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Abstract. The purpose of this research is to develop and adapt a complex of hybrid mathematical and instrumental methods
of analysis and risk management through the prediction of natural time series with memory. The paper poses the problem of
developing a constructive method for predictive analysis of time series within the current trend of using so-called “graphical
tests” in the process of time series modeling using nonlinear dynamics methods. The main purpose of using graphical tests is
to identify both stable and unstable quasiperiodic cycles (quasi-cycles). Modern computer technologies which allow to study in
detail complex phenomena and processes were used as a toolkit for the implementation of nonlinear dynamics methods. Authors
propose to use for the predictive analysis of time series a modified R/S-analysis algorithm, as well as phase analysis methods for
constructing phase portraits in order to identify cycles of the studied time series and confirm the forecast. This approach differs
from classical forecasting methods by implementing trends accounting and appears to the authors as a new tool for identifying
the cyclical components of the considered time series. Using the proposed hybrid complex, the decision maker has more detailed
information that cannot be obtained using classical statistics methods. In this paper, authors analyzed the time series of Kuban
mountain river runoffs, revealed the impossibility of using the classical Hurst method for their predictive analysis and also proved
the consistency of using the proposed hybrid toolkit to identify the cyclic components of the time series and predict it. The study
acquires particular relevance in the light of the absence of any effective methods for predicting natural-economic time series,
despite the proven need to study them and their risk-extreme levels. The work was supported by Russian Foundation for Basic
Research (Grant No 17-06-00354 A).
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1. Introduction

Hitherto none of the published works does not give
an idea of floods on the scale of the globe. The classi-
fication of floods according to the scale of social and
environmental damage, the scientific basis for rational
use of areas prone to flooding, the system concept of
measures that need to be carried out in flood-hazardous
areas in the periods before, during and after floods are
also not developed.

⇤Corresponding author: Elena Popova, Kuban State Agrarian Uni-
versity, 13 Kalinina Str. 350044 Krasnodar, Russia. E-mail: elena-
popov@yandex.ru.

The predicted climate warming and the inevitable
growth of the further development of river valleys will
undoubtedly lead to an increase in the frequency and
destructive power of floods. Therefore, the urgent task
is to develop effective measures to prevent floods and
protect against them, since this will reduce the costs of
eliminating the consequences of the disasters caused
by them by 50–70 times. A set of measures in flood-
hazardous areas, including forecasting, planning and
implementation of activities, should be carried out be-
fore the onset of the flood, during its passage and after
the termination of the natural disaster.

This study is devoted to the tools of predictive anal-
ysis and the study of risk-extreme levels in natural-
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economic time series. The relevance of the subject of
this study has acquired special economic importance
after the floods that occurred along the river Kuban
in June 2002, the losses from which are estimated at
about $ 0.5 billion.

In the conclusion of the commission [2] it is said
that as a result of heavy precipitations that fell in the
mountainous areas of the Kuban River Basin, a flood
occurred. It has no analogue for almost a century of ob-
servations both in terms of maximum expenditures and
rise in levels, and in damage caused people and busi-
nesses. As a result, 246 localities suffered in the south
of Russia, more than 110 kilometers of a gas pipeline,
269 bridges, 1,490 kilometers of roads were destroyed,
102 people died. The total number of victims in the
Southern Federal District reached 340 thousand people
and the material damage exceeded 15 billion rubles.

As for damage directly to the regions, it should
be noted that the damage to the Krasnodar Terri-
tory caused by the flood exceeds the material dam-
age of Karachay-Cherkessia 10 times and is more than
three billion rubles. 76 bridges were damaged in the
Kuban (46 completely destroyed); more than 2.5 thou-
sand households were destroyed; 58 settlements were
flooded. The damage is especially high in the agro-
industrial complex of the region, where 15 thousand
hectares of arable land turned out to be under water;
more than 100 thousand heads of poultry, 2.5 thousand
heads of pigs were killed; cattle losses also were high.
The amount of damage in agriculture is more than 250
million rubles.

The main focus of the study is on two tools of pre-
dictive analysis related to non-linear dynamics meth-
ods: fractal analysis of time series (TS) [4,5,12] and
phase analysis of TS (see [5] for a comment on [12]).

2. Modified sequential R/S-analysis algorithm for

estimating the depth of memory of a time series’

beginning

It should be noted that the founder of fractal analy-
sis is the British hydrologist Kh. E. Hurst. Exploring
the statistics of river flows, he proposed a new statis-
tical methodology to distinguish between random and
non-random systems, the constancy of trends, and the
duration of cycles, if any of them exists. Hurst showed
that most natural phenomena, including river runoffs,
temperatures, precipitation, sunspots, follow a “biased
random walk”, i.e. trend with noise. Trend stability and
noise level can be assessed by how the normalized span

of TS changes over time. In other words, it shows how
much the value entered by it (Hurst index, H 2 (0; 1))

exceeds the value of 0.5.
If the levels of TS reflect a “purely random process”

(they are independent random variables), then in ac-
cordance with the classical statistics for such a TS the
value of the Hurst index is H ⇡ 0.5. The natural TS
studied by Hurst and later by Mandelbrot et al. (pre-
cipitation, sunspots, tree rings, etc.) have a so-called
long-term memory [4,5], so that for any of these TS
Hurst index has a value that exceeds 0.7 (see Figure 4.1
in [6]).

It should be particularly noted that by the time the
monographs [4,5] were published, the generally ac-
cepted opinion was already established that for the vast
majority of natural systems the value of H deviates sig-
nificantly from 0,5 to the black noise area [5].

