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Abstract

This paper suggests a simple test of whether agents are forward-looking or myopic that
can be implemented on the type of backward-looking econometric models that are usually
estimated..  We argue that myopic behaviour implies a simple parametric restriction that will not
hold if agents are forward-looking.  We illustrate our tests by examining price adjustment in the
UK using aggregate quarterly data from 1963-1997.  Our evidence strongly suggests that price-
setting is forward-looking and not myopic.
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Testing Myopia in Economic Models
Christopher Martin

1) Introduction
The issue of whether agents are forward-looking or myopic has always been a challenge

to empirical modelling of economic variables. Although theory normally suggests behaviour
should be forward-looking, most econometric models are backward-looking.  This is a
potentially serious problem: if a backward-looking model is used to represent forward-looking
behaviour, the model cannot be structural, since the backward-looking element must in part
capture forward-looking behaviour.  This type of model will be particularly vulnerable to the
Lucas Critique (Alogoskoufis and Smith, 1991).

The hypothesis that behaviour is forward-looking is easy to test using a forward-looking
model.  However, since most empirical models are backward-looking, it would be especially
useful to have a test of forward-looking behaviour that can be implemented on a backward-
looking model. Hendry (1988) and Favero and Hendry (1992) provide such a test.  They exploit
the Lucas Critique, arguing that if the parameters of a backward-looking econometric model are
stable when there are structural breaks in the marginal processes for the explanatory variables,
then the econometric model cannot be consistent with forward-looking behaviour. This insight
has lead to empirical tests of myopia in areas such as money demand, consumption and wage
formation (eg Hendry, 1988, Cuthbertson and Taylor, 1990, Favero, 1993 and Mogahdam and
Wren-Lewis, 1995).    Although important, this test is less useful if there are no structural breaks
in the explanatory variables.

This paper suggests a simple alternative test that can also be used on a backward-looking
model. Consider the behaviour of the variable x.  We assume the current value of x depends on
previous values of x (because of adjustment costs or some other source of inertia) as well as past
and current values of the steady-state value of x, denoted x*.  If x is also affected by expected
future values of x*, then the variable is forward-looking.  If it is not, then x is myopic. To
implement the test, one estimates a backward-looking error-correction model, relating x to
lagged values of x and current and lagged values of x*.  We argue that if behaviour is myopic,
then a simple parametric restriction will hold in the error-correction model: the coefficients on
∆x*t, (the current value of the change in x*) and the error-correction term will sum to zero.  If
behaviour is forward-looking, by contrast, this restriction will not hold.  We can therefore test
the null hypothesis that behaviour is myopic against the alternative hypothesis that it is not. 

The intuition behind the test is straightforward.  Suppose that behaviour is forward-
looking, so expected future values of x* do affect x.  We can express expected future values of
x* in terms of current and lagged values of x*.  These variables therefore play a dual role in our
backward-looking error correction model: they capture both their own direct effect on x and the
effect of expected future values of x*.   If behaviour is backward-looking, then estimates on
these variables will only capture their own direct effect on x.  Our test exploits this difference.



We present an application of our test to the case of price adjustment of the aggregate
price level in the UK.  We obtain a measure of the steady-state price using cointegration
techniques. We then estimate a backward-looking dynamic model of price adjustment and test
whether behaviour is myopic or forward-looking.  We find clear evidence that price-setting is
indeed forward-looking.

The remainder of the paper is structured as follows.  Section 2 outlines our test using a
very simple dynamic model.  Section 3 considers a more general model.  In section 4, we apply
our test to price adjustment in the UK.  Section 5 summarises, concludes and suggests directions
for further work.

2) Testing myopia using a simple dynamic model
Suppose we have the model

1)  x x E x xt F t F t t B t= + ++ −α α α0 1 1 1 1
* *  + ut

Here x is the actual value of the variable and x* is its desired or steady-state value, that which
would be observed if x were to adjust fully and instantaneously and u is a white-noise error
term. The adjustment of x is less than instantaneous and the current value of x is related to its
own first lag and the current and expected future value of x*.  We assume homogeneity by
imposing the restriction αFo+ αF1+ αB1=1, thus ensuring x=x* in a static equilibrium1.   If
αF1≠0, then the behaviour of x is forward-looking, whereas if αF1=0, then x is myopic2.

