics. Although this study is
restricted to an electronic system, the observed
behavior and general dynamical changes might be
found in a broader range of systems. The occurrence

of transiently stable and ordered behavior in other-
wise highly nonlinear or chaotic trajectories might
be related to dynamic bifurcations as an intrinsic
memory element of these systems changes its state.
The sequence of these transient states is primar-
ily driven by the underlying chaotic motions but
the duration and recovery depend strongly on the
characteristic timescales of this memory element.
Speaking in more general terms it is driven by the
time needed to adapt to a new input. The consid-
ered model is a practically important example of a
system with slow–fast dynamics, where such theo-
retical multiscale methods as singular perturbation
theory or averaging [Dumortier et al., 1996; Krupa
et al., 1997; Desroches et al., 2012; Kuehn, 2015;
Jardon-Kojakhmetov & Kuehn, 2019] can be fur-
ther applied for more detailed analysis.
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Appendix A

Devices and Values

According to Table 1 the values of the components
are used to build Chua’s oscillator. Since the char-
acteristic slow timescale of the DBMD is on the
order of seconds, the capacitances C1 and C2 as
well as the used inductance L are chosen to bring
the chaotic oscillations into the single Hz range. To

Table 1. Values of the components used in the experiment.

Variable Value Variable Value

R 1.6 MΩ R9 22MΩ
R1 1 kΩ RG 100 kΩ
R2 100 Ω Rm 1 kΩ
R3 10 kΩ R10 3.3 MΩ
R4 1.82 MΩ R11 100 Ω
R5 250 kΩ R12 100 kΩ
R6 250 kΩ C 0.47 μF
R7 2.5 MΩ C1 0.047 μF
R8 22 MΩ C2 0.47 μF
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decrease the occurring currents, the resistance R
is increased. The huge inductance is implemented
experimentally through a gyrator. The recordings of
the state variables are done using a PicoScope 3000
Series. Furthermore, to decrease the influence of the
measurement on the circuit, unity gain followers are
built with JFET general purpose operational ampli-
fiers (TL074 and TL071). The simulations are car-
ried out using Python 3.6 running the scipy library.

Appendix B

Additional Information about
the Model

The following set of equations describes the ion
motions inside the DBMD as well as the increase
and decrease of the interfacial energy barrier
heights:

ω(z) = (1 − 2ω0)[1 − (2z − 1)p] + ω0,

(B.1a)

ϕa(v1, z) = σ(v1)[ϕa1 + z(ϕa0 − ϕa1)

−ϕar] + ϕar, (B.1b)

vr(v1, vs, z) = σ(−v1)vs(1 − z), (B.1c)

ϕs(z) = ϕs0 + z(ϕ1 − ϕ0), (B.1d)

n(z) = n0 + z(n1 − n0), (B.1e)

Re(z) = Re0 + z(Re1 − Re0), (B.1f)

it(vt, z) =
Itg(−vt, z) − g(vt, z)

αt(z)2
, (B.1g)

g(vt, z) = ϕt(vt)e−αt(z)
√

ϕt(vt), (B.1h)

ϕt(vt) = ϕt0 +
vt

2Vϑ
, (B.1i)

αt(z) = αt0 + z(αt1 − αt0), (B.1j)

σ(x) =

{
1 for x > 0,

0 otherwise.
(B.1k)

The used values for the simulation are as follows:

Table 2. Parameters and constants of the DBMD, rounded
on three digits.

Variable Value Variable Value

L 85 540 H ϕa0 26.305

m0 −3.545 · 10−7 ϕar 30.173

m1 −7.03 · 10−7 ω0 1 · 10−4

BP 1.957 ϕs0 27.079

Ce 1.74 · 10−13 F ϕs1 34.815

Ct 2.07 · 10−13 F n0 2.9

Vc 1 · 10−4 V n1 4.1
Ve 0.323 V Re0 200 kΩ
Is 1.081 A Re1 510 kΩ
It 4.326 A ϕt0 108.314
αf −1.25 Vϑ 0.026 V
αs 3.77 p 12

Ẑ 0.64 THz αt0 1.812
ϕa1 36.749 αt1 2.026
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