This fact deserves special attention due to the fact
that in the process of fractal analysis of the TS of the
runoffs of the mountain rivers of the North Caucasus,
the Hurst index H was found to be in the range of
smaller than 0.5 values. The obtained empirical result
can be explained by the fact that the considered nat-
ural series of TS do not have long-term memory, or
the fact that the method of normalized scope (R/S-
analysis) proposed by Hurst for calculating an esti-
mate is not universal and not adequate for all natural
and non-natural TS. One of the results of this paper
is the confirmation of the second assumption formu-
lated above. Hence the need to build a new author’s ap-
proach for the implementation of the fractal analysis of
TS is justified.

For more than half a century, the R/S-analysis
of natural, economic, etc. TS was carried out by re-
searchers on the basis of the algorithm published in [8],
which in English literature is called “Hurst Standard-
ized Range (SR) Method” (in [6] it is called “R/S-
Analysis: A Step by Step Guide”).

In this work, TS of monthly runoffs volumes in the
upper reaches of the Kuban River (the geographical
point of the beginning of the Great Stavropol Canal)
for the period from 1926 to 2003 inclusive was inves-
tigated. A graphic representation of a part of this TS
(from 1988 to 2003) is given in Fig. 1. Note that sim-
ilar types of histograms are characteristic to TS of the
runoffs volumes of other mountain rivers: Bolshoi Ze-
lenchuk, Teberda, Aksaut and Marukha.

The authors carried out a fractal analysis (built H-
and R/S-trajectories for time series) of the runoffs vol-
umes of mountain rivers: Kuban, Bolshoi Zelenchuk,
Teberda, Aksaut and Marukha.
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Due to the lack of data in the war period (1940–
1945) and taking into account the fact of climate warm-
ing [1,11], the original Kuban TS Z = zi, i =

1, 2, . . . , N was conditionally divided into three parts:
the period from January 1926 to December 1939, the
period from January 1946 to December 1987 and the
period from January 1988 to December 2003. Let’s de-
note them respectively by K1, K2 and K3.

A description of the computational scheme of the
proposed algorithm for sequential R/S-analysis in or-
der to estimate the depth of memory of TS beginning
will be presented using the example of TS

Z = zi, i = 1, 2, . . . , N, (1)

which elements are TS K3 data, i.e. further explana-
tions and descriptions of the calculations are based on
TS K3 data.

First, in the considered TS its initial segments
Z⌧

= z1, z2, . . . , z⌧ , ⌧ = 3, 4, . . . , n are sequen-
tially formed. For each of them the current average
z⌧ =

1
⌧

P⌧
i=1 zi is calculated.

Further, for each fixed Z⌧ , ⌧ = 3, 4, . . ., n the ac-
cumulated deviation for its length segments t is calcu-
lated: X⌧,t =

Pt
i=1(ui � u⌧ ), t = 1, ⌧ . Then the span

R = R(⌧) = max16t6⌧ (X⌧,t) � min16t6⌧ (X⌧,t) is
calculated. It is normalized, i.e. represented as a frac-
tion R/S, where S = S(⌧) – standard deviation for
TS segment Z⌧ , 3 6 ⌧ 6 n.

In contrast to stage 7 of the Hurst’s SR algorithm, in
the present computational scheme, the estimate of the
Hurst index is calculated on the basis of the “Hurst’s
empirical law”, which in [5,8] is represented by the
formula

H = H (⌧) =
log

⇣
R(⌧)
S(⌧)

⌘

log
�
⌧
2

� . (2)

Based on Eq. (2), two trajectories in Cartesian log-
arithmic coordinates are constructed. One of them, so-
called H-trajectory, consists of points with coordinates
(x⌧ , y⌧ ), where x⌧ = log ⌧ , ⌧ = 3, 4, . . ., n and y⌧ is
calculated according to Eq. (2): y⌧ = H(⌧).

The second, so-called R/S-trajectory, consists of
points with coordinates (x⌧ , y0⌧ ), where x⌧ = log ⌧
and y0⌧ = log(

R(⌧)
S(⌧) ). For clarity, in the graphical repre-

sentation of these trajectories each pair of neighboring
points are connected by a segment.

Figure 2 shows the R/S- and H-trajectories result-
ing from the application of a sequential R/S-analysis
algorithm to the TS of the Kuban River runoffs (for a
graphic representation of this TS see Fig. 1). If the con-
sidered TS has a long-term memory, its R/S-trajectory

demonstrates the exhaustion of the memory of the be-
ginning of the series by the so-called disruption from
the trend or, in another terminology, changing the trend
direction along which a certain number of initial points
of the R/S-trajectory follow [5,6]. The above term
“change of trend” implies that the points of the R/S-
trajectory following the point of trend change already
“do not return” to the original trend. Based on a mas-
sive computer experiment for numerous TS, the au-
thors formulated the following definition of a trend-
proof initial segment of TS, ending with an end to this
trend:

1. A certain number of l > 2 points related to the
beginning of the R/S-trajectory follow along a
linear trend.

2. After the point l, the R/S-trajectory changes the
trend, and the subsequent points of this trajectory
“do not return” to the original trend.

3. The time series of ordinates y⌧ , r = 1, 2, . . . of
the points of the H-trajectory when moving from
yl to yl+1 gets a negative increment; the point of
the l H-trajectory is in the zone of black noise,
i.e. Hurst value yl = H(l) > 0.5.

Note 1. When visualizing the R/S-trajectory and
the H-trajectory, it is necessary to take into account
that R/S-analysis does not compute the coordinates
(x⌧ , y⌧ ) corresponding to the first two levels of the in-
vestigated TS, i.e. for ⌧ = 1 and ⌧ = 2. Therefore, it is
proposed to number the points of the indicated trajec-
tories, starting with number 3 (see Fig. 2).

