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Abstract
Multivariate calibration is about modeling the relationship between a substance’s 
chemical profile and its spectrum (here, near-infrared) in order to predict the 
concentration of new samples with known spectra. However, these new samples are 
often measured under different conditions than the primary conditions; different 
instruments, instrument drift, and temperature all affect the measurement 
conditions. Domain adaptation (DA) methods force the model to ignore these 
differences in order to generate an accurate model for the new domain (secondary
conditions). There are two fundamental DA processes that individual methods can 
be classified under. One augments a few samples from the secondary domain with 
chemical reference values (labels) to the primary data and the other augments only 
secondary spectra (unlabeled data). In this work, we compare two existing labeled 
DA methods and two existing unlabeled DA methods to two novel labeled methods 
and a novel unlabeled approach. Since DA methods require selection of 
hyperparameters, a model selection framework based on model diversity and 
prediction similarity (MDPS) is applied to the DA methods. Regardless of the DA 
method, the MDPS process is shown to select models more accurate than the first 
quartile of all models generated by the DA process in three near-infrared datasets.

Objective
• Develop domain adaptation protocol for use with multivariate 

calibration data (near-IR spectroscopy, corresponding concentration 
profiles)

• Compare against traditional methods of domain adaptation
• Apply the novel model diversity and prediction similarity (MDPS) 

framework to select models from the domain adaptation methods

Domain Adaptation Methods

 

 

Labeled Secondary

• Mean Centering: 
• Local (LMC) and Global (GMC)
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• Note: Local indicates that XP and XS are 
centered locally, rather than to the global 
combination

Hybrid Labeled and 
Unlabeled Secondary

• NAR-Hybrid: 
• Local (LNAR-H) and        

Global (GNAR-H)
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Unlabeled Secondary

Null Augmentation 
Regression (NAR)

P P

λ
   
   
   

y X
= b

0 R
• NAR-Centroid (NAR-C)
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• NAR-Covariance:
• Local (LNAR-Cov) and             

Raw (RNAR-C)
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*All equations solved by Partial Least Squares (PLS)

Result Validation:
Accuracy of selected models is 
verified using a subset of 
secondary whose analyte values 
did not go into forming the model
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Real Life Applicability
• Labeled secondary methods

• Effective when 5-10 samples are measured under the new 
(secondary) conditions, known analyte

• Original (primary) and new (secondary) conditions can be 
quite different

• Hybrid labeled/unlabeled secondary methods
• Useful with few (1-5) samples measured under new 

conditions
• Primary and secondary conditions should be fairly similar

• Unlabeled secondary methods
• Is performed when no samples are available in secondary 

conditions
• Primary and secondary conditions must be quite similar

Model Selection by MDPS
General Theory

Get every possible combination of two models, want diverse 
combinations of models that retain similar predictions

Model Diversity
Cosine of the angle between the
ith and jth models

( )
( ) ( )
 ,

cos
i j

i j
i j

θ =

T
b b

b b
Prediction Similarity

Secondary Prediction Difference (SPD): 
Analyte prediction differences 
of the ith and jth models relative 
to the m secondary spectra
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RMSECP:
Prediction error of the 
model as it relates to the
primary set of samples
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Range-Scaled Weighted Fusion (ω)
Weight regression vector 2-norm to characterize overfitting
Incorporation of RMSECP to account for underfitting
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Figure 1. MDPS figures showing the organization of the prediction 
similarity against the model diversity for a combination of two models. 
Combinations are taken within the purple bucket and sorted to find the 
lowest 10% according to the red bucket

Data Description

Figure 2. Corn: spectra of 80 corn 
samples measured on three instruments: 
m5, mp5, mp6. Analytes include 
moisture, oil, protein, and starch
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Figure 3. Tablet: spectra of 240 
pharmaceutical tablets with analyte 
API. Samples grouped according to API.
Primary is lab batch, secondary is full
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Figure 4. Goat: spectra of 
goat feces analyzed for 
juniper content. Primary is 
1999, secondary is 2002
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Table 1. Numeric 
division of samples 
into primary and 
secondary to preserve
result consistency

Division of samples for updating
Primary Secondary Validation

Corn 40 5 20

Tablet 60 6 24

Goat 61 5 20

Results

Figures 5 and 6. Boxplots of (left) RMSEV and (right) R2 of models generated 
by the domain adaption methods and selected by MDPS. PPS, SPS, and SSPS 
correspond to the baseline model generation methods, where we expect to 
perform better than PPS and SSPS, and no better than SPS. The first three 
boxes in every block correspond to the minimum, first quartile, and median 
of all models generated, respectively. Blue boxes correspond to models 
selected by MDPS.

Tablet 1&4-1&2

Goat 99-02

Takeaway:
• Models selected by MDPS (blue) perform at or 

better than the first quartile of all generated models
• Model updating performs almost as good as the 

state-of-the-art incredibly expensive method of SPS
• Great predictions are achieved using unlabeled 

secondary data (NAR-C, NAR-Cov1, NAR-Cov2)

Results
Corn m5-mp5 Moisture

Figure 7. Heatmap of (a) RMSEV and (b) frequency of a given 
model being selected by MDPS for Corn m5-mp5 moisture, in the 
NAR-Cov1 updating situation. 

Takeaway:
• Model selection by MDPS selects the most 

accurate models, as evidenced by the darkest 
blue (lowest RMSEV) models on the left side 
being most frequently selected on the right side

Conclusions
• Domain adaptation using very few or no reference 

values for the secondary domain achieves great 
accuracy
• In datasets where primary and secondary are 

similar, the unlabeled secondary methods can 
outperform labeled

• Model selection using MDPS achieves performances at 
or better than the first quartile of all generated 
models in every domain adaptation situation

• When primary and secondary are sufficiently similar, 
complete model recalibration should never be 
necessary

Potential Applications
• Rapid analysis of tablet dosage even as the 

production method shifts slightly

• Real-time analysis of agricultural nutrient as the 
near-IR instrument degrades over time

• Standardization of handheld spectrometers (e.g. in a 
smartphone) even as instruments become damaged 
or lenses get smudged
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