
Yabi - Yet Another Business
Inteligence

Vitório Miguel Prieto Cilia

Dissertação apresentada à Escola Superior de Tecnologia e Gestão de Bragança para

obtenção do Grau de Mestre em Sistemas de Informação. No âmbito da dupla

diplomanção com a Universidade Tecnológica Federal do Paraná.

Trabalho orientado por:

Prof. Albano Alves

Prof. Lúcio Valentin

Bragança

2018-2019



ii



Dedication

I want to dedicate this work to my parents, who always offered their support and guided

me to what is good and right.

iii



Acknowledgment

Firstly, I would like to thank my friends Daniel Costa Valério, Henrique Pinheiro and

Sávio Camacam. Together we formed the HEDANVISA group, not only sharing technical

knowledge but also forming long-lasting relations.

I would like to also thank both institutions, Federal University of Technology - Paraná

(UTFPR) and Instituto Politécnico de Bragança (IPB) for the opportunity of realizing

my masters in the scope of a double degree program.

Special thanks Professor Marcos Silvano for enabling Computer Science students of

UTFPR, Campo Mourão to apply for this program and to Bruno Mendes for his clarifying

explanations in regards to writing this document.

iv



Resumo

No contexto do Instituto Politécnico de Bragança durante o período de matrículas, o

departamento de serviços informáticos é frequentemente interrompido em busca de ques-

tionamentos sobre as informações contidas nas bases de dados da instituição.

Para amenizar isso, o Yabi foi desenvolvido. Esta é uma aplicação Web construida

com uma interface de usuário feita no Framework Angular e uma aplicação remota que

implementa as funcionalidades necessárias e é escrita em Java com o framework Spring.

De maneira geral ela fornece um portal que possibilita os colaboradoes da instituição a ter

acesso as informações contidas nas bases de dados sem que seja necessário o conhecimento

técnico.

Por fim, considera-se que a aplicação final atende aos requisitos de maneira suficiente

para ser considerada útil e ao mesmo tempo fornece uma plataforma para desenvolvimen-

tos futuros.

Palavras-chave: plataforma web, business intelligence, angular, spring boot.

v



Abstract

In the context of Polytechnical Institute of Bragança during student registration time,

the information technology department is found to be frequently interrupted in order to

attend inquiries regarding the information stored in their databases.

To mitigate this, Yabi was developed. It is a Web application built with Angular

Framework for the user interface and Java with Spring for the functionalities. In general

it provides a portal in which the institution’s employees can access the information found

in its databases without the need to have technical knowledge.

The developed application is found to attend most of the elicited requirements to be

considered useful and offers a foundation for future improvements.

Keywords: web platform, business intelligence, angular, spring boot.

vi



Contents

1 Introduction 1

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Textual Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Concepts and Technologies 5

2.1 Front-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 HTML & CSS & JavaScript . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Typescript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 SASS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.4 Angular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.5 Angular Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.6 Sb-Admin-Material . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Back-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Stateless Web Application . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 HTTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.4 Spring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.5 MariaDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.6 Apache Directory Studio . . . . . . . . . . . . . . . . . . . . . . . . 21

vii



2.3 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Apache NetBeans . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Maven . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.3 Lombok . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.4 Visual Studio Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.5 Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.6 Angular CLI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.7 Firefox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.8 Webpack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.9 Postman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Project 29

3.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Conceptual Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Project Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Implementation and Results 35

4.1 Front-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Interfacing with Spring Repository . . . . . . . . . . . . . . . . . . 36

4.1.2 Component Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.3 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.4 Generic Form Control Builder . . . . . . . . . . . . . . . . . . . . . 50

4.1.5 Temporal Caching Repository . . . . . . . . . . . . . . . . . . . . . 51

4.1.6 Error Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.7 authenticationInterceptor . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.8 apiEndpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.9 Shared Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.10 Security Concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

viii



4.2 Back-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.2 Spring Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.3 Custom Controllers & View Models . . . . . . . . . . . . . . . . . . 61

4.2.4 Spring Repositories . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.5 Multi-Database Support . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Development Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.1 Directory Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.2 Local Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.3 Database Initializer . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.4 Postman Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Conclusion 69

6 Future Work 71

6.1 Code Re-structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.1.1 Resource Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.1.2 PermissionTree’s cyclic reference . . . . . . . . . . . . . . . . . . . . 72

6.2 Bulk information manager . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3 Testing and User Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.4 Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A Proposta Original do Projeto A1

A.1 Proposta no 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A1

ix



List of Figures

2.1 Login Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Dashboard with collapsed side menu . . . . . . . . . . . . . . . . . . . . . 10

2.3 Dashboard with visible side menu . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 User use case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Administrator use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Yabi Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Conceptual Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Class diagram that represents the structure of a Spring Repository response 39

4.2 Listing of all registered Query for a given User and Role information . . . 44

4.3 Dialog for assigning a new Permission to a User . . . . . . . . . . . . . . 45

4.4 Dialog for running a Query . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Dialog for running a Query after it was executed . . . . . . . . . . . . . . . 47

4.6 Dialog for creating a new Permission . . . . . . . . . . . . . . . . . . . . . 48

4.7 Dialog for creating a new Directory . . . . . . . . . . . . . . . . . . . . . 49

4.8 Dialog for editing an existing Directory . . . . . . . . . . . . . . . . . . . 50

4.9 Login screen with a authentication error caught by the SnackBarErrorHandler 52

4.10 Authentication Sequence Diagram . . . . . . . . . . . . . . . . . . . . . . . 58

4.11 Directory structure and the properties of user professor . . . . . . . . . . 66

x



Chapter 1

Introduction

As companies and institutions develop, they tend to implement and depend on digital

systems ibm. Generally speaking, these solutions involve the deployment of a persistence

mechanism such as a relational database or a directory service, Relational Database Man-

agement System (RDBMS) being the most common apachedp. Once made available,

they are frequently updated with new information that, if not properly processed and

made understandable, does not generate any meaningful insights.

It is not a hard task to give access to the raw information contained within a RDBMS

but because of how it is usually split in logical relations to avoid unnecessary data repe-

tition vaquinha, technical knowledge is required to harness its potential into a tangible

understanding that can help in the decision-making process.

A good system would enable anyone, expert in computational systems or not, to

correlate and extract any information held in their institution. However such system would

have to deal with many corner cases and thus an approximation that is able to handle

the most frequent cases is useful even if it requires some amount of manual maintenance.

1



1.1 Context

With more than 8,500 students and professors, IPB is composed of 5 schools that span

diverse fields of study including but not limited to Education, Administration, Commu-

nication, Health, Tourism, Agrarian and Engineering.

Towards the beginning and the end of the semester, during student registration time,

professors often need some insights on their educational affairs. To do so, they reach out

to Information Technology (IT) department inquiring about a specific need, the technician

then stop his current task, write a Structured Query Language (SQL) script, run it on

the institution’s RDBMS and email back the results as a spreadsheet file.

Over time the technician has built a list of about 40 common requests and their

respective scripts so that this process takes less of his time, enabling him to continue

developing IPB’s in-house software. However, interruptions still happen often enough

that an automated system is still needed.

1.2 Objective

The objective of this project is to develop Yet Another Business Intelligence (Yabi) a

web platform that exposes SQL scripts to IPB’s employees in a convenient way that does

not require expert knowledge of the underlying system architecture and eases the IT

department workload during the institution’s critical moments.

Such platform will be maintained by an administrator that is responsible for registering

the desired SQL scripts and based on their role in the institution, professors and other

employees are presented to a list of queries coupled with meaningful title and description

in which they can run, see the resulting table and download a spreadsheet file.

Following is a translation of the original proposal found in Appendix A:

Proposal no 2

To architect and construct from scratch a “business intelligence” system with

emphasis on education management. Nowadays we know how valuable and

2



important information is for those who manage institutions and the impact

that data analysis tools have in the decision-making process. At the time

writing, IPB is already provided of a centralized database through which a

large number of SQL of many diverse purposes queries are run. The intention

is to provide, based on certain criteria, access to information without having

to manually write queries that are often more than 30 lines long.

The proposed system would be fed with “clusters” of queries and provide a

way to easily insert and validate individual or group of queries depending on

the currently logged-in user’s profile.

Keywords are reuse and automatic parameterization of queries that are sup-

ported by an automatic web search interface based on the current query.

All in all, it is about deploying a intelligent search system that is able to adapt

to the necessities and profile of each user. The end result will always be tables

of data that can be exported to many different formats

1.3 Textual Conventions

Throughout this document, some words and terms were made to look different from

standard text to help convey the context and indicate the class in which the subject is

part of.

Typewriter This is used to reference pieces of code such as data types, class names,

method invocations that are written with it’s class name and abstract parts of a

system. E.g. Authentication, SqlQueryController, DatabaseReader.runQuery,

varchar.

Italic Refers to function and method names. E.g. authenticate, runQuery.

Bold Indicates resource paths. E.g. /user, /PermissionTrees, /runQuery/{id}.

Small Capital Indicates HTTP verbs. E.g. delete, get.

3



1.4 Document Structure

This document is divided in six chapters. Chapter 2 introduces the tools and concepts

employed in this application, grouping them by whether they were used in the front-end,

back-end or during development.

With an analysis of this project’s proposal and the context it supposed to be used,

Chapter 3 elicits requirements, use cases and entities that are found to compose the

system. Chapter 4 then goes through the implementation of those entities and use cases

into front-end and back-end applications alongside the tools used to mimic the production

environment locally.

Chapter 5 concludes this document with an overview of what was done and comments

its current state and lastly, Chapter 6 presents a few ways in which this project could be

further developed.

4



Chapter 2

Concepts and Technologies

Throughout the development of this project quite a few tools and technologies were em-

ployed. Therefore this chapter is going to introduce each one of them in a way that relates

to their usage in this project.

Section 2.1 is focused in defining the technologies that were used to write a Web ap-

plication that is able to make use of remote Application Programming Interface (API)s

and dynamically adjust its layout according to the information that is being shown. Sec-

tion 2.2 introduces the technologies that are related to back-end services and remote APIs

that expose the real functionalities of a system. Lastly Section 2.3 describes the tools used

to write, debug and build this project.

2.1 Front-end

When referring to an Web application, the Front-end is usually what is perceived by the

users of a system. It is a very important topic when it comes to user acceptance as it is

concerned with presenting the information, indicating the current state of the system and

what actions the user is able to take.

The technologies that follow are for the most part, specific to this kind of task and are

concerned with bridging the gap between the functions the system provides and the user

5



by specifying how a system will be visually arranged and how the functionalities will be

interacted with.

2.1.1 HTML & CSS & JavaScript

The Hypertext Markup Language (HTML), the “WorldWideWeb’s core markup language

” html is a declarative language through which the vast majority of online content is

structured, shared and accessed. It is a specification of elements that can be used to

structure the content of web pages, such as headings, images, links to other documents,

buttons and forms htmlcss.

Cascading Style Sheet (CSS) is another declarative language that pairs with HTML.

Its purpose is to describe how the elements present in a web page are presented. Some

definitions handle colors, fonts, element arranging, visibility, interaction and many others

aspects htmlcss.

JavaScript is a interpreted general-purpose scripting language that was initially de-

signed to run on Web pages but now it found its way in many other areasjs. Its spec-

ification does not define much of standard functions found in other languages such as

input/output and file access, instead each host environment expose JavaScript-accessible

objects that are tied to their specific functionalities. Since 1997 the specification is regu-

lated by European Computer Manufacturers Association (ECMA) and thus the language

is formally known as ECMAScript ecma.

Together, these three technologies compose what is known as HTML5. HTML being

the document structure in the sense of logically grouping elements, CSS defining the

appearance with colors, sizes and positions, JavaScript enabling interactions and dynamic

content.

6



2.1.2 Typescript

“A super-set of JavaScript that compiles to plain JavaScript ” tswebsite, Typescript is a

language maintained by Microsoft and developed by Anders Hejlsberg that started devel-

opment in 2012 with the goal of improving the quality and manageability of JavaScript

code bases with features such as static typing and object-orientated qualities tsrevealed.