Note 2. In the general case, the trend change point
of the R/S-trajectory appears with a lag, whereby the
trend change point number of this trajectory is the up-
per estimate of the depth of memory about the begin-
ning of the considered TS.

According to the above points 1–3 and notes 1 and 2
from the visualization of Fig. 4 it follows that the depth
of memory about the beginning of the considered TS Z
is estimated above by a number 16.

The most important conclusion, which follows from
the established fact of the presence of long-term mem-
ory in the TS of mountain river runoffs, is that there
is base for developing a system for the short- and
medium-term forecast of the runoffs volumes of these
mountain rivers. The system of short- and medium-
term forecast is planned to be developed on the math-
ematical apparatus of the theory of cellular automaton
and the theory of fuzzy sets [3,14].

The amount of memory used by the cellular automa-
ton and, ultimately, the complexity of the computa-
tional prediction scheme substantially depend on the
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Fig. 1. Histogram of TS Z for the period from 01.1988 to 12.2003.

Fig. 2. R/S-trajectory and H-trajectory of Kuban River runoffs TS for the period from 1926 to 2003.

depth of the memory of the forecasting TS. Therefore,
in the present work, numerical calculations are imple-
mented with sufficient completeness in order to sub-
stantiate the upper estimate of the memory depth of
the considered TS. These calculations in the present
study are performed using the algorithm presented be-
low, which determines the presence of such memory
and evaluates its depth numerically, presenting it as a
fuzzy set. The operation of the algorithm consists of
two stages.

Stage 1. Formation on the basis of TS (1) of a family
S(z) = {Zr}, Zr

= Zr
i , i = 1, 2, . . . , nr, r = 1, 2,

. . ., m, which consists of m TS, where by index i the
elements of r series derived from (r � 1) TS Zr�1 by
deleting its first element Zr�1

1 . Here m is defined as
the highest index value r, such that the Zm

= zmi , i =

1, 2, . . ., nm series still has a trend reversal point in
its R/S-trajectory; the original TS (1) also belongs to
the S(Z) family in which it is assigned with the index
value r = 1.

Stage 2. Realization of R/S-analysis of TS from the
SZ) family and formation of a fuzzy set of values of
the upper memory depth estimating the beginning of
the series for each TS of this family.

For each TS Zr, r = 1,m as a result of its R/S-
analysis, a R/S-trajectory and a H-trajectory are con-
structed. They determine the number lr of such a point
at which the trend has changed, i.e. lr is the number
of the first white noise zone point, where H-trajectory
received a negative increment, and the R/S-trajectory
changed the trend.
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Table 1
Depth of memory for TS of mountain river Kuban monthly runoffs for the period from January 1988 to December 2003

Depth of memory 12 13 14 15 16 17 18 19 20 21
Amount of memory depth 1 6 12 16 17 17 9 9 8 5
Share of memory depth 0.01 0.06 0.12 0.16 0.17 0.17 0.09 0.09 0.08 0.05
Memory depth function 0.05 0.3 0.64 0.85 0.90 0.90 0.47 0.47 0.42 0.26

Fig. 3. Geometric representation of the FS depth of memory for TS
Z.

Let’s give a description of the computational scheme
of stage 2, which implements the fractal analysis of TS
using the “algorithm of sequential R/S-analysis”. The
following notation will be used: N(l) – number of all
series Zr

= zri , i = 1, n from the family S(Z), each
of which has a trend point number lr that equals l, l0 =

min16r6mlr, L0
= max16r6mlr; m =

PL0

l=4 N(l) –
number of series from the family S(Z); d(l) =

N(l)
m

– the proportion of such series in S(Z), each of which
has a memory loss at depth l; L(Z) = {l} – the set
of values of elements’ number of the trend change in
the series of the family S(Z); M(Z) = {(l, µ(l))} –
fuzzy set (FS) of memory depth for TS (1) as a whole.
Table 1 presents the result of the algorithm ↵1 for TS
Z.

Presented in the last row of Table 1 µ(l) – values
of the function of l elements’ belonging to a fuzzy set
M(Z) are proportional to numbers s(l), l 2 L(Z);
they are obtained by rationing the values of the shares
d(l) so that µ(l) < 1 for every l 2 L(S). The re-
sult of stage 2 for TS Z is presented in Table 1. The
values of the elements of the last row in Table 1 µ(l)
are calculated as follows. First the maximum fraction
d⇤ = maxl2L(Z)d(l) is found (for example, in Ta-
ble 1 value d⇤ � 0, 17) and the corresponding depth l⇤

(d⇤(l) = l⇤, in Table 1 value l⇤ = 16).
Further, for this depth l⇤, the value of the member-

ship function µ⇤
= µ(l⇤) is set by experts (value in

Table 1 µ⇤
= µ(16) = 0,9). After that, for the remain-

ing elements l 2 L(Z), the corresponding values of
the membership function µ(l) are calculated by the for-

mula µ(l) = µ⇤

d⇤ d(l). The formation of FS M(z) is car-
ried out by pairwise combining the elements of the first
and last rows of Table 1. The obtained depth assess-
ment of TS Z memory is represented as the following
fuzzy set:

M (Z)=

8
>><

>>:

(12; 0, 05) , (13; 0, 3) , (14; 0, 34) ,
(15; 0, 85) , (16; 0, 9) ,
(17; 0, 9) , (18; 0, 47) , (19; 0, 47) ,
(20; 0, 42) ; (21; 0, 26)

9
>>=

>>;
(3)

For clarity, Fig. 3 shows the geometric image of the
FS of the considered TS Z.