We can reparameterise (1) in error-correction form as

2)  ∆xt = (αF0+αF1) ∆x*t  -  (αF0+αF1) (x-x*)t-1 + αF1 ∆x*t+1 + ut

The first two coefficients in (2) sum to zero because of the homogeneity requirement. 
In order to construct our test, we must express our model in backward-looking form. 

To do this, we therefore follow the existing literature (Rotemberg, 1982, Nickell, 1985,
Alogoskoufis and Smith, 1991) and use a time-series model to express Et∆xt+1* in terms of
                     
1)We do not necessarily assume there is a static equilibrium, since x may grow over time.

2) We should note that the dynamic model has been expressed in a particular and possibly restrictive way. 
Suppose for simplicity that x* is a function of two other variables, Z1 and Z2 and we can write x*=γ1Z1+γ2Z2. 
Then we can substitute x* out of (1), giving

1’)  xt = α’11 Z1 t + α’12 Z2 t + α’21Et Z1 t+1 + α’22 Et Z2 t+1 + αB1 x t-1 

where α’11 = α F0γ1, α’12 = α F0γ2, α’21 = αF1γ1 and α’22 = αF1γ2.  Equation (1) implicitly assumes α’11/ α’12 

= α’21/ α’22.  This restriction is testable.



variables observable at time t.  Assuming for simplicity that x is I(1) and that ∆x* follows an
AR(1) process, we can write Et∆xt+1* = θ0  +  θ1 ∆xt* where θ0 and θ1 are constants.  Substituting
this into (2) we obtain

(3) ∆xt = θ0αF1 + (αF0+αF1(1+θ1)) ∆x*t  -  (αF0+αF1) (x-x*)t-1  + ut

If x is forward-looking (αF1≠0), then the coefficient on ∆xt* in (3) captures the effects of both
current and future values of ∆x*.  It is thus different in absolute value from the coefficient on the
error-correction term, so the sum of the coefficients on ∆x*t and the error-correction term in
(3) will be different from zero.   If x is myopic (αF1=0), by contrast, then the coefficient on
∆x* only captures the effect of the current value of ∆x*, so the sum of the coefficients on ∆x*t

and the error-correction term in (3) is zero.  The constant term (θ0αF1) will also equal zero. 
This observation allows us to construct a simple test of myopia.

To construct the test we estimate the error-correction model

(4) ∆xt = β20 + β21 ∆x*t  + β22 (x-x*)t-1 + εt

where ε is an error-term, and test the null hypothesis H0:β21+β22=03.  Comparing (4) with (3), we
see that rejection of this hypothesis suggests that x is a forward-looking variable while non-
rejection suggests myopia4.   This discussion shows how we can construct a simple test of
myopia that only requires testing a simple parametric restriction in a backward-looking
model.

3) Testing myopia using a more general dynamic model
We now consider a more general model and show that the basic features of our test carry

over to this case.  Suppose the variable x is generated by

(5)  x x E x E x E x x x ut Fo t F t t F t t Fk t t k B t Bm t m t= + + + + + + + ++ + + − −α α α α α α* * * *... ....1 1 2 2 1 1

where Etx*t+i is the expected value of x*t+i based on information available at time t.  In this
generalisation of equation (1), the current value of variable x is related to its current period
optimal value, values of x* up to k periods into the future and previous values of x, lagged up to
m periods into the past.  Lags of x* are omitted from (5) in order to simplify the exposition.  If
any one of the αFi parameters, i=1..k, is not zero, then x is forward-looking.  If
αF1=αF2=..=αFk=0, then x is myopic.  Homogeneity implies the restriction

                     
3 If θ0≠0, then β20=0 under myopia.  We explain in section 4) why we do not exploit this in our main test. 
4 If we assume θ1>0, then we can amend the alternative hypothesis to be H1:β21+β22>0 and use a one-tailed test. 
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We can reparamaterise (5) in error-correction form as

(7) ∆xt  = βF0∆x*t - βF0(x-x*)t-m + βF1Et∆x*t+1 + … +βFkEt∆x*t+k + βB’1∆xt-1 +…+ βB’m∆xt-m-1

                +  βF0∆x*t-1 +...+βF0∆x*t-m  + ut

where βFj = α Fll j

k

=∑ for j=0,..,k, βBj = α Bll j

m

= +∑ 1
for l=1,..,m and βB’j = α Bll

j

=∑ 1
 for l=1,..,m.