Ultimately, Typescript must be compiled to JavaScript before being executed and for

compatibility reasons, the default JavaScript target is version EcmaScript (ES) version 3

but newer back-ends are also available.

2.1.3 SASS

Syntactically Awesome Style Sheets (SASS) is a augmentation of CSS and its main premise

is to make large style definitions more manageable by implementing features that are

similar to an object-oriented language such as with loops, variables, functions and rule

nesting sass.

SASS files are processed into plain CSS so that it can be interpreted by the browser. In

this project, the template described in Section 2.1.6 was developed using this preprocessor.

2.1.4 Angular

Angular is a front-end web framework that started its life as a side project at Google that

has proved itself as a valuable tool for modern application development. The core idea is

that HTML faults when it comes to declare dynamic content angularjs and, to remediate

this, a new middle-ware is introduced between the rendered page and the underling code

so that all the elements and events in the Document Object Model (DOM) are captured

and made available to Angular Components, which in turn is able to react to them. This

binding goes both ways, not only the DOM can trigger Angular but also Angular can

issue a page re-render to reflect its new state.

The first version of Angular is now called AngularJs and can be included in a HTML

document just like any other JavaScript library. This version proved it’s value but was

7



considered confusing and some times slow. Since then it entered Long Term Support

(LTS) stage and no features are added. Angular version 2 and newer are a Typescript

re-write that includes some new features that aid in the architecture and development of

scalable and reusable code, namely, the introduction of Components, Router, Ahead-of-

Time compilation and Observables angular.

An overview of key Angular elements follows:

Module Internally referenced as a NgModule.

These are the basic elements through which an Angular application is structuredangularmodule.

They declare the elements that will be provided to its child Modules, Services and

Components.

Component Binds a Template to behavior and data.

Components are the elements that directly interact with the information perceived

by an user. They typically rely on Services to acquire information and on Modules

to fulfill their dependencies.

Router A special kind of service that is responsible for managing the navigation through

an application, mapping Universal Resource Locator (URL)s to Components.

Service Akin to a library.

A Service has methods that can be used by multiple Components and other Services

to provide some functionality. They are commonly implemented to act as the means

of interaction to a remote API.

Template An augmented HTML file that is bound to a Component.

Effectively, they are the medium through which information is displayed and inter-

acted with. Among other things, Templates can have elements that are dependent

of some expression, values that are provided by a Component and events that notify

the underlying Component.

The relationship between such elements is that a Component may be dependent on

Services. Components and Templates together form what is called a View. Views and

8



Routers are exposed to the application under a Module. All Modules are located under

a single root Module. Other important features include the dependency injection mecha-

nism, template directives and directional data binding. Through these features Angular

aims to be a highly modular framework capable of fast development.

2.1.5 Angular Material

Material Design is a set of guidelines and principles made by Google for designing User

Interface (UI) that aims to bring natural and consistent interactions between users and

computers. The guiding principle is based on paper and ink but it is not limited to what

they can do in the physical world materialdesign.

Angular Material angularmaterial is the Google implementation of Angular Com-

ponents such as buttons, text input and separators that follow the Material Design guide-

lines, providing a consistent look across devices and reducing the amount of effort required

to design a consistent UI with common behaviors.

2.1.6 Sb-Admin-Material

To accelerate the development speed and have faster working prototypes, many web-based

projects begin from a ready-made template. This saves time by keeping developers from

re-writing common pieces of code commonly referred as “boilerplate”.

SB Angular Material is an Angular re-write of a famous Bootstrap template called

SB Admin angulartemplate. As the name implies this template tries to assess the need

for an administrator panel, and in doing so it provides a set of ready-made components

such as a login component as seen in Figure 2.1; the main screen with a top navigation

and a collapsible side navigation components, seen in Figure 2.2 and 2.3. This template

already encompass some amount of responsive design by toggling the side navigational

panel to be collapsed depending on the user’s screen width.

What follows is a brief explanation of this template’s folder structure to highlight the

main parts in which it can be extended to fit any particular project.

9



Figure 2.1: Login Screen

Figure 2.2: Dashboard with collapsed side menu

10



Figure 2.3: Dashboard with visible side menu

Project Structure

SB Admin Angular was written with the intention of being modified and extended by

other developers. Because the team did not express any guidelines towards how it should

be altered to accommodate a new project, it is important to give an overview of its file

structure so that the changes made to it during the development of the present project

are better understood.

• root This item is not a folder but the root of the project. In here there are configu-

rations for code linter, JavaScript dependency descriptor and the license statement.

• dist Once the project is built for deployment, this directory will hold all the assets

and optimized code ready for production, including the main index.html file that

bootstraps the whole project.

• e2e This holds the source code for End-to-End test cases, hence the name.

• src This is the heart of this template, a directory that holds all the structure, content

and behavior needed for each application.

11



◦ app The Angular entry-point. Contains the application-wide router module.

Û layout All the components used to compose the navigational elements and

menus and their subsequent pages plus some example pages.

– black-page A inaccessible component that does nothing, probably

unfinished.

– blank-page An example component that renders a white page.

– charts A component that display chart capabilities of the integrated

JavaScript module chartjs1.

– components Omnipresent page elements such as the Topbar and the

collapsible Sidebar.

· topnav The blue navigation top bar as seen on Figure 2.2.

· sidebar The Menu on the left side of the screen as seen on Figure 2.3.

– dashboard The page in which the user is redirected after logging in,

shown in Figure 2.2.

– forms Demonstration of the many different input methods such as

Auto Complete text input, Date picker, Text Area and others.

– grid A demo of the available page subdivisions.

– material-components An example page displaying the main compo-

nents of Angular Material such as buttons, Dialog and Notifications.

– nav Unused component, deprecated by the top bar component.

– tablesA example component displaying Angular Material’s table mech-

anisms.

Û login This is the Login component as see on Figure 2.1

Û shared Code that can be used in a application wide manner so that higher

abstractions and code reuse can be achieved.

◦ assets Static content directory. Images, fonts, and i18n translations.
1Available at https://www.chartjs.org/

12



◦ environments Depending on how the project is run, either in development

or in production mode, the respective configuration file that holds environ-

ment constants is used, allowing developers to use the same reference name

throughout the code base no matter the environment.

◦ styles SASS files that define the look and feel.

After this overview, it is interesting to note the following:

• The Layout folder hosts, for the most part, Components and Modules that are listed

in the sidebar.

• There are some unused components that were probably left over from design changes

and were not deleted, which is the case of black-page and the nav component.

• There are many examples that proved as a handy reference during development,

namely the forms and material-components.

2.2 Back-end

In a computer system, the back-end is concerned with providing functions that are re-

quired by an application, therefore they often interact with databases and perform data

processing routines. The aggregate of these functions is also known as API. In the context

of Web applications, the back-end is a separate program that runs on a remote machine

and provide its functions through a set of URL addresses and Hypertext Transfer Protocol

(HTTP) methods that together are referenced as a Web API.

This section describes the tools and concepts that were used to implement the functions

that attend this application’s requirements and the Web server that exposes them through

an Web API.

13



2.2.1 Stateless Web Application

This is an architectural design that can applied when a system is composed from separate

but communicating pieces. In this approach, messages exchanged between the logical

entities contain all the necessary information for an action to be executed.

Often times web applications make use of session cookies or some similar mechanism

to help the server-side to locate the current state for each specific user, in other words,

the server has in its memory information that transcends requests. This is what is known

as a state-full web application.

On a stateless model, each request contains all the information the server needs to

generate a reply. When compared to a state-full application, this model requires more

bandwidth as contextual information is added to every request, however it can mitigated

with resource caching solutions.

2.2.2 HTTP

This is a stateless, general purpose, application-level protocol designed to be easily ex-

tendable. There are two roles that are involved during a HTTP communication, that of

a client and a that of a server. The former initiates the connection and sends a request

and the latter replies to the request and terminates the connection.

HTTP requests are composed of a textual structure that follows a Backus-Naur Form

(BNF) with elements that indicate to the server what must be done. From its many

elements, the main ones used in this document are the methods and Universal Resource

Identifier (URI).

URI is a way to uniquely name a resource found in a registered name space. One of its

applications is in the widely known URL, which is an URI that refers to objects accessible

in the web.

14



HTTP methods, also known as verbs, are the indicatives of the action that is to be

done on a resource. HTTP 1.1 Request For Comments (RFC) http proposes eight stan-

dard options, namely, options, get, head, post, put, delete, trace and connect.

Considered notorious for this document are get, post and delete.

The get method purpose is to retrieve the information identified by the request’s

URI. post is meant to send a new information to the server through the request itself.

Lastly the delete request method expresses to the server that the resource is to be made

inaccessible.

2.2.3 Java

Java is an Object-Oriented programming language firstly developed by James Gosling at

Sun Microsystems. It is statically and explicitly typed and gets compiled to a machine-

independent byte code that is then interpreted by the Java Virtual Machine (JVM) java.

Because of its high adoption, many concepts were developed to accommodate its de-

ficiencies and improve the development cycle. In fact, because of the recurring solutions

for recurring situations in software design, a group of skilled professionals got together to

discuss these patterns and wrote a book entitled “Design Patterns: Elements of Reusable

Object-Oriented Software” patterns, bringing common Object-Oriented solutions for re-

curring problems. Being an Object-Oriented language, Java programs often make use of

such patterns, allegedly bringing a faster development model with code that is stable.

View Model

The ViewModel is a piece of a bigger pattern called Model View ViewlModel (MVVM)

created by John Gossman. It addresses the scenario in which a model as described in the

Model View Controller (MVC) pattern can’t be completely mapped to a View viewmodel,

that is, it has attributes that are part of a higher abstraction. This makes it sensible to

specify another model that partially reflects the original model but is able to be completely

bound to user interface elements.

15



During the implementation of this project, the ViewModel pattern was used outside

of the MVVM pattern, however the goal of decoupling code remained the same. In

some cases, ViewModel classes were implemented for classes that can not have all of

its attributes serialized into a View or for those who must expose different attributes

depending on the user who is requesting it.

2.2.4 Spring

Developed by Pivotal Software in 2002, the Spring Framework provides most of the

“plumbing” necessary for fast development and deployment of enterprise Java applica-

tions springdocs. Some of the main features include: Dependency Injection which is

an Inversion of Control (IoC) mechanism; A set of tools for information access such as

Object-Relational Mapping (ORM) configurations called Spring Data and application-

wide security mechanisms and configurations called Spring Security.

One of the strongest design philosophies of the Spring Framework is the following:

“Provide choice at every level. Spring lets you defer design decisions as late

as possible. For example, you can switch persistence providers through con-

figuration without changing your code. The same is true for many other

infrastructure concerns and integration with third-party APIs.” springdocs

This leads to a feature-centered development model that is able to quickly deliver proto-

types and changes on-demand.

The following elements in this section describe some of its functionalities that were

considered important during development as they dramatically interfere with how the

code is structured and features are implemented.

Dependency Injection

Conceptually, Dependency Injection is an implementation of the IoC principle, abdicating

any given class from managing its own dependencies and leaving them to an overseer object

that knows how to create and inject dependencies to each classinversion.

16



In practical terms, when writing a new class the programmer declare its dependencies

through some mechanism in which the framework is able to reason about. Later in the

run-time when a such dependent class is about to be instantiated, its dependencies are

made available and injected into the new instance.

The key idea is that for the most part an application does not need to know which

specific class is provided as long as it implements some given interface. It is the Frame-

work’s job to choose which class is injected. The programmer, however, is able to tailor

the Framework’s behavior to their liking.

When using Spring, one can express dependencies by declaring them in the class’s

constructor or by annotating an attribute using the Autowired annotationspringdi.

Data

When developing an enterprise-level application, often times there is a need for some sort

of persistence storage, in practice this usually translates to a RDBMS. To reduce the

amount of code needed to manage such interactions, Spring Data module was developed.