The conclusions arising from the results of the cal-
culations are as follows:

1. The memory depth of a particular TS is not a
fixed number; its value changes along the con-
sidered TS, i.e. for its various segments, it is dif-
ferent; for example, as it can be seen from Table
1 for TS Z, the numerical values of the memory
depth vary in the segment of the natural series 12,
14, . . ., 21.

2. For the numerical representation of the memory
depth of the considered TS (1) Z, the most appro-
priate is the mathematical apparatus of the fuzzy
sets theory, i.e. the estimated depth is a fuzzy set
M(Z) = {(l, µ(l))}, l 2 {l0, l0 + 1, . . . , L0},
where l is the numerical value of the encountered
memory depth, µ(l) is the value of the member-
ship function for this depth.

As noted in [6], R/S-analysis is a tool for identi-
fying cycles, both periodic and non-periodic. Figure 4
shows the image in the form of a histogram of the
R/S-trajectories trend change points’ dynamics of TS
Zr 2 S(Z) for indexes r set in accordance with the
months from January 1988 to April 1996.

Based on the results of the calculations, two notes
on the new additional “cyclic” capabilities of the “R/S
sequential analysis algorithm” compared to the “Hurst
norm range algorithm” are formulated.

Note 3. To present the conclusions arising from the
visualization of Fig. 3, we need to use the concepts
of “cycle” and “quasi-cycle”. Let’s assume that Fig. 4
gives a graphical representation of the TS L = li, i =
1, 2, . . ., N . According to the generally accepted defi-
nition, the term “cycle” means a segment
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Fig. 4. Histogram of trend change numbers of R/S-trajectories of TS Zr from the family S(Z).

li, li+1, . . . , li+r, (4)

consisting of two parts; first part is increasing (decreas-
ing), second – decreasing (increasing). Moreover, the
specified segment (4) is locally maximal in its length
(r + 1).

Generally, it can be said that the considered TS has
the cyclic nature in case when this TS contains cycles
of the same length. If TS contains cycles of different
lengths, then it should be named “quasi-cycle”.

Presented definition of the cycle is not exhaustive
and can be modified or supplemented. It is proposed to
do so in case of analyzing the cyclical characteristics
of the considered mountain rivers’ runoffs. First, note
that the histogram in Fig. 4 consists of periodically re-
peating segments of the form

li, li+1, . . . , li+11 (5)

in each of which the element li represents a local max-
imum (i = 9, 21, 3, . . ., 9 + + 12k), and the element
li+11 is a local minimum. In addition, each segment
(5) consists of a quasi-cycle of the “decrease-increase”
type and a quasi-cycle of the “increase-decrease” type,
and these two quasi-cycles intersect, i.e. both contain
a pair of common elements in the form of an interme-
diate minimum li+t�1 and an intermediate maximum
li+t, t 2 {6, 7, 8}. Due to segments’ (5) structure (in
the form of a union of two quasi-cycles) and length
equality with value of 12, let’s call every segment of
the form Eq. (5) by the term “cycle”.

Based on the above definitions, from the visualiza-
tion of Fig. 2 we obtain the following statements.

Note 4. The information obtained at the output of the
sequential R/S-analysis algorithm on the dynamics of

the trend change points of the R/S-trajectory not only
establishes the fact of the cyclical nature of the evo-
lution of the considered TS, but also gives the exact
value of the boundaries of the cycles as part of this TS.
We note in particular that in the considered TS of the
flow of mountain rivers the indicated boundary points
are September (beginning) and August (end). A pair
of points (local minimum and local maximum), repre-
senting the intersection of two quasi-cycles that make
up the cycle Eq. (5), fluctuates within three months
(March, April, May).

Note 5. As mentioned in [5], to obtain sufficiently
accurate estimates of the fractal characteristics of TS
using the Hurst normalized span algorithm, series with
a length of several thousand or even about ten thou-
sand observations are required. The method of sequen-
tial R/S-analysis presented above essentially removes
this condition, since it seems possible to use it to ob-
tain estimates of the fractal characteristics of a limited
segment of the considered TS.

It is also worth mentioning that the above notes 3–
5 actually represent an element of verification of the
proposed algorithm for sequential R/S-analysis. The
presence of strict cyclicality is important, both in terms
of pre-forecast analysis, and in terms of building pre-
dictive models.

The adapted method of sequential R/S-analysis
is registered by the Russian Agency for Patents and
Trademarks and has a certificate No. 2003611093.

Detection of long-term memory in mountain river
runoffs is not a final goal of this research by itself. It
should serve as an objective substantiation of the fun-
damental possibility of building a predictive model, in
the course of which all significant factors are taken
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Fig. 5. Phase portrait of Kuban river runoffs’ TS for the period from
1926 to 2003.

into account (for example, the presence of cycles of the
form Eq. (4)) that caused this memory. In the context
of the forecasting problem, it is appropriate to note the
already established, i.e. which has become the classic
main point of the decomposition analysis of time se-
ries [7]. According to this provision, in general, TS can
be divided into 4 components: a) trend, b) cyclic com-
ponent, c) seasonal fluctuation, d) irregular or residual
component. In this case, the cyclical component can
carry very significant information for the compilation
of the forecast.

3. Phase portraits toolkit for identifying time

series cycles and prediction confirmation

Studying the runoffs of mountain rivers, the con-
struction of phase portraits of TS (1) in the phase
space [5] of the dimension 2 F (Z) = {(zi, zi+1)}, i =
1, 2, . . . , n � 1 is efficient. This type of phase trajec-
tory mountain river Kuban runoffs’ TS for the period
from 1926 to 2003 is presented in Fig. 5. Note that
for ease of visualization, the triple coloring of these
phase portraits is chosen, which corresponds to time
periods: from January 1926 to December 1939 (blue
color), from January 1946 to December 1987 (green
color) and from January 1988 to December 2003 (red
color).