This is a generalisation of (2); in particular we note that the sum of the coefficients on ∆x* and
the error-correction term is again zero.

To express the model in backward-looking form, we assume that ∆x* is an
autoregressive process, and write Et∆x*t+i=θ00i+θ0i∆x*t+θ1i∆x*t-1+θ2i∆x*t-2+..+θmi∆x*t-m. 
Substituting this into (7), we obtain a regression equation of the form

(8) ∆xt  = β30 + β31∆x*t + β32(x-x*)t-m + β331∆xt-1 +…+ β33m∆xt-m-1 + β341∆x*t-1 +...+β34m∆x*t-m  +
ut

where β30 = 
q

k

=∑ 1
βFqθ00q, β31  = (βF0+ q

k

=∑ 1
βFqθ0q ), β32=-βF0, β33j=βB’j , for j=1,..,m and β34j =

(βF0+ q

k

=∑ 1
βFqθjq ), for j=1,..,m.

This equation is an extension of (4).  If x is forward-looking, so at least one of the αFi

parameters is not zero, then the sum of the coefficients on ∆x*t and the error-correction term will
differ from zero.  If x is myopic, the each of the αFi parameters will be zero, in which case the
sum of the coefficients on ∆x*t and the error-correction term will be zero. The constant term

(
q

k

=∑ 1
βFqθ00q) will also equal zero. We can therefore test the null hypothesis that x is myopic

against the alternative that x is forward-looking by testing the null hypothesis H0:β31+β32=0
against the alternative H1: β31+β32≠0.  If each of the θ00I parameters are zero, the constant in (8)
is automatically zero, so in this case we test the null H0:β31+β32=0 against the alternative H1:
β31+β32≠0.

4) Discussion
This analysis can be extended in several ways.  First, we could allow the autoregression

used to forecast future values of ∆x* to have more than m lags.  In that case, further lags of ∆x*
will be introduced into (8).  Second, as we discussed above, there might be lags of ∆x* in (5). 
This would complicate the expressions for the β34j parameters but would not affect the test. 



More significantly, there might be structural breaks in the process that generates ∆x*.  If
these are anticipated, there will be shifts in θ0, leading to instability in β20 in (4) or in β30 in (8)
and possibly requiring the use of time dummies. This uncertainty about the role and stability of
the constant term leads us to recommend that the test for myopia should not take account of the
this term5  (in our empirical results below, we show that our test statistics are little affected by
the inclusion or exclusion of the constant). This discussion can also be used to illustrate the test
for myopia proposed in Hendry (1988) and Hendry and Favero (1992): if there are structural
breaks in x*, then θ0 and/or θ1 will not be stable, so the first two parameters in (4) will also be
unstable.  Hence if we find structural breaks in x* but there is no evidence of instability in
(4), then behaviour cannot be forward-looking.

Thus far the paper has assumed x* is an I(1) process.  Although the test is applicable for
other orders of integration, there may be difficulties in these cases.  If x* is stationary, the
autoregression for ∆x* will have a non-invertible MA(1) error, so there may be objections to the
use of simple linear forecasts to generate Et∆x*t+i.  More pragmatically, estimation of the model
is less straightforward in this case: if x* is stationary, we cannot use cointegration techniques to
estimate the process generating x*, separating this from estimation of the model for price
adjustment.  If x* is I(2), then (4) and (8) contain terms of differing orders of integration and
further differencing may be required to produce a balanced equation.  The simplicity of the test
may be lost in this case.
 Is the test likely to be reliable?  There are several ways in which we might draw an
incorrect inference.  First, the assumption of homogeneity might fail.  If so, there will, in the
simple example, be a term involving (1-αF0-αF1-αB1) in (3).  However, this can be checked.  We
could also make a false inference if (8) were not well specified, in which case ∆x*t or the
error-correction term might proxy for omitted variables.  For that reason it is important to
ensure that the backward-looking model is not mispecified.  We would also risk false
inference if ∆x* is not an autoregressive process, so the θ parameters are zero.  This can be

checked empirically.  It is also conceivable that 
q

k

=∑ 1
βFqθ0q=0 although some of the βFq

parameters are non-zero.  In that case we would wrongly accept the null of myopia.  This seems
unlikely.