Its main interface is called Repository and it decouples entities that are being persisted

from the underlying storage system springdata.

Bridging the gap between the Repository interface and its implementation, two other

interfaces are provided such that when extended, provides the programmer with methods

for interacting with a persistence system in a high level of abstraction. The base one

is called CrudRepository and it provides the basic functionalities for persisting objects

and a Web Representational State Transfer (REST) interface form them. Extending

CrudRepository there is the PagingAndSortingRepository that adds pagination and

sorting on top of it.

The CrudRepository on its own provide the following default methods:

save(Entity) Persists a entity in the data store and returns the saved instance with

updated generated values.

findOne(ID) Retrieve one entity from the data store. If not found, returns null.

17



Listing 2.1: Repository for YabiUser
1 public interface YabiUserRepository extends PagingAndSortingRepository<

YabiUser , Long> {
2 public YabiUser findByName ( St r ing name) ;
3 }

findAll() Retrieve all entities currently stored as a list.

count() Returns a number that represents the amount of entities currently stored.

delete(Entity) Deletes the given entity. Returns nothing.

exists(ID) Checks the data store for the existence of the given primary key value.

As shown in Listing 2.1, a entity-specific repository can be made by declaring a new

interface that extends a Repository and specify the generic types for the entity and the

primary key and lastly declare custom methods following a naming convention. In this

case a PagingAndSortingRepository was defined for YabiUser as YabiUserRepository

with a Long as its primary key and it exposes a new method that retrieves an instance of

YabiUser given it’s username.

These functionalities are made available through the following modules that come

bundled with Spring Data:

• Spring Data Java Database Connectivity (JDBC).

• Spring Data Java Persistence API (JPA).

• Spring Data Lightweight Directory Access Protocol (LDAP).

• Spring Data REST

Hypermedia As The Engine Of Application State (HATEOAS)

It all begins with REST, that according to its creator:

18



“REST is a coordinated set of architectural constraints that attempts to min-

imize latency and network communication, while at the same time maximiz-

ing the independence and scalability of component implementations. This is

achieved by placing constraints on connector semantics, where other styles

have focused on component semantics. REST enables the caching and reuse

of interactions, dynamic substitutability of components, and processing of

actions by intermediaries, in order to meet the needs of an Internet-scale dis-

tributed hypermedia system.” fielding

In other words, this “new” architecture expresses requests and responses as the ap-

plication state itself, transmitting it in a standard client and server approach. There are

a few ways in which the state can be communicated and structured, one of which is the

subject of this section.

HATEOAS is a response structure that enables a client to discover and navigate related

information for that resourcefielding. Mainly it is able to specify what are the related

information, where it is located and how to interact with it. This is accomplished by

including some meta-data in the response in which the client can parse, present to the

user and issue proper requests.

In the context of Spring Framework, CrudRepository and PagingAndSortingRepository

are interfaces that when implemented by Spring, generate API endpoints that follow both

REST and HATEOAS conventions for Create Retrieve Update Delete (CRUD) operations.

Figure 4.1 show a listing generated by SqlQueryRepository, a repository that extends

the PagingAndSortingRepository. Note how it references the associated elements and

available actions with a URL and a representation of the current pager state under the

key page.

19



Security

This spring project aims to provide both authentication and authorization mechanisms

throughout the application’s components by exposing implementable interfaces that en-

able developers to override only the necessary parts for each specific need.

It is important to clarify the distinction between Authentication and Authorization

because they have their respective software counterparts that play important roles in

Spring Framework.

Authentication, by definition means “To prove real or genuine” merriamwebster.

In Spring this translates to a custom extension of the WebSecurityConfigurerAdapter

abstract class that defines how to verify that a given user exists and allows access the

resources. There are a few ways to achieve this with two of the most common being:

JDBC authentication, through which credentials are queried and matched from a RDBMS

and LDAP authentication, that binds to some remote directory for the given user and

password pair. Note that it does not define what may be accessed by such user, only if

the user has access to the system as a whole.

Authorization, “the act of endorsing, or permitting by some recognized authority”merriamwebster.

Similarly to Authentication can also be specified via a custom extension of the interface

WebSecurityConfigurerAdapter, co-existing with the previously mentioned Authenti-

cation mechanism. Authorization mechanisms are usually related to some attribute of

the current authenticated user. In Spring, the GrantedAuthority interface is the central

piece that unifies what the user has access to. Authorization points can be defined at

the global level by the WebSecurityConfigurerAdapter, at the controller level or at the

method level through proper annotations.

Boot

Although Spring Framework is a marvelous piece of software for its malleability and wide

range of available features, for a while it was considered a Configuration Hell because of its

eXtensive Markup Language (XML) configuration that would require a lot of expertise

20



into writing xmlhell1 xmlhell2 xmlhell3 xmlhell4 xmlhell5. In face of this, the

Spring Team came up with Spring Boot, a dependency that can be inserted into a project

and provides sane, pre-configured Spring packages to accelerate development and keep

code organized.

2.2.5 MariaDB

Due to legal concerns Michael Monty Widenius founded Monty Program AB, whose main

product, MariaDB, started as a fork of his previous work, the MySQL RDBMSMAVRO:2014.

Such relational databases allow the user to define data structures and perform operations

such as inserts, retrievals, updates and removals through a language known as SQL

MariaDB is an open source project licensed under the GNU General Public License

(GPL) and its current stable version is 5.2. Its SQL dialect and configuration files are

either identical or very similar to those of MySQL. One of the main goals of MariaDB is

to keep enhancing its performance BARTHOLOMEW:2012

MariaDB server is said to properly execute in many operating systems, namely Mi-

crosoft Windows, Solaris, Linux, MacOS and Free BSD. There are many packages that

handle connections to MariaDB, graphically like DBeaver or phpMyAdmin, textually

like mycli and not further than that, programming language connectors such as Java’s

JDBC MARIADB:2019.

2.2.6 Apache Directory Studio

LDAP in its core is a protocol defined by Internet Engineering Task Force (IETF)’s

RFC number 4511 ldaprfc that defines access to X.500 compliant directory services. A

Directory is an agglomeration of cooperative systems that serve structured information

about the real world x500. Different from a traditional RDBMS, directory services are

expected to be automatically accessed by other interconnected systems, therefore they

are better optimized for frequent queries and fewer updates.

21



Alex Karasulu, founder of the Apache Directory Project, was right when he stated

that the need for interconnected systems grew alongside the expansion of the Internet but

unlike his expectation, Directory services were replaced with RDBMS systems that don’t

exactly address the same goals and further complicate interconnected systemsapachedp.

Given this situation, his project have the goal to modernize the tooling and function-

alities of Directory systems and in doing so, two main sub-projects were created: Apache

Directory Service apachedservice, a modern, LDAPv3 compatible, Java based imple-

mentation of a Directory Service that introduces triggers, stored procedures, view and

queues and Apache Directory Studio apacheds, a complete LDAP tool developed as an

Eclipse Rich Client Platform (RCP) extension that offers a more friendly user experience

with visual elements for LDAP Data Interchange Format (LDIF) editor, tree explorer and

permission management.

2.3 Development

This section cover the tools used during the development phase of this project. The tools in

question do not only satisfy the coding needs but also mimics the production environment

through which the application interacts with so that no sensitive information was touched

by a potentially insecure, unfinished application.

In general, there was a need to comfortably edit Java and Angular projects, with code

completion and refactoring support; a project manager that automatically downloads

dependencies; a container tool to quickly deploy an environment with databases and

directory services without the need of editing non-functional configurations and lastly, a

browser to access the system as the end-user would.

2.3.1 Apache NetBeans

One of the Duke’s Choice Award winner dukechoice, NetBeans is a general-purpose,

cross-platform Integrated Development Environment (IDE) mainly focused for Java de-

velopment with maximum productivity. In 2016 NetBeans was added to the Apache

22



Incubator so that it could be further developed by the community incubation. As of

2019 it became one of Apache’s Top Level project graduation and is expected to attract

an even bigger community.

Because Java was the main focus of NetBeans during its first few years, support

for the language is very broad in features. Developers can easily operate code with

context-sensitive refactoring; mark line, method, expression and class breakpoints; step

through paused code; automatic JavaDoc generation; semantic code completion and

more nbassistance.

Through its module system, support for other languages and resources were intro-

duced, namely source code management with Git, Mercurial and Subversion, database

management with support for viewing data and running SQL queries, unit testing, PHP,

HTML, JavaScript and CSS nettutorials.

2.3.2 Maven

Maven is a Build System mainly used for Java applications, that is: Through the pom.xml

file, developers declare their project’s attributes and dependencies file and if needed, tweak

the building process; from there on, Maven is capable of downloading dependencies from a

remote repository, compiling them if necessary and generate an executable Java ARchive

(JAR) file or loadable library maven.

The project goal is to unify the project structure so that there is less time spent by

the developer to understand how a given application code is arranged and to centralize

common project actions such as the previously mentioned dependency resolution, run unit

and integration tests and generate packages that are able to be distributed mavenintro.

2.3.3 Lombok

This plugin offers an annotation-based code-scaffolding tool for Java definitions. Given

the right annotations, common methods like getters, setters and no attribute constructor

23



are automatically generated in build or compile-time lombok. This tool consists of a two-

part system that includes the integration with the compiler/build-system and another one

that interacts with the developer’s IDE so that the completion system is able to recognize

the implicitly generated methods.

Some of the notable annotations include:

• @Data, useful for Plain Old Java Object (POJO) classes, this annotation generates

getters, setters, a string converter and equality methods.

• @NoArgsConstructor and @AllArgsConstructor, as the name implies, one gen-

erates a constructor that takes no arguments and the other, a constructor that

generates all arguments.

At first glance this might not be a necessary tool given that most IDEs often have

support for a similar form of code refactoring but the key difference is that lombok does

not clutter the classes with generated implementation therefore it reduces the project’s

Line of Code (LoC) count.

2.3.4 Visual Studio Code

One of Microsoft’s take on open-source, this code editor gained traction among developers

as one of the most used code editors vscodesurvey. Like any other modern code editor,

it offers syntax highlight; auto-completion, through Microsoft’s IntelliSense integration

and lastly a plugin system that enables users to add custom behavior and further develop

the editor’s support for programming languages vscode.

One of the acclaimed features that arose with Visual Studio Code was the open source

specification of Language Server Protocol (LSP) lsplaunch. This specification aims to

define a communication protocol that is used between a code editor, referred as a LSP

client and a editor-independent program referred as a LSP server, that takes care of

features such as code completion, highlight, error detection, contextual variable renaming

and jumping to definition lspspec. This decoupling reduces the amount of code needed

24



to develop a highly capable editor because language-dependent support is now transferred

to a LSP server.

2.3.5 Docker

Akin to a Virtual Machine (VM), containers provides a way to have a different computing

environment than the active running in the hardware. The key difference is that instead

of emulating the whole computing stack, from processor to applicaion, a container system

shares the core host resources with its guests and thus is generally less resource-hungry.

One downside of a container is that the guest operating system must share the same

kernel with the host.

In the other hand, Docker is more than just the sandboxing of processes. It handles

image building through a Dockerfile specification, containers that can be shared among

different machines, an online registry of extendable containers and command line interface

that downloads, builds and manages containers dockerfag.

Core Docker definitions are brought up dockeroverview:

Dockerfile A file that declares the steps taken to build an Image.

Image A blueprint of a container generated once a Dockerfile is built.

Container If an image is a compiled binary, a container is the running process.

Volume Is a shared folder between the host Operating System (OS) and a running

container.

2.3.6 Angular CLI

Angular applications have a basic directory for its components. Often times a directory

contains most of the code for a specific piece of an application, such as a Component

definition, a Service, a Template, a Style definition, a Class definition and lastly, these

related pieces are then declared in a Module definition.