Note 6. Following Peters [5], Packard [12] and many
other researchers (see references in [5]) for TS (1) as
its phase space we use the simplest version of the form

�⇢ (Z) = {zi, zi+1, . . . , zn�⇢+1} ,
(6)

i = 1, 2, . . . , n� ⇢+ 1

As known, constructing the phase space Eq. (6) for
a specific time series, the issue of its dimension is of
fundamental importance ⇢. This dimension must be not

Fig. 6. The first quasi-cycle of the phase portrait, including the lag -
13, 14, 15; points 1 and 2 are missing in the R/S-trajectory.

less than the dimension of the attractor of the observed
series. In turn, as known, the fractal dimension C of
its series can be used as the dimension of the attrac-
tor with a fairly acceptable accuracy. The value of this
dimension, as noted in [5], is calculated by the formula

D = 2�H (7)

Since for the value analyzed in this work H 2 (0, 1),
the estimate D < 2 is obtained [5]. Thus, for the pur-
poses of this research, it is sufficient to use the phase
space of dimension ⇢ = 2.

Let’s consider this phase portrait as a trajectory, i.e.
a sequence of points in which each adjacent pair is
connected by a link (cut or curve). In this trajectory,
we also distinguish its segments, which are called the
term “phase quasi-cycles” or briefly “quasi-cycles”.
The definition of a phase quasi-cycle is in a certain
sense close to the definition of a classical cycle. The
difference between these two concepts is that the start-
ing and ending points of the phase quasi-cycle do not
have to be the same. The end point of a quasi-cycle is
determined by its entry into the neighborhood of the
initial point. In this case, self-intersection of the ini-
tial and final links of the quasi-cycle is allowed, if this
leads to the maximum convergence of the initial and fi-
nal points. In reality, there are such time series of evo-
lutionary processes, in which the phase portraits con-
tain such pairs of non-adjacent points (observations),
in which the coordinates in the phase space actually
coincide. The presence of such pairs of points actually
destroys the cyclic structure of the phase trajectories.

A remarkable and very important feature of forecast-
ing the mountain rivers’ runoffs considered by the TS
is that the phase portrait consists of a sequence of non-
intersecting quasi-cycles, whose length is 12 months.
In general, the trajectory of the phase portrait for a time
series consists of 16 non-intersecting quasi-cycles Cr,
r = 1, 2, . . ., 16. All quasi-cycles are built from Febru-
ary to January, thereby forming 12-month cycles (i.e.
year).
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Table 2
Dimensions of quasi-cycles and numbers of points of breakdown in the R/S-trajectories

Ck C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

Lk 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
Nk 15 15 16 16 16 16 15 16 15 15 16 15 15 15 16

Fig. 7. The first 12-month quasi-cycle of TS Z and its detection using the R/S- and H-trajectories.

Fig. 8. The second 12-month quasi-cycle of TS Z and its detection using the R/S- and H-trajectories.

Note 7. In Fig. 7a, in terms of phase analysis tools,
a separate annual cycle belonging to TS Z (1) is pre-
sented as a typical one. The R/S-trajectory and the H-
trajectory presented in Fig. 7b demonstrate the exhaus-
tion of the above cycle in Fig. 6. This exhaustion is
demonstrated by the breakdown of the R/S-trajectory
at a point i = 15 that exceeds by 3 the length of the
annual cycle.

The latter is due to the existence of lags in the work
of the sequential analysis algorithm. In this case, the
size of this lag is 3. In Fig. 6, the indicated lag is repre-
sented by three dots colored pink; these are points 13,
14 and 15. The first two points painted green are not
reflected in Fig. 7b due to algorithmic features the pro-
cess of building an R/S-trajectory and H-trajectory.

The dimensions Lk of all 16 quasi-cycles and
the number of the point of breakdown in the R/S-
trajectories are presented in Table 2.

Let’s denote by Zk such segment of TS Z, which is
obtained by removing from all points of observation

related to quasi-cycles C1, C2, . . . , Cr�1; according to
this definition Z1 = Z.

Let’s compare the memory depth of the considered
TS, represented by a fuzzy set Eq. (5), with the dimen-
sions of the quasi-cycles presented in the second row of
Table 2. From this comparison it follows that the pres-
ence of long-term memory in the considered TS along
with other factors is also due to the cyclic component
of this TS.

Note 8. For each quasi-cycle the concept of “di-
mensional rectangle of a quasi-cycle Cr” should be
defined. Through the points (zi, zi+1) with the maxi-
mum and minimum abscissa values (ordinates) straight
lines parallel to the ordinate axis (abscissas) should be
drawn. The intersection of these two pairs of parallel
straight lines obtained (in Fig. 7a are represented by
a dotted line) forms the dimensional rectangle of the
quasi-cycle Cr. In other words, a dimensional rectan-
gle is such a minimal convex hull of the points of a
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Fig. 9. The third 12-month quasi-cycle of TS Z and its detection using the R/S- and H-trajectories.

Fig. 10. The fourth 12-month quasi-cycle of TS Z and its detection using the R/S- and H-trajectories.

Fig. 11. The fifth 12-month quasi-cycle of TS Z and its detection using the R/S- and H-trajectories.

Fig. 12. The sixth 12-month quasi-cycle of TS Z and its detection using the R/S- and H-trajectories.
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Fig. 13. The seventh 12-month quasi-cycle of TS Z and its detection using the R/S- and H-trajectories.

Fig. 14. The eighth 12-month quasi-cycle of TS Z and its detection using the R/S- and H-trajectories.

Fig. 15. The ninth 12-month quasi-cycle of TS Z and its detection using the R/S- and H-trajectories.