We can also comment briefly on the likely power of the test.  It is intuitive that the
power of the test will be greater when the future has a stronger affect on the present; therefore
the test will have greater power when the αFi parameters are larger.  Power will also be higher
when the present has a stronger impact of the future; thus power will also be greater when the θi

parameters are large.

5) An application to price adjustment in the UK

                     
5 although this issue clearly deserves further investigation.



In this section we use our test to consider whether price adjustment in the UK is
forward-looking or myopic.  To do this, we first estimate a model for p*, the steady-state of
desired price level.  We then use this to estimate a dynamic model for p, the price level.  We
then apply the test.

There is a large existing literature on price adjustment.  A small part of this literature
(Rotemberg, 1982, Alogoskoufis et al, 1990, Alogoskoufis and Smith, 1991 and Price, 1992)
estimates forward-looking models.  Where tested (Price, 1992), the hypothesis of myopia is
rejected.  Although useful, the main drawback of these structural models is that closed form
solutions only exist where there are no more than two lags in adjustment. As we shall see, this is
insufficient to capture the complexity of the dynamics of price adjustment.

Most empirical models of price adjustment are purely backward looking. Some estimate
a simple partial adjustment process (eg Gordon, 1990, Neudorfer et al, 1990, Gagey et al,
1990, Entorf et al, 1990, Padoa Schioppa, 1990, Andres et al, 1990, Franz and Gordon, 1993,
Weiss, 1993 and Downward, 1995).  Other models have a richer structure, allowing for error-
correction mechanisms or a more complex lag structure (eg Bean and Gavosto, 1990, Burda,
1990, and de Brouwer and Ericsson, 1995).   This latter type of model typically detects quite
complex patterns of price dynamics.

5i) Estimating the steady-state price
In order to estimate a model of price adjustment we clearly need a measure of the steady-

state price.  We model the steady-state price as a homogenous function of domestic marginal
cost and world prices and lower case variables denote logs:

(9) p*  =  µ  + τ mc + (1-τ) pw

where p* is the steady-state price, mc is domestic marginal cost, pw is the world price level in
terms of domestic currency, µ is the mark-up and lower case variables denote logs.  This
formulation has the advantage of subsuming most other models considered in the literature as
special cases (Martin, 1997).  We further assume that firms produce output (Y) using labour (L)
and capital (K) inputs using the CES production function Y={γL(σ-1)/σ+(1-γ)K(σ-1)/σ} σ/(σ-1) and
that capital is fixed in the short-run.  We can then define marginal cost as mc=w-mpl, where w is
the log wage and mpl is the log of the marginal product of labour.  Using the production
function, marginal cost is mc=w - (1/σ)(y-l) – log γ, where (y-l) is the log output-labour ratio. 
Substituting this into (9) and exploiting homogeneity, we can write our model of the steady-state
price as

(10)   w-p*  =  α0  +  α1 (y-1)  +  α2 (w-pw)

where  α1=τ/σ,  α2=(1-τ) and α0 contains the mark-up and other constants.



To estimate (10) we exploit the non-stationary nature of the data by using cointegrating
techniques. We use the estimation procedure of Johansen (1988, 1991), estimating a VAR
model for (w-p), (y-l) and (w-pw) and associating a cointegrating relationship with each
significant eigenvalue of the system.  In this way we obtain superconsistent estimates of all
equilibrium relationships in the system.  We also simplify the estimation problem by separating
estimation of the steady–state and dynamic equations6.

We use aggregate quarterly data for the period 1964:1-1996:1.  The price level is
measured using the GDP deflator; w is measured as the total hourly cost of labour; y is GDP; l
are total hours of work.  We measure pw using an index of import prices.  All variables are
measured in terms of domestic currency.  The Data Appendix gives full definitions and sources.
 ADF tests show that (y-l), (w-p) and (w-pw) are clearly I(1).

We find a complex dynamic structure, one that requires a 12-th order VAR to adequately
model the data.  We also included several time dummies, as is normal is this type of model.  Our
estimated cointegrating relationships are reported in column (i) of table 1. Our estimated
eigenvalues were 0.21, 0.11 and 0.01.  Of these, only the first is significantly different from zero.
We conclude that there is a unique cointegrating relationship. 