25



Managing this volume of files and relations can sometimes lead to confusion. Angular

Command Line Interface (CLI) was developed to make this task more manageable. With

it a developer can quickly initialize a new application skeleton, generate Components and

Modules, build a deployment-ready applicaion and run a testing server that re-compile

with code changes angularcli.

2.3.7 Firefox

From the downfall of Netscape browser and the release of its source code, the Mozilla

project started with the mission to ensure the Internet to be a global public place, open

and accessible to all firemission. Its main product is the open source web browser,

Firefox.

Firefox comes bundled with plenty of tools that facilitate web development. What

follows is a description of the tools most frequently used during the development of this

application.

Source Mapping Is the ability to map some generated code back to its source. Some

web frameworks like Angular 2.1.4 generate applications that are not developed in

JavaScript itself but compiled to JavaScript in order to be executed srcmapping.

In the beginning this led to great confusion because the browser’s built-in debugger

would display not the original source but the generated code.

Debugger Support for breakpoints, conditional breakpoints, expression stepping and

variable lookup, which is highly useful when coupled with the previous element dbgmodernweb.

Network Monitor Often times it is needed to inspect the outgoing requests and their re-

sponses. The integrated monitor is able to expose all elements of the communication

exchange and measure the different attributes of network operations networkmon.

Storage Inspector Provides access to the information storage that is managed by the

browser for each page storageinspector, namely:

26



• Cache Storage

• Cookies

• Indexed Database (DB)

• Local Storage

• Session Storage

Console Enables the input of expressions in the page context and output information

associated to the current page, including explicit calls for the console.log function.

Page Inspector Examine the page’s HTML structure and CSS rules inspector. De-

velopers can quickly experiment new possibilities by temporarily altering CSS rules

and the page’s structure.

2.3.8 Webpack

With the growing complexity of web applications, websites got slower and development,

trickier. Webpack was developed to generate an optimized, ready to run, package that

can be deployed in production webpack. Such packages are not meant for code only, they

may contain images, CSS rules and anything else. It offers an API that can transform

the contents of a package before it is bundled, for example, Typescript sources and its

compiled counterpart or extracting inline CSS from a HTML document into a separate

file.

In the context of Firefox’s debugger and angular 2+ applications, when serving the

application using Angular CLI, discussed in Section 2.3.6, it automatically bundles Type-

script source code so that it can be instrumented and debugged inside the browser by

accessing the Webpack element under the debugging tab.

2.3.9 Postman

As programs grew larger and were split into smaller pieces, it is now a common practice to

have a API that concentrate on the business logic and a Graphical User Interface (GUI)s

27



that consume them. Such separation of concerns got even more pronounced when Web

systems popularized, web browsers acting as GUI and interacting with remote HTTP

servers as their source of information.

As with any software, APIs need to be tested and validated in order to provide a

good quality product. In this context Postman was developed to be a Web API suite,

offering a nice user interface through which developers can not only send, receive and

analyze HTTP requests but also generate and manage documentation so that front-end

and back-end teams have a single source of truth, manage test cases for remote HTTP

APIs, mock APIs that are still under development postman.

2.4 Chapter Conclusion

Divided into three larger groups, front-end, back-end and development, this chapter de-

scribed every tool and technology that was used to implement this application. Front-end

being concerned with the development of a website in which users can access information,

the back-end with an Web API that does the actual work and finally development, with

tools that were used to implement this application.

The next chapter analyzes the proposal and context in order to provide in a high level

the entities and requirements that are considered necessary for this system.

28



Chapter 3

Project

This chapter is focused on explaining how the application was defined in its logical terms

and requirements, therefore it is not concerned with how the application will visually be

presented nor how it should be implemented in code but instead gives an overview of its

functionalities. In sum, there were found eight requirements that can be modeled with

four relating entities.

Section 3.1 describes the process used to elicit the requirements, the requirements

themselves, the use cases that fit them and the entities that model them. Section 3.2

presents an Entity-Relational model that exposes the relations and constraints between

the entities and in Section 3.2.1 there are some considerations about the developed system

design.

3.1 Requirements

The requirement analysis done for this application relied mostly on what could be ab-

stracted from the written proposal and from a few meetings with a subset of the stake-

holders. In this case all evaluated stakeholders are members of IPB. They are professors,

administrative staffs and members of the IT department. The first two being the target

29



audience for this application and the last one being responsible to maintain it by as-

sessing any problems that may arise during application usage and augmenting it as new

requirements appear.

After reading the written proposal alone, the following functional requirements were

elicited:

1. The system should be able to run queries in the database currently employed at the

institution.

2. Users can only run queries in which they have Permission to.

3. Query commands may be longer than 30 lines long.

4. Running a Query yields a table that can be downloaded.

5. No SQL knowledge is needed to execute a Query.

6. The system enables the insertion of new Queries.

7. Queries should be automatically parameterized.

8. Queries should be validated before they are added to the system.

With these requirements in place, a small set of use cases and four entities were found

to attend the functional requirements to an acceptable extent. It is important to note

that because these entities function more as information containers and do not exchange

messages directly, they are better expressed through an Conceptual Model diagram as seen

in Figure 3.4. Following this paragraph is a description of each elicited entity alongside

their purpose and relationship to each other.

Database Where a Query is run.

It is responsible to hold the information that enables the access to a given database,

effectively meeting requirement 1. In the most basic form, a connection requires the

network address and authentication credentials.

30



Query A script that is run in a Database and gather information into a single table.

A SQL script must be issued during a session with a Database. To fulfill require-

ment 5, some meta information such as a title and a description so that the target

audience is able to find the Query that fulfill their needs.

Permission The binding between Users and Queries.

In order to fulfill requirement 2, this entity is responsible to handle the relation

between a User and all the Queries that he may access.

User Represents the person currently logged-in.

It has two purposes, first is to differentiate users according to their roles, either

“Administrator” or “User” so that certain actions are disabled, for example the

Administrative task stated in requirement 6. The second is to be used when filtering

Queries so that requirement 2 is met.

The use case diagram on Figure 3.1 identifies one actor that represents the stakeholders

that are meant to interact with the system for its functionalities, in other words, professors

and administrative staffs. Under this “User” actor, there are two actions that can be

taken. To “Run” a Query and to “Export a Spreadsheet”. The former refers to viewing

the results of running a query in the front-end itself, discarding the retrieved data when

closing the session. The latter aims to provide a way to export the results of running a

query into a spreadsheet file that can be downloaded.

The other use case diagram shown in Figure 3.2 references the actions that can be taken

by the IT department represented here through the Administrator actor. Being in charge

of maintaining the system, most of their use cases revolve around CRUD operations. The

only exception is the “Associate User and Permission” use case that is to grant a user the

privilege to run all queries under a permission.

According the intents of the stakeholders, this system should follow an architecture

similar to that employed in their other projects, culminating to what is shown in Fig-

ure 3.3, with an web front-end that is accessed by both actors to realize their use cases, a

31



User

Run Query

Export Spreadsheet

<<includes>>

Figure 3.1: User use case

Administrator

CRUD Database

CRUD Query

CRUD Permission

Associate User and
Permission

Figure 3.2: Administrator use cases

32



User

Admin

YabiDB

Remote
DB

Directory
Service

Yabi Front-end
Angular Application

Yabi Back-end
Java + Spring

YABI

Figure 3.3: Yabi Overview

back-end service that provides business-specific functionalities and a database system to

persist the system’s own artifacts.

3.2 Conceptual Model

When implementing the entities that were previously evaluated, it was found that some of

the proposed names were reserved to RDBMS and synonyms had to be used in the back-

end, therefore Query became SqlQuery, User became YabiUser and Database became

Directory. Permission is a separate case as it is not reserved by the RDBMS and was

instead named PermissionTree to express its tree-like behavior.

More concretely, the entities relate to themselves as shown in Figure 3.4. In sum, a

Query is associated to a single Database and a single Permission, User on the other hand

may have many Permissions and Permission has a relation to its parent.

3.2.1 Project Details

Due to how the entities and their relations were designed, it is important to note some

peculiarities and restrictions that came with it.

To begin with, Queries are associated to a single Permission and this led the listing

of an User’s Queries to be a unique list. An Administrator can manage all parts that

33



SqlQuery

+ command

+ name

+ description

Directory

+ connectionString

+ name

+ username

+ password

PermissionTree

+ nodePath

+ description

+ parent1

Child of

YabiUser

+ name

+ role

directory

1 Executes in

+ permission1

Belongs to

* *Has

Figure 3.4: Conceptual Model

are within this system’s domain and thus, he cannot change the username as it is bound

to the Directory Service. Every permission has a reference to its parent and the root

Permission has a reference to itself. There are only two roles that any given user may be

assigned to, either Administrator or User.

3.3 Chapter Conclusion

This chapter expressed the scope of the proposed application, how it was logically modeled

and the requirements it was expected to meet.

In order to reduce the amount of interruptions received by the IT department during

student registration periods, this application seeks to give access to the information stored

in IPB’s databases in an organized manner. In sum, two actors were defined, the User

whose main use cases consists of executing a Query and possibly downloading the results

as a spreadsheet file and the Administrator, that associates one User with one or more

Permissions.

The next chapter will be presenting how the entities and functionalities evaluated here

were implemented into a functional application.

34



Chapter 4

Implementation and Results

In this chapter it is explained the implementation details of Yabi as a whole, encompassing

the front-end Angular application in Section 4.1, the Java back-endWeb API in Section 4.2

and lastly in Section 4.3, how some of the development tools were used to mimic the

production environment and assess the back-end.

The resulting application is composed of two minor applications that are executed in

different contexts, one meant to run in the browser the other in a remote server. The first

being a friendly Web interface for the functions implemented in the last.

4.1 Front-end

This section describes the implementation of a website that exposes the functionalities

of the developed system. It is meant to be accessed by all stakeholders and thus, it

adapts to the current logged-in user based on their role. It was written using Angular

Framework and closely models the back-end Web API, mapping its entities and responses

into re-usable classes.

Beginning with Section 4.1.1 that describes the one of the most interesting part of

this chapter that is the interaction with Spring Framework’s Repositories in a generalized

manner that is used in all entities. Section 4.1.2 explains in a generalized manner how

the evaluated entities were translated into Angular Components that attend this system’s

35



requirements, leaving each particular implementation to Section 4.1.3. The remaining

sections discuss the implementation of more specific details that begins with Section 4.1.4

describing a custom helper function for generating forms, Section 4.1.5 showing how tem-

poral caching was implemented, Section 4.1.6 explaining how errors were shown to the

users, Section 4.1.7 describing how the authentication with the back-end was implemented,

Section 4.1.8 explaining how the API endpoints were centralized, Section 4.1.9 showing

how application-wise constants were implemented and Section 4.1.10 analyzing the appli-

cation in regards to possible security flaws.

4.1.1 Interfacing with Spring Repository

Because the back-end is mostly implemented using Spring Repositories, which is an ab-

straction over the persistence of information, many API requests are followed by replies

that have a general but not consistent JavaScript Object Notation (JSON) structure, mak-

ing it time-consuming to use Typescript’s typing capabilities for each and every entity

and their Spring Repository structure.

Therefore the motivation behind the development of this architecture is to enable

developers to make use of Typescript’s typing system when dealing with a Spring Repos-

itory default responses and in doing so their IDE can show auto-completion suggestions,

type-check the code and show possible errors before running the application.

Listing 4.1 show such a response from SqlQueryRepository that list all elements

registered in its database.

Under the key _embedded, line 2, there is a single element whose key is the plural

version of the entity’s name and the value is a list of entities. The _links key exposes

the actions that can be taken from this resource and page provides information about the

current state of the pager.

For most applications, the most interesting part are the elements that make up the

_embedded.sqlQueries array as it composed of serialized definitions of the back-end

models. These definitions also follow the HATEOAS pattern of having their relations

36



listed as URLs. For example, a SqlQuery is related to one Directory, therefore it can be

accessed through the /sqlQueries/99/directory URL, made explicit on line 15 and 16.