Fig. 16. The tenth 12-month quasi-cycle of TS Z and its detection using the R/S- and H-trajectories.

AU
TH

O
R 

CO
PY



E. Popova et al. / Methods of nonlinear dynamics as a hybrid tool for predictive analysis and research of risk-extreme levels 231

Fig. 17. The eleventh 12-month quasi-cycle of TS Z and its detection using the R/S- and H-trajectories.

Fig. 18. The twelfth 12-month quasi-cycle of TS Z and its detection using the R/S- and H-trajectories.

Fig. 19. The thirteenth 12-month quasi-cycle of TS Z and its detection using the R/S- and H-trajectories.

Fig. 20. The fourteenth 12-month quasi-cycle of TS Z and its detection using the R/S- and H-trajectories.
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Fig. 21. The fifteenth 12-month quasi-cycle of TS Z and its detection using the R/S- and H-trajectories.

Fig. 22. The sixteenth 12-month quasi-cycle of TS Z and its detection using the R/S- and H-trajectories.

quasi-cycle Cr, which is a rectangle with sides paral-
lel to the axes of coordinates. The intersection of the
diagonal of the dimensional rectangle determines the
so-called center of rotation of the quasi-cycle Or, the
coordinates of which are denoted as Or(xr, yr).

Let’s analyze the characteristic features of the phase
portrait of TS Z.

1. The phase portrait of TS Z is divided into quasi-
cycles, which have dimension 12. This fact is in
sufficient agreement with the results of a fractal
analysis devoted to the estimation of the depth of
memory of TS.

2. In each quasi-cycle, exactly every link has a di-
rection of rotation clockwise. In this case, the di-
mensional rectangle can be divided into 4 sectors
by straight lines parallel to the coordinate axes
with the intersection in the center of the dimen-
sional rectangle.

3. Centers of quasi-cycles Or(xr, yr), in the order
of their numbering r = 1.72, evolve along a def-
inite trajectory, the points of which are located in
a rather small neighborhood of the bisector of the
positive orthant of the Cartesian coordinates.

Fig. 23. Evolution of TS quasi-cycle centers for the period from 1926
to 2003.

As can be seen from Fig. 23, although the coor-
dinates of the centers of all quasi-cycles define the
points of the bisector of the positive orthant xrxr+1 of
the Cartesian coordinates, the trajectory of movement
of these coordinates is characterized by a significant
range R ⇡ 550 � 200 = 350, which is more than 1.5
times greater than the minimum point. In the light of
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Fig. 24. Decomposition of the trajectories of the centers into temporary periods.

Fig. 25. Movement of areas of dimensional rectangles (taking into account time parameter).

this fact, it is interesting to identify long-term trends
that govern the evolution of these centers of dimen-
sional rectangles. Due to this, splitting up in Fig. 24
into three periods – 1926–1940 – Fig. 24a; 1946–
1987 – Fig. 24b; 1988–2003 – Fig. 24c – was done.
From the visualization of Fig. 23, the following ten-
dency appears with sufficient certainty: with approxi-
mately the same value min ⇡ 200, over time, the mag-
nitude increases in the following ratio: R1 ⇡ 350 – 200
= 150 (Fig. 24a), R2 ⇡ 450 – 200 = 200 (Fig. 24b),
R3 ⇡ 550 – 200 = 350 (Fig. 24c). The given range
of magnitude confirms the well-known statement of
climatologists about the existence of a general trend
of climate warming in the northern hemisphere, since
the filling of mountain rivers, especially in the summer
months, is determined by the intensity of the melting
of glaciers.

From the visualization of Fig. 25, it follows that the
evolution of the size (area) of the overall rectangles of
quasi-cycles is cyclical.

Step 1. Fractal analysis of TS (1) in order to establish
the presence of long-term memory and assess its depth.
At the output a fuzzy set L = L(Z) = {(l, µ1)} of TS
Z depth of memory estimates is obtained.

Step 2. Construction of a phase portrait ⇢(Z) for a
given TS.

Step 3. Decomposition of the phase portrait into
quasi-cycles Cr, taking into account the fact that the
initial and final quasi-cycles may be incomplete.

Step 4. Conducting an analysis of the evolution of
quasi-cycle centers Or(xr, yr), the evolution of the
size (area) of dimensional quasi-cycling rectangles,
and the nature of the rotation of quasi-cycle links.
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Fig. 26. TS phase portrait.

Fig. 27. Quasi-cycles of TS 3, isolated from the phase portrait of Fig. 26.

Step 5. Constructing a forecast on the principle of
continuation (completion) of the corresponding quasi-
cycle using the results of step 4 for two cases in which
the last quasi-cycle is a) finished, b) unfinished.

In case a), we use the overall dimensions and the na-

ture of rotation of the quasi-cycles, taking into account
which sector of the dimensional rectangle the predicted
point belongs to.

In case b), the same procedures are carried out, but
taking into account the evolution of centers and tran-
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Table 3
Correlation coefficients between meteorological factors and TS of mountain rivers monthly runoffs

Av t MAX t MIN t Av Hum Sun. Sum Sum Prec Kuban B. Zel. Teberda Aksout Marukha
Av t 1
MAX t 0.87 1
MIN t 0.91 0.62 1
Av Hum 0.04 �0.24 0.27 1
Sun. Sum 0.00 0.36 �0.29 �0.55 1
Sum Prec 0.06 �0.17 0.21 0.38 �0.43 1
Kuban 0.15 �0.04 0.27 0.42 �0.19 0.69 1
B. Zel. 0.38 0.14 0.48 0.41 �0.23 0.74 0.86 1
Teberda 0.30 0.25 0.31 0.48 �0.02 0.16 0.47 0.37 1
Aksout 0.18 �0.02 0.27 0.47 �0.16 0.66 0.81 0.72 0.45 1
Marukha 0.12 �0.08 0.27 0.45 �0.36 0.65 0.59 0.59 0.21 0.67 1

sitions from the final point of one cycle to the starting
point of a new cycle.