 Our estimates of the parameters of (10) are α1=0.71 and α2=0.17; thus the weight on
world prices is 17%.  These are comparable to other estimates.  Martin (1997), using annual data
for 1950-87, also finds a unique cointegrating relationship, whose parameters are similar to
those found here7; studies that do not use cointegration analysis (Artus and McGuirk, 1981,
Dornbusch and Krugman, 1986, and Spitaeller, 1980) also find similar results.  The remainder of
table 1 demonstrates that our estimates are robust.  Column (ii) presents estimates using the
smaller sample 1970:1-1996:1, while column (iii) uses the sample 1966:1-1993:4.  The
eigenvalues and estimated parameters are similar in every case. 

We use these estimates to generate a measure of the steady-state price p*.  To illustrate
the properties of our measure, ∆p* and  ∆p are plotted in the upper panel of figure 1, while the
lower panel shows the gap between the actual and steady-state price (p-p*).  We see that prices
were within 2% of their desired level for most of this period; also, prices were up to 10% below
their equilibrium values during the high inflation period of the mid 1970s and were up to 4%
above equilibrium in the deflationary episode of the early 1980s. Overall, this pattern seems
quite plausible.  Estimates of an autoregressive model for the steady-state price, mimicking the
type of forecasting rule assumed above, are presented Table 2).  The dynamics of ∆p* are
complex: we require a 13th order autoregressive process and several time dummies.  The
significance of the time dummies indicates there have been breaks in the θji parameters.

5ii)  Estimating a dynamic model of prices
                     
6 The alternative would be to substitute (10) into (8) and estimate the steady-state price and price dynamic
simultaneously, imposing the implied cross-equation restrictions.
7 Martin (1997) considers the identification problem in this context and argues that the estimates should be
interpreted as coming from a price setting rather than a wage-setting relationship.



We next use our measure of p* to estimate a backward-looking model of price
adjustment.  Our estimates are presented in table 3.   We again find that price dynamics are
complex: our specification includes the current value and one- and two-year lags of ∆p*, seven
lags of ∆p and the error-correction term; we also include several time dummies to allow for the
shifts in the mean of ∆p* apparent from table 2. Column (1) presents estimates for the period
1966Q2 to 1993Q4, includes the error-correction term at the fifth lag and uses the period
1994Q1 to 1996Q4 for forecasting.  Column (2) estimates the model over the full sample,
1966Q2 to 1996Q4; column (3) repeats the specification of column (1) except that the error-
correction term is included at the fourth lag.  Column (4) investigate the effects of time dummies
by repeating the specification of column (1) but omitting the time dummies.  Our estimates are
generally robust.  Estimates in columns (1)-(3) pass all mispecification tests. Comparing
columns (1) and (4), it is apparent that omitting time dummies induces non-normality, but
otherwise has little effect.  The ability of our estimates to pass forecasting tests is noteworthy
since many other models of price adjustment are unable to forecast adequately (Smith, 1995).

5iii) Testing myopia
We can now test myopia.  Taking the estimates of column (1) of table 3, the estimate on

∆p*t is 0.22, with a standard error of 0.04, while that on the error-correction term is –0.04 (0.03).
If the null of myopia is correct, the sum of these coefficients would be zero. In fact, the sum of
the estimates is 0.18 with a standard error of 0.06.  As the final row of table 3 shows, the F-
statistic of the hypothesis that the sum of the coefficients is zero is 18.96.  This has a p-value of
0.0001.  As a result, we can decisively reject the null hypothesis that price adjustment is myopic,
in favour of the alternative hypothesis that it is forward-looking.   The pattern of estimates is the
same in the other estimates in table 3; applying the test, we find that the null of myopia is
strongly rejected in every case.  This evidence suggests that price adjustment in the UK is
forward-looking rather than myopic.

We also present test statistics that take account of the constant and time dummies.  Our
second test for myopia tests the joint hypotheses that the sum of the estimate on ∆p* and the
error-correction term is zero and that the constant is also zero (this corresponds to testing
β21+β22=0 and β20=0 in (4)).   Rejection of myopia is just as decisive with this form of the test. 
Finally, we also use a test of the joint hypotheses that the sum of the estimate on ∆p* and the
error-correction term is zero, that the constant is also zero and that all time dummies are zero. 
Rejection of myopia is again strong.

6) Conclusion
This paper has developed a test of whether a backward-looking econometric model is

consistent with forward-looking or myopic behaviour.  The test is easy to apply since it

                                                               



requires a simple test of equality between two parameters in an estimated backward-looking
model.  We then estimated a model of price adjustment in the UK and applied our test.  The
results clearly suggest that price adjustment is forward-looking rather than myopic.