The common elements between all the implemented repositories are the pager section

seen on line 37, the relative links to the listing itself seen on line 25 and the previously

stated _embedded key that references the element array. Every one of the listed elements

contain the self URL seen between lines 8 and 11 that references itself.

Although it is very declarative to human beings, this JSON format is not very machine-

friendly due to the ever changing key that references the array of elements. As seen on

line 3, SqlQueryRepository use the key sqlQueries and other repositories follow suit

with DirectoryRepository using the directories key and PermissionTreeRepository

using the permissionTrees key. This approach is not easily modeled in Typescript

because the key being accessed is not known before running the code.

With the previous observations it was possible to abstract every repository response

into three classes, a Repository, an Accessor and an Entity, enabling the implementa-

tion of a generalized repository that is able to interact with Spring’s PagingAndSortingRepository

in a convenient and typed manner. Logically a Repository provides access to an array of

Entity through the key whose name is define through an Accessor. Figure 4.1 provides

an overview of how these entities relate.

Throughout this document the term “hateoas class” refers to a Typescript class that

extends an Entity and a “normal class” or “non-hateoas class” to be the class that

reflects the entities evaluated in the Project section but do not extend Entity. This

happens because when the system is accessed by an user, the requests are served by an

hand-written endpoint that does not comply with the Repository structure and when it

is accessed by an administrator Spring Repositories were used.

Entity Class

This class is typed to accommodate the structure found in the array of elements contained

within a repository response, leaving each specification to extend it and add their own

37



Listing 4.1: SqlQueryRepository HATEOAS response
1 {
2 "_embedded " : {
3 " sq lQue r i e s " : [
4 {
5 "command" : " s e l e c t ␣∗␣ from␣grau ; " ,
6 "name" : " Degrees ␣ o f ␣REBIDES" ,
7 " d e s c r i p t i o n " : " L i s t ␣ s c h o l l ␣ degree s ␣ dec l a r ed ␣ in ␣REBIDES" ,
8 " _l inks " : {
9 " s e l f " : {
10 " h r e f " : " http :// l o c a l h o s t :8080/ sq lQue r i e s /99 "
11 } ,
12 " sqlQuery " : {
13 " h r e f " : " http :// l o c a l h o s t :8080/ sq lQue r i e s /99 "
14 } ,
15 " d i r e c t o r y " : {
16 " h r e f " : " http :// l o c a l h o s t :8080/ sq lQue r i e s /99/ d i r e c t o r y "
17 } ,
18 " permis s ion " : {
19 " h r e f " : " http :// l o c a l h o s t :8080/ sq lQue r i e s /99/ permis s ion "
20 }
21 }
22 }
23 ]
24 } ,
25 " _l inks " : {
26 " s e l f " : {
27 " h r e f " : " http :// l o c a l h o s t :8080/ sq lQue r i e s {?page , s i z e , s o r t } " ,
28 " templated " : true
29 } ,
30 " p r o f i l e " : {
31 " h r e f " : " http :// l o c a l h o s t :8080/ p r o f i l e / sq lQue r i e s "
32 } ,
33 " search " : {
34 " h r e f " : " http :// l o c a l h o s t :8080/ sq lQue r i e s / search "
35 }
36 } ,
37 " page " : {
38 " s i z e " : 20 ,
39 " tota lE lements " : 4 ,
40 " to ta lPages " : 1 ,
41 " number " : 0
42 }
43 }

38



Repository

+ _embedded: Accessor

Href

+ href: string

_links

Accessor

+ accessorName: string
Entity

- _id: number

+ get uri(): string

+ get id(): number

+ set id(number): void

PagingAndSortingRepository

Extends

page

+ size: number

+ totalElements: number

+ totalPages: number

+ number: number

Figure 4.1: Class diagram that represents the structure of a Spring Repository response

fields. It also provides default implementations for id getter and setter and uri getter,

that are useful when converting from hateoas classes to non-hateoas classes.

Accessor Class

To deal with the fact that the array of persisted elements is found under a key whose

name depends on the entity in which the repository provides, the Accessor interface was

written.

In its definition, there is only one field, accessorName, that contains a string which

can be used to reference the array of persisted elements. Even though this approach

functionally works, it compiles and runs, it does not provide the IDE with enough infor-

mation to aid the programmer into navigating the response structure because the value

of accessing an object with a key that is unknown in compile-time is also unknown.

To circumvent this limitation all classes that implement the Accessor interface should

also contain an option key whose name is the same one defined in the value of accessorName

and its type is an array of entities provided by the repository. With this, the IDE is able

39



to auto-complete and type-check the whole response, from repository to individual entity

fields.

Repository Class

This repository attempts to map Spring Repository response as a whole. In other words,

they are the top-most level of the response, mapping the first level of key-values to Type-

script types. There are two classes that make up this abstraction, the Repository class

that map the _embedded and _links keys and the PagingAndSortingRepository exten-

sion that adds a page key to the mapping.

Repository Service Class

When the previous classes were written to map the API responses, their similarities

became more evident and the motivation to implement a generic service arose. With

this came the PagingAndSortingRepositoryService, which is a service that implements

CRUD interactions with a Spring Repository in a generically-typed manner. These CRUD

interactions are translated to four functions. Following the CRUD acronym, they are the

following: create, index, patch and delete.

Implementation-wise this class is composed of the three generic elements previously

evaluated, Entity, Accessor and PagingAndSortingRepository its constructor needs a

function that return new instances of Entity, an instance of Accessor, the HttpClient

service and a string with the address of the remote Spring Repository.

While developing this service, an unexpected behavior was met. When specifying the

type of a HTTP response, it did not create a new instance of the received data, which made

the methods associated to the Entity class and its extensions to not function. This was

mitigated by adding the required parameter in the constructor called entityConstructor

whose value is a function that takes no arguments and returns an instance of the reposi-

tory’s entity, then every response follows the pattern of creating a new of such instance and

copying all properties from the textual response to it using the Object.assign function.

40



Listing 4.2: Implementation of the Query model
1 export class Di r e c t o rySe rv i c e extends PagingAndSort ingRepos itoryService<
2 HateoasDirectory ,
3 DirectoryAccessor ,
4 Di rec to ryRepos i to ry
5 > {
6 cons t ruc to r (private _http$ : HttpCl ient ) {
7 super ( ( ) => new HateoasDirectory ( ) , new Direc to ryAcces so r ( ) , _http$ ,

ApiEndpoint .DIRECTORIES) ;
8 }
9 }

With all this in place, implementing a service that has no behaviors other than CRUD

operations is no more than specifying the PagingAndSortingRepositoryService class.

Listing 4.2 show the implementation of DirectoryService. Note that all it does is ex-

tending PagingAndSortingRepositoryService, providing its Directory-specific classes

instead of the generic triad and overloading the constructor on lines 21 to 23 so that it

can further specify the parent’s behavior.

4.1.2 Component Structure

When developing the Angular front-end over the Sb-Admin-Material template, it was

noted that the example pages that could be accessed by links listed in the left sidebar,

seen on Figure 2.3, were found inside the /app/layout folder. Therefore it made sense

to follow this approach and implement Yabi’s custom pages in the same place.

In general, each of Yabi’s entity have got a folder that contains:

• A “model” file with:

◦ A class that represents the entity, to be used when retrieving entities depending

on the current user.

◦ A class that extends PagingAndSortingRepository, to map Spring Repository

responses.

41



◦ A class that extends Entity, representing the elements contained within the

repository response.

◦ A class that extends Accessor that indicates key used to access the list of

Entity contained within the repository response.

• A Service file that extends PagingAndSortingRepositoryService, specifying it for

the given entity.

• The Template file that renders a listing with the available entities.

• A Component file that interacts with the Template and creates dialogs.

• The Style file with rules to correctly render the “add” button.

• A folder with a dialog Component for creating more entries.

• A folder with a dialog Component for editing an entry.

• The Module file declaring its dialog Components to also be loaded with entryComponents.

There are some variations to this rule. User Component has only one dialog that

is used to show more information about the current user. Query Component was one

of the first components to be developed and it has three dialogs, one for showing more

information and the results of running it, a “form” dialog that maps a Query to input

elements that is used for editing and creating.

4.1.3 Components

Every entity defined in the project section have got a corresponding Angular Component

that follows the structure previously defined with a certain degree of freedom. In this

section the particularities of each component in regards to each element will be shown,

starting with their Service followed by Template, Component and ending in their Module,

if applicable.

42



Login

LoginService is different than the other services because it does not extend the class

PagingAndSortingRepositoryService and instead is concerned with providing login

functionality and system-wide predicates about the current user or session. The two

main predicates are isAdmin and isAuthenticated. The first is used on templates to hide

elements that should not be seen by non-administrative users and the second is run

before every request sent to API so that the application can redirect to the login page if

by some reason the user access a page without first logging-in. It also provides login and

logout function, the former saves the username and password combination in the local

storage to be used by authenticationInterceptor and requests the API route /user

for information about the current user; the latter deletes the current user’s instance, clears

the local storage information and redirects to the login page at /login.

This component came as part of the Sb-Admin-Material and can be seen on Fig-

ure 4.9. Mainly, it provides a standard text input for user identification, protected text

input for passwords and a Login button that is associated with the component’s onLogin

method. The other HTML elements are not bound to any function.

Its Component is very short. It provides a onLogin method that in turn call the

LoginService.login with the content written in the text inputs. If the login was suc-

cessful it redirects to /query, otherwise it throws an error saying “Authentication Un-

successful”.

User

UserService extends PagingAndSortingRepositoryService, specifying it for the User

model and provides functions for managing the association between user and permission,

listing an user’s permissions with the permissions method, creating the relation with

assignPermission and removing it with unAssignPermission. It is worth noting that the

process of creating this association involves a post request to the user’s permissions

43



Figure 4.2: Listing of all registered Query for a given User and Role information

address in which the body is composed of line-break separated URL links and the header

indicates a content type of text/uri-list.

When non-administrative users logs in the application, they are redirected to the

/queries page so they can quickly execute one of their use cases. Figure 4.2 show the

page with queries available to the current user. In the top right corner the username

is shown to be professor and when clicking the first circle to its right a small pop-up

appears with their role. One last thing to note is that non-administrative users such as

the one from the figure, do not have access to all screens and buttons. In comparison to

Figure 4.3, administrators have buttons on the side menu that redirect to Directory and

User components, and also a pink round button with an plus sign on the bottom right

that enable the insertion of new entries.

These administrative elements are triggered visible though the isAdmin method from

LoginService and they serve a purely cosmetic function as the back-end denies the

execution of administrator functions for standard users.

The use case of assigning permissions to users is done by administrators at the /user

page. The listing itself is very similar to the one seen on Figure 4.2 albeit with two

columns, one for the username and the other for role.

44



Figure 4.3: Dialog for assigning a new Permission to a User

As seen on Figure 4.3, when a line of the user listing table is clicked, a UserShowComponent

dialog appears with a table that lists their associated permissions and possible actions.

From there, the administrator is able to remove a user’s permission by clicking on the

trash can symbol or grant new permissions by choosing one in the drop-down list that

says “Assign new Permission” and clicking on the adjacent plus symbol.

The HateoasUser class extends the generic Entity with attributes that compose the

back-end implementation of the user. Interestingly enough, because back-end class is writ-

ten to fit within the Spring Framework authentication mechanism, it has some unused

back-end specific attributes added to what was initially defined in the project, these in-

clude the attributes enabled, authorities, password (left empty), accountNonExpired,

accountNonLocked and credentialsNonExpired.

Query

QueryService is quite different when compared with other services because it implements

the standard features found in PagingAndSortingRepositoryService. This is because it

was one of the first services to be developed and the need for a common interface was not

yet evaluated. To keep compatibility, with the current modules, the function names and

signatures were kept intact but their implementation makes use of HateoasQueryService,

45



which does extend the common service. Regarding the other services, this one provides

a different behavior for index that requests the queries in which the current user have

access to. Lastly there is the run method which is specific to this service, requesting the

API into running a query and yielding its results.