Thus, the proposed approach differs from the clas-
sical methods of forecasting with the new implemen-
tation of taking trends into account (the evolution of
the centers and dimensions of the dimensional rectan-
gles), as well as with the new tools (phase portraits) for
identifying the cyclic component of the considered TS.

Along with the presented above (in Fig. 5), there are
other approaches to the construction of phase portraits
of TS. Many researchers are building phase portraits
in the form of “the level of the TS indicator is its first
derivative”, i.e. these portraits are built in the phase
space F 00, where zi is the increment of the i-th element
of the TS (1). Let’s introduce the designation of TS in-
crements of the monthly runoffs of the mountain river
Kuban for the period from January 1988 to December
2003:

⇧3 : hnii , i = 1, 192. (8)

This kind of phase trajectory of mountain river
Kuban runoffs TS K3 is shown in Fig. 26. This trajec-
tory consists of 16 quasi-cycles C 0

r, r = 1, 2, . . ., 16.
Figure 27 visually confirms the fact of self-similarity
of TS ⇧3 quasi-cycles.

It should be noted that the centers of the quasi-cycles
TS ⇧3, in the order of their numbering, evolve along
a certain trajectory, the points of which are located
exactly on the bisector of the positive orthant of the
Cartesian coordinates.

It is easy to see that the phase portraits presented in
Fig. 27 and the numbers of the points of failure with
the R/S-trajectory and the H-trajectory also confirm
the presence of the cyclic component in the time series
under consideration.

From the point of view of economic security among
various natural factors, the most interesting is the
statistics of precipitation amounts in combination with
the statistics of monthly runoffs of the mountain river

Fig. 28. Evolution of TS ⇧3 quasi-cycles centers.

Kuban for the period from January 1969 to Decem-
ber 2003. In this context, the summer months deserve
the most attention, first of all – June, which is rather
strongly correlated with the precipitation index and at
the same time has close to the maximum runoff volume
of mountain rivers.

To identify investigative relationships between
weather conditions (such as: average air temperature,
maximum air temperature, minimum air temperature,
average air humidity, sunshine duration, amount of
precipitation per day) and the dynamics of monthly
runoffs of mountain rivers Kuban, Bolshoi Zelenchuk,
Teberda, Aksout and Marukha a correlation analysis
was conducted.

When studying relationships in two-dimensional
data, one should always remember the following: de-
scription and consideration of relationships. This is the
most common goal, providing basic information, with
which one can better understand the true structure of
the world around us. When studying a complex system,
it is very important to know which factors most closely
interact with each other, and which factors generally
affect each other. Availability of such information can
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Fig. 29. Graphic representation of monthly precipitation amounts TS.

Fig. 30. Graphic representation of Kuban River monthly runoffs TS.

Fig. 31. Graphic representation of the normalized values of monthly precipitation TS.

be of considerable assistance in long-term planning
and making other strategic decisions [7].

It is interesting to investigate the dependence of the
behavior of mountain rivers under meteorological fac-

tors in June. Table 2.5 presents the values of the corre-
lation coefficients.

In the context of the above, it seems expedient to
construct TS of monthly precipitation and its com-
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Fig. 32. Graphic representation of the normalized of the Kuban River monthly runoffs TS.

Fig. 33. TS histogram – the sum of the normalized total precipitation TS Kuban River monthly runoffs TS.

Fig. 34. Statistical parameters and the percentage of the weight of the “head” to the weight of the “tail” of TS X (monthly amounts of precipitation
TS).

Fig. 35. Statistical parameters and the percentage of the weight of the “head” to the weight of the “tail” of TS Y (Kuban River monthly runoffs
TS).
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Fig. 36. Statistical parameters and the percentage of the weight of the “head” to the weight of the “tail” of TS BP Z (the sum of the normalized
values of monthly precipitation TS and Kuban River monthly runoffs TS).

Fig. 37. Range Xmax �Xmin for TS X (monthly precipitation TS).

Fig. 38. Range Ymax � Ymin for TS Y (Kuban River monthly runoffs TS).

parative analysis, together with Kuban mountain river
runoffs TS. Graphical representations of these TSs are
presented in Figs 29 and 30, respectively.

In order to achieve comparability in units of mea-
surement, both TS are normalized on the basis of the
rule the height of the maximum level is taken as 100%

value in both TS. Normalized values are obtained by
dividing the numerical value of the considered level by
the maximum value. A graphical representation of the
normalized amounts of precipitation and runoff vol-
umes is presented in Figs 31 and 32. Let’s introduce
the following notation, corresponding to this graphic

AU
TH

O
R 

CO
PY



E. Popova et al. / Methods of nonlinear dynamics as a hybrid tool for predictive analysis and research of risk-extreme levels 239

Fig. 39. Range Zmax � Zmin for TS Z (sum of normalized values of monthly precipitation TS and Kuban River monthly runoffs TS).

Fig. 40. Phase portrait of the TS Z (sum of normalized values of
monthly precipitation TS and Kuban River monthly runoffs TS from
1969 to 2003).

representation:

X = < xi >, i = 1, 2, . . . , n, (9)

Y = < yi >, i = 1, 2, . . . , n. (10)

To assess the risk of the months of the year in rela-
tion to potential flooding, let’s consider the amount of
TS (9) and TS (10):

Z = X + Y = zi, i = 1, 2, . . . , n, (11)

where zi = xi + yi.
Graphical representation of TS (11) is presented in

Fig. 33.
For clarity, Figs 34–36 present the statistical param-

eters of TS X, Y and Z.
It is easy to see that each of the considered TS has

a “heavy tail” [5], with the most “heavy tail” � 91%
for TS X – monthly precipitation TS (see Fig. 34). In
fact, to the same extent, the “heavy” tail is for TS Z
(see Fig. 36).