These results highlight a difficulty with econometric models of price formation and
any other economic variables that may be found to be forward-looking.  If a variable is
forward-looking, the obvious response is to estimate a forward-looking model. However,
forward-looking models have proved difficult to estimate.  Existing forward-looking models
are almost exclusively structural, derived from an underlying optimisation problem that
provides non-linear restrictions that link the forward-looking and backward-looking
components of the model and allow the forward-looking element to be estimated.  However
closed-form solutions are only available at present for rather simple models (typically
containing no more than 2 adjustment lags). As we have seen, adjustment dynamics may well
be complex than this, suggesting that these structural models may find it difficulty to capture
dynamic adjustment with any adequacy. 

The alternative to using forward-looking models is to continue to use backward-
looking models in the knowledge that this type of model will contain a mixture of backward-
looking and forward-looking components.  Estimates of this type of model must be treated with
great caution since they are difficult to relate to any underlying economic structure.  They will
also be especially vulnerable to instability and the Lucas Critique.



Table 1: Estimated Cointegrating Vectors
estimates of (10)

(1) (2) (3)

sample 1966:1-1996:1 1970:1-1996:1 1966:1-1993:4

Var length 12 12 12

eigenvalues 0.21(*), 0.11, 0.01 0.22(*),0.09, 0.02 0.23(*), 0.09, 0.03

# cointegrating vectors (r)  1  1  1

time dummies Yes yes yes

β1
0.71 0.71 0.73

β2
0.17 0.16 0.13

notes:
1) cointegrating vectors computed using method of Johansen (1988, 1991) as implemented on PCFIML 8.0 (Doornik and Hendry, 1994).
2)   (*) denotes a test significant at the 95% level.
3)   time dummies for 1973Q2, 1974Q1, 1974Q2 and 1979Q3 are included in the VAR.



Table 2: Estimates of a Tme-Series Model for ∆p*

(1) (4)

Sample 1966:2-1993:4 1966:2-1996:1

∆pt-1*
 1.20 (0.10)  1.21 (0.09)

∆pt-2*
-0.34 (0.14) -0.35 (0.14)

∆pt-3*
 0.16 (0.14)  0.16 (0.14)

∆p*t-4
-0.81 (0.14) -0.84 (0.13)

∆p*t-5
 0.89 (0.15)  0.87 (0.15)

∆p*t-6
-0.19 (0.15) -0.17 (0.15)

∆p*t-7
 0.31  (0.15)  0.31  (0.14)

∆p*t-8
-0.92 (0.15) -0.93 (0.14)

∆p*t-9
 0.67 (0.14)  0.68 (0.14)

∆p*t-10
-0.17 (0.15) -0.17 (0.15)

∆p*t-11  0.39 (0.14)  0.38 (0.14)

∆p*t-12 -0.63 (0.14) -0.63 (0.14)

∆p*t-13  0.30 (0.14)  0.31 (0.14)

time dummies Yes Yes

σ  0.0136  0.0132

Forecast  4.37 [0.80]

Serial correlation  1.36 [0.25]  0.49 [0.78]

ARCH  1.02 [0.40]  1.43 [0.23]

Normalisty   4.08 [0.12]   4.33 [0.11]

Heteroskedasticity   0.80 [0.76]   0.93 [0.59]

notes:
1) The table presents OLS estimates, computed using PCGIVE 8.0 (Doornik and Hendry, 1994).
2) (*) denotes a test significant at the 95% level; numbers in square brackets [.]  are p-values of corresponding tests.
3) p* computed using estimates reported in column (1) of Table 1.
4) σ is the equation standard error.
5) forecast is a test of forecasting performance over 1994:1-1996:1;  Serial correlation is a test of up to 4th order serial correlation; ARCH is a
test for up to 4th order ARCH effects; Normality is a test for normality; Heteroskedasticity is a from of the White test against
heteroskedasticity.