Shown on Figure 4.2, the /query page presents a table that list queries in regards to

theirName, Description and Actions. The last one being dependent on the user role. If

accessed by an administrator there are two icons, a pen that when clicked raises a editing

dialog and a trash can that deletes the query; if accessed by an user, as seen on the figure,

this column is not rendered. Create and edit dialogs are similar to those made for the

Directory entity but the form fields match the attributes of query model.

QueryComponent, like the others, interacts with the listing template by handling the

actions that can be done on this page. Clicking on the list element is bound to on-

QueryShow which raises the QueryShowComponent dialog; the add button and the edit

action raises QueryFormComponent dialog with different data, creating a new query passing

no information to the dialog and editing passes the clicked query element. QueryFormComponent

is smart enough to take different actions depending on its input so that a new query gets

persisted and an already existing query it patched.

When a table element is clicked, the dialog seen in Figure 4.4 is shown. It presents

to the user the query’s Name, Description and Permission alongside two button on

the lower right, “Run” and “Download”. The former invoke an API method on /run-

Query/{id} to execute it, retrieve the results and display them in a table similar to

what is shown in Figure 4.5; the latter does the same but in the end prompts the user to

save a Comma Separated Values (csv) file with the results.

Because queries must be filtered in regards the current user’s permissions, QueryService

requests the API on a custom controller located at /queries that does not comply to the

HATEOAS pattern, inducing the creation of two models, one that extends the common

Entity class to map eventual HATEOAS responses and the other that is on par with the

response from /queries. It is interesting to note that UI elements are build around the

latter model because it enables one single screen to serve both user roles, the conversion

46



Figure 4.4: Dialog for running a Query

Figure 4.5: Dialog for running a Query after it was executed

from HateoasQuery to the non-hateoas version is straight forward given that Query is

simpler with no nested attributes.

Permission

PermissionService have only two particular methods, one for requesting the current

user’s permissions called userIndex and a custom implementation of delete which uses

Yabi’s custom implementation in /delete.

47



Figure 4.6: Dialog for creating a new Permission

The screen that lists the available permissions is also similar to that seen on Figure 4.2,

although its table has different columns, Path, Description and Actions, with this last

one visible only to administrators. The action column has two icons, a plus sign that

indicates the creation of a new child permission and a trash can for deletion. Clicking

the row raises a dialog for editing its description. The key difference between this entity

and the others when it comes to creating a new entry is that because permissions follow

a hierarchy, the first step towards creating a new entity is to choose its parent permission

and clicking on the plus sign on its row. Figure 4.6 presents the dialog raised when doing

so. Note that it shows the parent permission’s canonical path alongside its description.

The main component is bound to listing the available permissions. Similar to QueryComponent,

this page serves both user roles the same way but contrary to it, HateoasPermission

is used as the base model. This is because Permission class implements the toHateoas

method and even thought they share much of the same fields, the converted HateoasPermission

is generated with an undefined URI attribute. There are two sub-components accessible

form the main screen, PermissionFormNewComponent and PermissionFormEditComponent.

As the name suggests, they interact with the user and API when creating and editing

permissions. One interesting thing to note is that when persisting a new permission, the

onSubmit method appends the separator character to the path.

48



Figure 4.7: Dialog for creating a new Directory

Directory

Lastly there is the DirectoryService whose implementation is nothing more than the

proper extension of PagingAndSortingRepositoryService. In fact, it is so small that it

was used as the minimal usage example in Section 4.1.1.

The directory listing page is only accessible to administrative users, which made its

implementation very compliant to HATEOAS pattern used by Spring Repository. It uses

the same listing presentation shown in Figure 4.2 with columns for Name, Connection

String, Username, Password and Actions, showing the icon of a trash can that signifies

deletion. Clicking the row itself raises the DirecotryFormEditComponent in a dialog,

allowing the administrator to edit the clicked Directory. Figure 4.7 shows the dialog

used to create a new Directory, composed of one textual input per model attribute and a

“Save” button on the lower right corner. The previously DirecotryFormEditComponent

shown on Figure 4.8 share the same structure but with inputs filled with values from the

Directory being edited.

The component implementation is very straightforward with the listing page fetching

elements using the DirectoryService and binding the buttons to trigger their respec-

tive behavior. The plus button that indicates the creation of a new directory is bound

to method onDirectoryNew, clicking the row to onDirectoryShow and the trash can to

49



Figure 4.8: Dialog for editing an existing Directory

onDirectoryDelete. The first two delegate the interaction to other components that are

displayed in a dialog.

Being accessible only to administrative users means that the whole API interaction can

be done through Spring Repositories. This means that the only model being exchanged

is that of HateoasDirectory that extends Entity and nothing more.

4.1.4 Generic Form Control Builder

Every form used for editing and creating new entries follow the pattern of providing a text

input for each attribute of the model. To reduce repeated code for generating a FormGroup

with the given model’s attributes the function genericFormControl was implemented.

What it does is take an instance of any object and an optional list of attributes to ignore

and assign to an object every attribute name evaluated from calling Object.keys on the

instance with a new FormControl with that attribute’s value, skipping the attributes

found the ignore-list. In the end, it returns a new FormGroup with such object.

This way, when creating a form for editing a model, this function will return all the

control with values already filled, ready to be bound to a form in the template definition.

Also, when creating a new entry, the resulting FormControl edited by the user will have

50



matching fields with the model, allowing for fewer conversion between what is inputted

and what is sent to the API.

4.1.5 Temporal Caching Repository

Because PermissionService is used by a few different classes and because permissions

are not frequently inserted in the system, it was found that not many API requests are

necessary during a session. Therefore a temporal caching system was developed on top

of the existing PagingAndSortingRepositoryService so that in a configured time span,

the service will not actually request the API but instead provide elements that are kept

in memory. Once the time expires, the local cache is considered invalidated and a new

API is issued.

Implementation-wise it intercepts the actual index method saving a local copy of the

response in memory. When a request to index happens within the time frame specified in

SharedModule.serviceCacheExpirationTime, it returns an observable of its local cache.

The cache itself is implemented as an array of elements in which the service is providing.

4.1.6 Error Handler

By default, every Angular app provides a ErrorHandler that simply writes to the browser’s

console. However users must be notified when an error happens so that they can either

take action or contact the IT department if it persists. To do so, ErrorHandler was

extended into SnackBarErrorHandler, which as the name suggests creates a snack bar

element with the error message, and was provided in the root module so that any uncaught

error in the application is handle by it, effectively replacing the standard ErrorHandler.

Figure 4.9 show the visual element that is created when an error occurs.

4.1.7 authenticationInterceptor

Because the back-end handle requests in a stateless fashion, authentication information

must be sent alongside every API request.

51



Figure 4.9: Login screen with a authentication error caught by the
SnackBarErrorHandler

52



This was achieved by creating the authenticationInterceptor class that imple-

ments the HttpInterceptor interface and overrides the method intercept by injecting

the Authorization header to requests that addressed to the API.

There are some occasions that require different or no treatment. If the request is not

destined to Yabi’s API, the request is processed as usual and if the user is not authenti-

cated the application redirects to /login, prompting the user to login again.

4.1.8 apiEndpoint

Though as a Service, this class is declared in the app’s root module and therefore can

be injected into any component. It’s job is to abstract all the endpoints available in

the interface either through constant strings that point to repositories or functions that

assemble an address for an entity given it’s id.

Some example endpoints include the PERMISSIONS attribute that refers to the API’s

/permissions that return all the permissions associated to the current user; ADMIN_PERMISSIONS

referring to /permissionTrees, which is the interface managed by a Spring Repository

and lastly there is the USER_PERMISSION function that takes in an user id and a

permission id and returns the address that represents the association between them so it

can be, for example, deleted.

4.1.9 Shared Module

The SharedModule is a class that imports and exports all Angular Material directives.

This was done to speed up development time, removing the necessity of importing each

specific module when it is needed. The performance impact of including all of Angular

Material was not found to be noticeable during development when compared to building

it with Ahead of Time Compilation (AoT).

Another use of this module is providing application-wide constants. There are three

static attributes, debounceTime which is the time in milliseconds between keystrokes to

consider that the user has finished typing their search term; serviceCacheExpirationTime

53



which is the lifespan of the information kept in a CachedPagingAndSortingRepositoryService

and lastly, apiBase, which is the base API address.

4.1.10 Security Concerns

When a user logs-in the application, their username and password is stored as a base64

string in the local storage. Should the application be compromised with attacks such as

Cross Site Scripting (XSS), the injected code is able to access the user’s credentials.

Another concern is in regards to the stateless nature of the back-end, requiring the

credentials to be sent with every request. If the connection is not encrypted, credentials

will be sent as plain base64 encoded string, which is easy to spot and decode. In the front-

end this can be mitigated with HTTP Secure (HTTPS) encryption and in the general view

a token could be exchanged to avoid having the credentials being frequently sent to the

API.

4.2 Back-end

This section describes the server-side implementation of Yabi. Developed in Java using

the Spring Framework, this program provides the functionalities that are harnessed in

the front-end application. In other words, it implements the entities and functionalities

elicited during the requirement analysis, providing them through a Web API.

Section 4.2.1 is a discourse more specifically on how the entities found during the de-

sign of this application were translated into Java code and the modifications that had to

be done in order for this to happen. Being a fairly complete framework, Spring has most

development use cases covered, however they must be configured in order to attend the

specific needs of this application and thus Section 4.2.2 explain the main configurations

that were necessary for the desired behaviors. Section 4.2.3 explains the need and im-

plementation of custom endpoints and ViewModels that were used. In Section 4.2.4, the

interaction with the local database and the HATEOAS API are explained. The solution

for Requirement 1, to access the institution database, is discussed in Section 4.2.5.

54



4.2.1 Entities

Following the Entity-Relational diagram in Figure 3.4, classes were created and properly

annotated with so that JPA is able to properly generate a relational model. Hence the

Entity annotation is present in all classes.

Listing 4.3 presents the implementation of the Query model defined in Section 3.1. It

servers as an overview into other model implementations as it shares much of the common

features but also adds some of its own.

Lines 1, 2 and 5 are provided by the Lombok package as discussed in Section 2.3.3, in-

structing the creation of constructor and other common methods during compilation. All

models make use of @Data and @NoArgsConstructor annotations and all but PermissionTree

use @AllArgsConstructor.

In regards to ORM, @Entity annotation in line 3 is the entry-point through which JPA

evaluates what classes are meant to be taken into account when building the relational

model. In general, attributes don’t need to be declared as they are correctly inferred but

in some cases it is desired to configure the generated database, @Column annotation on

line 11 changes the default behavior so that the length of the corresponding varchar field

in the table is able to hold larger amounts of characters; The other models, YabiUser

PermissionTree and Directory make extensive use of @Column to specify columns that

shouldn’t have repeated values.

Relation between entities are made though @OneToOne, @ManyToOne and @ManyToMany

annotations. The first two represent single value association between entities, however,

they represent different semantics and where the foreign key will be created. @ManyToOne

indicates that the foreign key will stay in the table in which this model is mapped to,

@OneToOne makes no distinction, leaving for the ORM back-end implementation to decide.

Line 17 is declaring that more than one instance of SqlQuery may reference a single

Directory and that SqlQuery will hold the foreign key to Directory. @ManyToMany

represents a collection of associations, here used to associate YabiUser to PermissionTree

so that many users can have many, overlapping, permissions. One possible parameter to

55



Listing 4.3: Implementation of SqlQuery class
1 @NoArgsConstructor
2 @AllArgsConstructor
3 @Entity
4 @Table ( un iqueConstra int s = @UniqueConstraint ( columnNames = { " permis s ion "

, "name" }) )
5 public @Data class SqlQuery {
6
7 @Id
8 @GeneratedValue
9 private Long id ;
10
11 @Column( l ength = 2048)
12 private St r ing command ;
13
14 private St r ing name ;
15 private St r ing d e s c r i p t i o n ;
16
17 @ManyToOne
18 @JoinColumn (name = " d i r ec to ry_id " , nu l l a b l e = fa l se )
19 private Direc tory d i r e c t o r y ;
20
21 @OneToOne
22 @JoinColumn (name = " permis s ion " , nu l l a b l e = fa l se )
23 private Permiss ionTree permis s ion ;
24
25 }

@ManyToMany is the FetchType, instructing the ORM engine to retrieve the associated

entity when it is accessed or when its parent is retrieved.