Table 4
Dimensions of TS Z quasi-cycles

Ck C1 C2 C3 C4 C5 C6

Lk 6 4 5 6 5 7

It is of interest to investigate in the data of TS X,
Y and Z the behavior of the range of variability from
the highest value (precipitation in TS X and maximum
runoffs in TS Y) to the minimum received during the
year (12 months). Figures 37–39 show graphic images
of oscillations.

Fundamentally possible achievement of threshold
values and determination of the of local extremes’
measure of remoteness from this threshold value is
the task of ensuring the economic security of the re-
gion. Interval from which the danger begins is expertly
set. Using interval analysis, one can establish that the
threshold values are located above the level of 1.5 in
TS Z = X + Y .

It is of interest to investigate phase portraits of range
Zmax � Zmin TS.

The dimensions Lk of six quasicycles are presented
in Table 3.

The memory depth of the considered TS Z, repre-
sented by a fuzzy set of quasi-cycles’ dimensions (see
Table 3), is consistent with the fact of the presence of
an eleven-year solar cycle. For visualization, Figure 42
presents a graphical representation of the dimensions
of TS Z quasi-cycles.

Presented above numerical values of the results ob-
tained, related primarily to the presence and weight
of “heavy tails”, suggest a high degree of “riskiness”
of the considered mountain Kuban river runoffs in the
context of the region’s economic security.
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Fig. 41. TS quasi-cycles, isolated from the phase portrait of Fig. 40.

Fig. 42. Frequency of quasi-cycles of dimensions 4, 5, 6 and 7 for
TS Z.

4. Conclusions

As the main results of the research, let’s note the
following points:

– The research was conducted on the basis of non-
linear dynamics methods. Foresight analysis tools
are used – fractal time series analysis and phase
analysis. The results obtained in the course of the
research using these methods not only correlate,
but also complement each other.

– The established fact of the presence of long-term
memory in the time series of the mountain rivers’
runoffs gives basis to the development of a sys-
tem for a short- and medium-term forecast of the
runoffs of these mountain rivers. The system of
short- and medium-term forecast is planned to be
developed on the mathematical apparatus of the
theory of cellular automaton and the theory of
fuzzy sets [3]. Moreover, the amount of memory
used by the cellular automaton and, ultimately,

the complexity of the computational prediction
scheme significantly depend on the memory depth
of the predicted TS. The upper estimate of the
depth of memory of the considered TS is justified
and clearly calculated.

– R/S-analysis [6] is a tool for identifying cycles,
both periodic and non-periodic. Based on the re-
sults of the calculations, new additional possibili-
ties of the “algorithm of sequential R/S-analysis”
developed by the authors compared to the “Hurst
norm range algorithm” for detecting cycles are
shown.

– The method of sequential R/S-analysis presented
by the authors can be used to obtain estimates
of the fractal characteristics of the considered TS
limited segment. This is a distinctive feature, be-
cause to obtain sufficiently accurate estimates of
the fractal characteristics of TS using the Hurst
normed span algorithm, series of several thousand
or even about ten thousand observations are re-
quired.

– A detailed step-by-step representation of the se-
quential R/S-analysis algorithm and a computa-
tional experiment on real data are in fact the ver-
ification of this algorithm. Identification of the
presence of strict cyclicity is important, both in
terms of pre-forecast analysis, and in terms of
building predictive models.

– Detection of long-term memory in mountain river
runoffs by an objective substantiation of the
fundamental possibility of building a predictive
model, in the course of which all essential fac-
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tors (for example, the presence of cycles of the
form Eq. (4)), which determine the presence of
this memory, are taken into account. Given the
current basic position of the decomposition anal-
ysis of time series of 4 components: a) the trend,
b) the cyclical component, c) the seasonal fluctu-
ation, d) the irregular or residual component, we
note that the identified cyclical component con-
tributes very significant information to make an
accurate forecast.

– The author’s approach which differs from the
classical methods of forecasting with the imple-
mentation of the trend accounting is proposed
(evolution of the centers and dimensions of the
dimensional rectangles), as well as with the new
tools (phase portraits) to identify the cyclic com-
ponent of the considered TS.

– Investigative relationships between weather con-
ditions (such as: average air temperature, maxi-
mum air temperature, minimum air temperature,
average air humidity, sunshine duration, amount
of precipitation per day) and the behavior dy-
namics of monthly runoffs of mountain rivers:
Kuban, Bolshoi Zelenchuk, Teberda, Aksaut and
Marukha were revealed. Description and consid-
eration of the relationship is the most common
goal, providing basic information, with which one
can better understand the true structure of the
world around us. When studying a complex sys-
tem, it is very important to know which factors
most closely interact with each other, and which
factors generally affect each other. Knowledge
of this information provides significant assistance
in long-term planning and other strategic deci-
sions [7].

Thus, in this work methodically and step by step is
presented the first part of the author’s research – pre-
dictive analysis (also in [13]). This research is basic
for the next step – to obtain an accurate forecast of the
considered mountain river Kuban runoffs, which has
a high degree of “riskiness” in the context of the re-
gion’s economic security. Using developed models and
methods as a base, authors plan to create a DSS, as an
integral part of the solution package within activities
carried out in flood-hazardous areas.
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