Table 3: Tests of Myopia
Estimates of (8)

Dependent variable is ∆pt

(1) (2) (3) (4)

Sample 1966:2-1993:4 1966:2-1996:1 1966:2-1993:4 1966:2-1993:4

∆pt*
  0.22 (0.04)  0.22 (0.03)  0.22 (0.04)  0.23 (0.04)

∆pt-4*
  0.05 (0.04)  0.04 (0.03)  0.03 (0.04)  0.06 (0.05)

∆pt-8*
  0.04 (0.04)  0.04 (0.03)  0.02 (0.03)  0.01 (0.04)

(p-p*)t-5 -0.04 (0.03) -0.05 (0.02) -0.06 (0.03)

(p-p*)t-4 -0.07 (0.03)

∆pt-1
  0.95 (0.05)  0.95 (0.05)  0.94 (0.06)  0.95 (0.07)

∆pt-4
-0.78 (0.09) -0.76 (0.09) -0.72 (0.09) -0.86 (0.11)

∆pt-5
  0.60 (0.10)  0.60 (0.09)  0.57 (0.09)  0.69 (0.12)

∆pt-8
-0.49  (0.10) -0.49 (0.10) -0.46 (0.10) -0.54  (0.13)

∆pt-9
  0.51 (0.10)  0.51 (0.09)  0.49 (0.09)  0.59 (0.12)

∆pt-12
-0.29 (0.08) -0.30 (0.08) -0.28 (0.08) -0.39 (0.10)

∆pt-13
 0.20 (0.06)  0.20 (0.06)  0.19 (0.06)  0.29 (0.08)

Time dummies Yes Yes Yes No

σ  0.0074  0.0074  0.0073  0.0094

Forecast  3.71 [0.93]  3.32 [0.95]  3.71 [0.93]

Serial correlation  0.59 [0.71]  0.75 [0.59]  0.60 [0.69]  0.10 [0.99]

ARCH  2.29 [0.07]  2.61 [0.04]  2.25 [0.07]  0.08 [0.99]

Normality  4.96 [0.08]  4.93 [0.09]  4.42 [0.11] 40.43 [0.00]

Heteroskedasticity   1.22 [0.26]   1.27 [0.21]   1.37 [0.15]   0.96 [0.52]

Myopia 18.96 [0.0001] 22.79 [0.0000] 14.43 [0.0003] 14.00 [0.0003]

Myopia (with constant) 18.06 [0.0001] 12.66 [0.0000]   9.80 [0.0001]  7.26 [0.0011]

Myopia (with constant and
time dummies)

15.46 [0.000] 16.85 [0.0000]  14.82 [0.000]

notes:1)The table presents IV estimates, computed using PCGIVE 8.0 (Doornik and Hendry, 1994);  (*) denotes a test significant at the 95%
level; numbers in square brackets [.]  are p-values of corresponding tests.
2) p* computed using estimates reported in column (1) of Table 1;  dummies for 1973Q2, 1974Q1, 1974Q2, and 1979Q3 are included, except
in column (4).



3) myopia is an F-test of the hypothesis that the sum of the coefficients on ?pt* and the error-correction term is zero.
4) σ is the equation standard error; forecast is a test of forecasting performance over 1994:1-1996:1;  Serial correlation is a test of up to 4th

order serial correlation; ARCH is a test for up to 4th order ARCH effects; Normality is a test for normality; Heteroskedasticity is a from of the
White test against heteroskedasticity.
5) ∆pt* is treated as endogenous; as suggested by table 1, we use up to 9 lags of  growth in wages, productivity and import prices as instruments
6) The row headed "myopia" presents test statistics for the null hypothesis that the sum of the coefficients on ∆p*t and the error-correction term
sum to zero;  it is distributed as a χ(1) under the null.  The row headed "myopia (with constant)" presents test statistics for the null hypotheses that
(i) the sum of the coefficients on ∆p*t and the error-correction term sum to zero and (ii) the constant equals zero; it is distributed as a χ(2) under the
null.  The row headed "myopia (with constant and time dummies)" presents test statistics for the null hypotheses that (i) the sum of the
coefficients on ∆p*t and the error-correction term sum to zero, (ii) the constant equals zero and (iii) the time dummies equals zero; it is distributed
as a χ(6) under the null;.



Data Appendix

We use the following variables for 1964Q1-96Q1

p: the GDP deflator; source: Economic Trends Annual Supplement

w: average hourly earnings; source: Economic Trends Annual Supplement

y: GDP; source: Economic Trends Annual Supplement

l: Total hours of work; source: Economic Trends Annual Supplement

poecd, the price index for OECD exports; source: International Financial Statistics
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Figure 1 plots of ∆p*t and ∆pt and of (p-p*)t 
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