@JoinColumn annotation is a general purpose configuration for relational fields, in

lines 18 and 22 it’s used to configure the name in which the column will be called and

whether it can have no specified value.

The remaining entities follow a similar pattern in it’s implementation.

4.2.2 Spring Configuration

In order for Spring Framework to stay out of the way as much as it can and allow develop-

ers to focus on the implementation of business functionalities, it makes many assumptions

56



about how its components interact, however, at some point the application being devel-

oped grow new requirements that conflict with Spring defaults. When this eventually

happens, which was the case with Yabi, developers can override some of Spring’s default

behavior by re-implementing specific interfaces.

This section presents Spring configurations that took place so that Yabi is able to

work as expected.

Security

Yabi’s security model uses a directory server to authenticate and a relational database

to load user roles and execute authorization checks. Because this is a stateless applica-

tion, every request follows the steps shown in Figure 4.10 before being executed by the

controllers.

Authentication is done through an anonymous bind to a LDAP server, implemented

with Spring’s LDAP authentication that configures the server address and the base Dis-

tinguished Name (dn).

In regards to authorization, there are two possible roles in which a user must be

assigned to, either ADMIN or USER. With this, non-administrative resources are simply not

dependent on the user’s role therefore accessible to all users, meanwhile, administrative

resources are explicitly marked to be accessible by users whose role is ADMIN.

Figure 4.10, presents in a general view the steps taken to authenticate and load user

details. It is infeasible to model the whole of Spring Web and Spring Security as it is quite

an extensive feature and it is out of the scope of this report, therefore it was abstracted

into fewer elements, namely WebSecurity entity representing the objects that get built by

the configuration shown in Listing 4.4, the authenticate message is abstracting Spring’s

authentication provider voting system, LDAP AuthenticationManager entity represent-

ing LDAP’s AuthenticationProvider and anonymous bind, as the name implies is the

authentication that takes place in the directory server.

The main point of Figure 4.10 is to show that once the bind takes place in the LDAP

AuthenticationManager, the library requests an object that implements the interface

57



Authentication

WebSecurity

antMatcher

YabiUserDetails
ContextMapper

LDAP
AuthenticationManager

anonymous bind

YabiUser
Repository

YabiUser

findByName

UserDetails

mapUserFromContext

Authentication

authenticate

Authentication

authenticate request

Figure 4.10: Authentication Sequence Diagram

UserDetailsContextMapper to populate it’s newly created Authentication object with

business-specific information in the form of UserDetails. In this case YabiUserDetailsManager

is chosen by Spring’s dependency injection mechanism and it provides an instance of

YabiUser, that is retrieved from the database.

Admin Resources

Not all endpoints are freely accessed to all users because they involve possibly destructive

interactions with the information contained in the system. In this implementation, non-

administrative users get their information through custom RestController that expose

fewer functionalities and administrative users may directly request the repositories.

Suffice to say that certain endpoints require the user to be authenticated and to have

an administrator role. Listing 4.4 is the configuration that enforces this statement.

The call to antMatchers in lines 9, 11 and 13 works by specifying a list of HTTP paths

and applying some definitions or restrictions whenever an incoming request is found to

match a string pattern. In this specific case, all requests to repositories are eligible to

continue being processed only if the hasRole rule evaluates to true.

58



Listing 4.4: HttpSecurity configuration
1 protected void c on f i gu r e ( HttpSecur i ty http ) throws Exception {
2 http
3 . co r s ( )
4 . and ( )
5 . c s r f ( ) . d i s ab l e ( )
6 . httpBas ic ( )
7 . and ( )
8 . author i zeReques t s ( )
9 . antMatchers ( " / user " ) . permitAl l ( )
10 // Spring R e po s i t o r i e s
11 . antMatchers ( " / d i r e c t o r i e s /∗∗ " , " / yabiUsers /∗∗ " , " /

permis s ionTrees /∗∗ " , " / sq lQue r i e s /∗∗ " ) . hasRole ( "ADMIN
" )

12 // Custom C o n t r o l l e r s
13 . antMatchers (HttpMethod .DELETE, " / permis s ion /∗∗ " ) .

hasRole ( "ADMIN" )
14 . anyRequest ( ) . authent i ca ted ( )
15 . and ( )
16 . l ogout ( ) . permitAl l ( ) ;
17 }

Line 13 is protecting the /permission endpoint from being requested with a HTTP

delete verb. Lines 8 and 14 declare that all HTTP requests are to be authenticated.

Cross-Origin Resource Sharing (CORS) Mapping

Because Yabi is a web API and a front-end application, it is necessary that both parties can

interact but due to security reasons, most browsers implementations block Asynchronous

JavaScript and XML (AJAX) calls if the remote server does not explicitly state the allowed

domains in it’s response header.

In Spring, allowing domains to access it’s resources is done by implementing the

WebMvcConfigurer, overriding the method addCorsMapping(CorsRegistry) and calling

allowedOrigins on it’s parameter. The method allowedOrigins takes a list of strings that

contain valid URL addresses.

Yabi configures this using the value of property yabi.web.allowedOrigins, allowing

for a centralized configuration.

59



Listing 4.5: LDAP Authentication Configuration
1 @Autowired
2 public void con f i gu r eG loba l ( Authent icat ionManagerBui lder auth ,

YabiUserDetailsContextMapper ap ) throws Exception {
3 auth
4 . ldapAuthent i cat ion ( )
5 . userDetai lsContextMapper ( ap )
6 . userDnPatterns ( env . getProperty ( " yabi . ldap .

userDnPatterns " ) )
7 . groupSearchBase ( env . getProperty ( " yabi . ldap .

groupSearchBase " ) )
8 . contextSource ( )
9 . u r l ( env . getProperty ( " yabi . ldap . u r l " ) ) ;
10 }

LDAP

Following the authentication specification in Section 4.10, Listing 4.5 presents the config-

uration that implements the desired behavior.

In this configuration, AuthenticationManagerBuilder is a class used by Spring in

it’s security pipeline. It comes with built-in support for LDAP, JDBC and in-memory

authentication mechanisms; line 4 is declaring LDAP authentication to be used.

Line 5 is considered important because it is mapping a custom details context mapper

to the authentication pipeline. What this does is to provide a hook in the authentica-

tion pipeline to allow explicit customization of the user object after it is authenticated.

The given mapper, YabiUserDetailsContextMapper retrieves the authenticated user’s

instance of YabiUser.

Lines 6 to 9 configure the connection to the remote directory service, including it’s

address and what to bind with.

User Details Context Mapper

Often times a directory service is used as an authentication mechanism. Applications then

issue an anonymous bind request to the server passing their user’s credentials and after,

load its business-specific information according to the username. To do so, Spring Security

60



utilizes UserDetailsContextMapper interface to retrieve an UserDetails instance that

gets injected into the commonly accessible Authentication interface.

For this application, a new implementation of the UserDetailsContextMapper in-

terface is provided, YabiUserDetailsContextMapper returns an instance of YabiUser,

which implements said UserDetails interface adding Yabi-specific attributes, enabling

other parts of the system to query the current user’s related information such as their

role, PermissionTree and name.

4.2.3 Custom Controllers & View Models

@RestController is a Spring Web annotation that enables a given class or method to

handle HTTP requests. In essence it is a combination of two other annotations, the

@Controller, which is what trigger the framework into considering the class as a possible

resolver of HTTP requests and @ReponseBody, that wraps the method call into a response

body. In general cases the returned Object is mapped to a JSON string.

However the PermissionTree class contains a reference to it’s parent, and the root

references itself, there was a need to circumvent an infinite loop during it’s JSON serializa-

tion. To do so, rather simple and serializable classes whose role were to convey information

to the front-end were written, namely, SqlQueryViewModel, PermissionTreeViewModel

and YabiUserViewModel.

To accommodate the special handling of PermissionTree model and provide custom

functionalities, controllers were implemented for SqlQuery, PermissionTree and YabiUser

entities. An additional controller, DatabaseReaderController was implemented to at-

tend one of the functional requirements. When it comes to providing entities in function

of the current user’s permissions, the general implementation was done by adding a cus-

tom method to repositories that enables them to retrieve elements based on their entity’s

permission nodePath. Listing 4.6 show the implementation of endpoint /queries that

retrieves SqlQuery elements that are associated to the current user. Note on Line 8

61



Listing 4.6: /queries endpoint implementation
1 @CrossOrigin
2 @GetMapping ( " / qu e r i e s " )
3 public List<SqlQueryViewModel> getQuer i e s ( Authent icat ion auth ) {
4 YabiUser user = ( YabiUser ) auth . g e tP r i n c i p a l ( ) ;
5 Lis t<SqlQueryViewModel> que r i e s = new ArrayList <>() ;
6
7 for ( Permiss ionTree permis s ion : user . ge tPermi s s i ons ( ) ) {
8 for ( SqlQuery q : queryRepo .

f indByPermissionNodePathStartingWith ( permis s ion .
getNodePath ( ) ) ) {

9 qu e r i e s . add ( new SqlQueryViewModel ( q ) ) ;
10 }
11 }
12 return que r i e s ;
13 }

the retrieval of all elements whose permission nodePath starts with the user’s permission

nodePath and on Line 9 the instantiation of a non-recursive, serializable ViewModel.

DatabaseReaderController

The retrieval of information contained in a remote database is exposed through the /run-

Query/{id} address. The interpolated id argument is a number that refers to a persisted

SqlQuery class. When this controller is properly requested, it first validates by checking

if the requesting user may run it by finding at least one permission associated to the

current user that is either higher or equal to that in which the SqlQuery is associated to

and calls DatabaseReader.runQuery with it.

The method runQuery in turn retrieves the associated Directory from the repository

and with its credentials, it makes a JDBC connection and executes the query command.

Lastly the resulting ResultSet is completely read and interpreted into a matrix of strings

which is then returned to the controller and finally is used to answer the API request.

PermissionTreeController

Because of it’s tree-like nature, once a PremissionTree is deleted, all of it’s child nodes

need also to be removed. However, because it references its parent but not its children,

62



leaving the RDBMS to execute a cascading delete would delete every parent permission

untill the root node. Therefore PermissionTreeController implements a custom delete

that cascades through its children. It is bound to a delete /permission/{id}, id being

the identifier of the permission to be deleted.

It is implemented by first retrieving the permission whose id was specified in the

HTTP request, retrieve all of its children with the custom repository method findAllByN-

odePathStartingWith and sequentially deleting all permissions found and then deleting

the permission itself.

One restriction is that the root node can never be deleted, otherwise there wouldn’t be

any parent to insert new permissions. Therefore, before executing the before-mentioned

steps, the permission to be deleted is matched with the root node, if it does, the operation

is aborted with an error.

YabiUserController

To provide the front-end with information about the current user, YabiUserController

replies to get requests on the path /user with information provided inside the current

Authentication that was generated during the user’s authentication procedure and thus

avoid reaching out to the database a second time.

SqlQueryController

SqlQuery is one of those entities that are related to the current logged-in user. In

other words, administrators may see all registered SqlQuery and users see only those

which they can run, therefore this customized behavior was implemented through a

SqlQueryController that abstracts the Spring Repository interface.

It has only one method that replies to get requests to /queries endpoint with a list

of SqlQueryViewModel. Implementation-wise it returns a list containing every SqlQuery

found in the database by calling SqlQueryRepository.findAllByNodePathStartingWith

for every permission associated to the current YabiUser.

63



4.2.4 Spring Repositories

PagingAndSortingRepository were created for all entities evaluated during the project

evaluation phase. The Directory entity whose implementation did not require any

changes in regards to what Spring already provides won’t be discussed. The remaining

entities had their repositories augmented with functionalities presented below.

YabiUserRepository

After binding to the directory service, UserDetailsContextMapper.mapUserFromContext

is used to fill an instance of Authentication class with business data. In Yabi’s custom

implementation, this data comes from a relational database that reflect YabiUser objects.

Because the method mapUserFromContext uses the username as a key to retrieve

information, YabiUserRepository had to be augmented with a new method to do just

that. Therefore the following declaration was added:

YabiUser findByName(String username);

PermissionTreeRepository

When the system needs to validate an action or filter information depending on a permis-

sion, it retrieves all of its child permissions. Because this action is frequently used, this

repository had also to be augmented.

In this case, the method signature used was as follows:

List<PermissionTree> findAllByNodePathStartingWith(String nodePath);

SqlQueryRepository

When an user request a list of queries that he can execute, the system must retrieve

from the relational database all queries in which the permission is a child of the user’s

permission. Again, this repository had to be augmented.

This was accomplished by using the following method interface:

List<SqlQuery> findByPermissionNodePathStartingWith( String nodePath );

64



4.2.5 Multi-Database Support

Paraphrasing Requirement 1, the application must be able to retrieve information from

the institution’s database; however, due to its many in-house applications, more that one

RDBMS might be employed. Therefore Yabi cannot be constrained to a single database

vendor for its information retrieval.

The core part of this feature is JDBC 4.0’s DriverManager class and it’s getConnection

method that upon being called, attempts to make a connection using drivers that were

loaded on initialization-time, therefore, as long as the driver is loaded and the connection

string is properly formed, getConnection will select the correct database driver.

Because of this, implementing this feature was as simple as declaring dependencies for

database drivers in the pom.xml configuration file. Notably, Oracle1 requires the creation

of an Oracle account and the configuration of a custom maven repository in order to

download their drivers.

4.3 Development Environment

This section is focused on the work that was done indirectly to Yabi, but was still crucial

to its development. Section 4.3.1 expresses how IPB’s directory service was imitated

with a local service. Section 4.3.2 briefly describes how local databases were deployed for

use during development, Section 4.3.3 presents some configurations that can be done on

Yabi’s property file that aids during the production deployment and lastly, Section 4.3.4

presents some API tests that assess some of Yabi’s restrictions.

4.3.1 Directory Service

When developing an application, it is good practice to avoid reaching out and interacting

to remote services and instead provide a local instance that is able to mimic the real-world

environment.
1https://www.oracle.com/technetwork/database/database-technologies/express-

edition/downloads/index.html

65



Listing 4.7: Local server LDAP configuration
1 yabi . ldap . u r l=ldap : // l o c a l h o s t :10389/ dc=ipb , dc=pt
2 yabi . ldap . groupSearchBase=ou=groups
3 yabi . ldap . userDnPatterns=uid={0} ,ou=use r s

Figure 4.11: Directory structure and the properties of user professor

In this case because a directory service is used as a part of it’s authentication mech-

anism, a local LDAP server was created in Apache Directory Studio that mimics IPB’s

directory service close enough so that the configuration provided by their IT team is

able to be used locally with minimal changes, in fact, the only difference is the service’s

address.

Listing 4.7 exposes the configurations Yabi uses to access the server. Note that the

directory address is declared in line 1 and line 3 declare the entry whose elements are

anonymously bound.

Figure 4.11 show how the directory is structured in the server-side. Users are of class

inetOrgPerson, they are held under the users organizational unit which in turn is under

the ipb, pt domain component. At the moment this figure was taken, passwords were

stored in plain text for local testing purposes.

66



4.3.2 Local Database

MariaDB was deployed locally with two main purposes: To serve a testing database in

which Yabi could connect and run queries similarly to how it would do in production and

at the same time, provide a database in which Yabi could store its own information.

For this, the official MariaDB Docker image was used2 in conjunction with an empty

database for Yabi and a testing database that was sourced from Portugal’s Biographic

Registry of Higher Education Instructors (REBIDES).

4.3.3 Database Initializer

When starting Yabi for the first time, it needs to generate its database, create the root

permission and an administrator account. To do so, the class DbInitializer was written.

It implements the CommandLineRunner interface so that Spring executes it just after

initializing.

There are two properties that interact with DbInitializer, yabi.db.init and the

yabi.db.init.admin.username. The former regulates when yabi should create a new

database, the root permission and the administrator account, the latter declares the ad-

ministrator’s username to be used. If the initialization is desired, yabi.db.init should

be set to create, otherwise, it can be set to anything else. It is necessary that the admin-

istrator username is able to be bound in the directory service otherwise the authentication

will fail.

4.3.4 Postman Tests

When developing the API, some test cases were created in Postman to assess the preven-

tion of data duplication. All four entities were tested. In essence, every test consists of

two requests, one that creates a new entity and expects a HTTP status 201 response and

the other that tries to re-create the same entity and expects a HTTP status 409.

2https://hub.docker.com/_/mariadb

67



It is important to note that these tests are validating the following restrictions imposed

in each entity:

• There must be only one PermissionTree per nodePath.

• One Directory per connectionString, so that each database is referenced once.

• One Directory per name, so that each name maps to only one database.

• One SqlQuery under a PermissionTree with a given name, avoiding ambiguous

SqlQuery entries.

• No more than one YabiUser with a given name.

4.4 Chapter Conclusion

This chapter discussed the implementation of all the parts that compose an application

entitled Yabi. It has a Web front-end written in Angular that is meant to be accessed by

both users and administrators and a Web API written in Java with Spring Framework.

The current implementation enables administrators to create database entries for

Databases, Permissions and Queries and associate them. Users are validated using the

institution’s Directory Service and are brought into the system by being directly inserted

in the database.

The following chapter will conclude what was done in this work and how it relates to

the context in which it is meant to be introduced.

68



Chapter 5

Conclusion

With the growing adoption of digital processes by companies and institutions, the access

to information becomes less available to the general public and more focused to experts

in the field. These experts then end up mediating the interaction between those who are

part of the decision-making process and the information storage.

Being in this situation, IPB’s IT department is often interrupted form their daily tasks

to handle the most diverse inquiry and questions about the institution’s data base.

The present system is designed to aid everyone that takes part in this process to access

information in an efficient and organized manner without the need for much technical

knowledge, which in turn lowers the amount of daily interruptions in the IT department.

It currently achieves this by providing a web interface in which the institution members

can login, choose one of the many inquiries registered by the IT department and download

its results.

In the end, some functionalities were let out of this implementation, with the most

missed one is the ability for the users to tweak their inquiries to their specific needs.

In spite of this the final system accomplishes the main task of providing users with the

most used inquiries given that the IT department registers them. Not only providing the

inquiries, it also supplies the necessary tools to manage users, permissions and remote

databases, all through a web interface.

69



70



Chapter 6

Future Work

The development of this project yielded an application that suffices the core needs of

what was proposed. Although considered good, it does not fully satisfy all the elicited

requirements, leaving Requirements 7 and 8 outside of this implementation.

Therefore, this Chapter will be listing not only the missing requirements but also what

to improve in a later version.

6.1 Code Re-structure

During the project development, some architectural mistakes were made. Even though

they are not fatal errors, the technical debt was certainly increased. The two main points

are in regards to Resource filtering, that is, what is an user authorized to access and the

design of the PermissionTree data structure.

6.1.1 Resource Filtering

Currently, resource filtering is implemented by having a small set of controllers that are

eligible to handle non-administrative users. However this led to some confusion because

its response structure does not follow the HATEOAS convention, making the front-end

71



app implement two similar classes for each entity. One for HATEOAS responses and the

other for the special case.

Some re-structuring could be done at the repository level by configuring the authoriza-

tion mechanism to filter HTTP methods based on the current user’s role and altering the

front-end to always use Spring Repositories and always receiving HATEOAS responses.

Ultimately, all resources should follow the HATEOAS pattern so that the complexity

of the front-end application is low.

6.1.2 PermissionTree’s cyclic reference

In the back-end, the PermissionTree class is implemented with a reference to its par-

ent. In the end this attribute did not contribute to anything useful to the architecture

and instead induced the creation of custom controllers and ViewModels that brought

inconsistencies in the angular application.

6.2 Bulk information manager

One of the requirements found in the proposal is the possibility to insert validated queries

individually or in a group. The current system only supports inserting single, not validated

queries.

6.3 Testing and User Validation

Unit testing was done during the early stages of development but unfortunately they

required too many resources to execute. The multi-database support required all database

instances to be running during the test execution. As the project development sped up,

tests were ditched. Therefore the implementation of a proper test suit that validates this

project’s requirements is considered needed.

The introduction of the system in the proposed context was neither executed nor

evaluated, leading to no conclusion whether it actually decreases the amount of times the

72



IT department is interrupted. Taking actual measurements before and after deployment

would answer this question.

The developed UI’s usability was not evaluated. If the interface is found to be confusing

for many users, the IT department would be frequently interrupted for usability reasons,

therefore tests should be done to assess its intuitiveness and ease-of-use.

6.4 Parameterization

The proposal states that this tool should enable SQL queries to be parameterized, which

would allow the system to meet the specific needs of each user. Unfortunately this field

was not developed at all and queries can only be run as they were inserted.

73



Appendix A

Proposta Original do Projeto

A.1 Proposta no 2

Pretende-se desenhar e construir de raíz um sistema de “business inteligence” aplicado à

gestão letiva. Sabemos bem o valor e a importância que a informação tem hoje em dia

para quem gere instituições e as mais valias que as ferramentas de análise de dados trazem

para a tomada de medidas e decisões. O IPB tem já uma base de dados centralizada à

qual é aplicado diariamente um grande número de queries em SQL para os mais diversos

fins. Pretende-se abrir o acesso a esta informação de forma criteriosa mas sem implicar a

escrita manual de queries muitas delas com mais de 30 linhas de código.

O sistema seria pré-alimentado com “clusters” de queries mas teria uma característica

evolutiva que daria a possibilidade de introduzir de forma fácil, suportada e validada

novas queries ou novos grupos de queries, dependendo do perfil do utilizador.

As palavras chave serão a reutilização e a parametrização automática desses grupos de

queries suportadas pela geração automática de interfaces web de pesquisa de informação,

tendo por base o tipo de query a implementar.

Trata-se da disponibilização de um sistema de consulta inteligente no sentido em que

se adapta às necessidades e ao perfil de cada utilizador. O resultado final serão sempre

tabelas exportáveis para os mais variados formatos.

A1


	Introduction
	Context
	Objective
	Textual Conventions
	Document Structure

	Concepts and Technologies
	Front-end
	HTML & CSS & JavaScript
	Typescript
	SASS
	Angular
	Angular Material
	Sb-Admin-Material

	Back-end
	Stateless Web Application
	HTTP
	Java
	Spring
	MariaDB
	Apache Directory Studio

	Development
	Apache NetBeans
	Maven
	Lombok
	Visual Studio Code
	Docker
	Angular CLI
	Firefox
	Webpack
	Postman

	Chapter Conclusion

	Project
	Requirements
	Conceptual Model
	Project Details

	Chapter Conclusion

	Implementation and Results
	Front-end
	Interfacing with Spring Repository
	Component Structure
	Components
	Generic Form Control Builder
	Temporal Caching Repository
	Error Handler
	authenticationInterceptor
	apiEndpoint
	Shared Module
	Security Concerns

	Back-end
	Entities
	Spring Configuration
	Custom Controllers & View Models
	Spring Repositories
	Multi-Database Support

	Development Environment
	Directory Service
	Local Database
	Database Initializer
	Postman Tests

	Chapter Conclusion

	Conclusion
	Future Work
	Code Re-structure
	Resource Filtering
	PermissionTree's cyclic reference

	Bulk information manager
	Testing and User Validation
	Parameterization

	Proposta Original do Projeto
	Proposta nº 2


