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Abstract. The aim of this note is twofold. Firstly, we prove an explicit reciprocity law for
certain diagonal classes in the étale cohomology of the triple product of a modular curve,
stated in [8] and used there as a crucial ingredient in the proof of the main results. Secondly,
we apply the aforementioned reciprocity law to address the rank-zero case of the equivariant
Bloch–Kato conjecture for the self-dual motive of an elliptic newform of weight k > 2. In
the special case k = 2, our result gives a self-contained and simpler proof of the main result
of [15].

1. Introduction

Let p > 5 be a rational prime and let N > 1 be an integer. Fix algebraic
closures Q̄ and Q̄p of Q and Qp, respectively, embeddings i∞ : Q̄ →֒ C and
ip : Q̄ →֒ Q̄p and a finite extension L of Qp(µN ). For each positive integers n
and u, denote by Mu(n, χ)L the space of complex modular forms of weight u,
level Γ1(n), character χ : (Z/nZ)

∗ → L∗ and Fourier coefficients in Q̄∩L, and
by Su(n, χ)L the subspace of cuspidal modular forms.

In the rest of the introduction, assume that p ∤ N and consider three
(nonzero) cusp forms

f ∈ Sk(N,χf )L, g ∈ Sl(N,χg)L and h ∈ Sm(N,χh)L

of weights k > 2, l > 1 and m > 1, respectively, which are eigenvectors for the
Hecke operator Tℓ for each prime ℓ which does not divide N , and satisfy the
self-duality condition

(1) χf · χg · χh = 1.

Denote by D(f) the Deligne p-adic representation of (the primitive form
associated with) f , and by V (f) the tensor product of D(f) with the f -isotypic
component of Sk(N,χf )L. If GQ = Gal(Q̄/Q), the L[GQ]-module V (f) is then
(non-canonically) isomorphic to the direct sum of a finite number of copies
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of D(f). If ξ denotes either g or h, define similarly V (ξ), after replacing D(ξ)
with the Deligne–Serre representation DS(ξ) if the weight of ξ is equal to one.
Equation (1) implies that k + l +m is even and that the GQ-representation

V (f, g, h) = V (f)⊗L V (g)⊗L V (h)⊗Zp Zp

(

(k + l +m− 2)/2
)

is Kummer self-dual, viz. it is isomorphic to its L-linear dual representation
twisted by Zp(1).

1.1. The geometric and balanced case. Assume in this section that the
triple (k, l,m) is geometric and balanced, that is, l > 2,m > 2 and k, l and m
are the lengths of the sides of a triangle. In this setting [8] associates to (f, g, h)
a diagonal class κ(f, g, h) in the Bloch–Kato Selmer group Sel(Q, V (f, g, h))
of the GQ-representation V (f, g, h). (Its construction is recalled in Section 2.)
The first aim of this note is to prove Theorem A below, a generalization of the
explicit reciprocity law for κ(f, g, h) stated as Proposition 3.5 in [8] and used
as a crucial ingredient in the proof of the main results of [8] and [9].

We first introduce the relevant notations. Assume that p does not divide N ,
and denote by ξ one of f, g and h. Let αξ and βξ be the roots of the Hecke
polynomial hp,ξ(X) = X2−λp(ξ) ·X+χξ(p)p

u−1, where Tpξ = λp(ξ) · ξ and u
is the weight of ξ. Enlarging L if necessary, assume it contains Qp(αξ, βξ, µN ).
Assume in the rest of the paper that

αξ 6= βξ.

Assume moreover that ordp(αξ) < k − 1. Denote by VdR(f, g, h) the filtered
L-module DdR(V (f, g, h)) associated by Fontaine to V (f, g, h). The Faltings
comparison isomorphism and (a suitably twisted) Poincaré duality identify the
Bloch–Kato p-adic logarithm of (the restriction at p of) κ(f, g, h) with a linear
functional

logp(κ(f, g, h)) : Fil
0VdR(f, g, h) → L

(cp. Section 3.1.2). The L-module Fil0VdR(f, g, h) has dimension four, and
contains a distinguished class

ηαf ⊗ ωg ⊗ ωh ∈ Fil0VdR(f, g, h).

Here ωξ is de Rham class in VdR(ξ) = Dcris(V (ξ)) corresponding to ξ under the
Faltings comparison isomorphism and ηαf is a natural element in VdR(f)

ϕ=αf

associated with f , where ϕ is the crystalline Frobenius. (We refer to Section
3.1.3 for precise definitions.) The explicit reciprocity law relates the value of
logp(κ(f, g, h)) at ηαf ⊗ ωg ⊗ ωh to a p-adic period Ip(f, g, h) which we now
define.

Let fw = wNf in Mk(N, χ̄f )L be the image of f under the Atkin–Lehner
operator w = wN . One has Tpf

w = χ̄(p)λp(f) · f
w, so that χ̄(p) · αf and

χ̄(p) · βf are the roots of the p-th Hecke polynomial hp,fw(X). Define

(2) fw
α ∈ Sk(Np, χ̄f )L
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to be the p-stabilizations of fw satisfying Upf
w
α = χ̄f (p)αf · f

w
α . Regard g and

h as p-adic modular forms and let

Ξk(g, h) = d(k−l−m)/2g[p] × h,

where g[p] and d(k−l−m)/2g[p] are defined as follows. If g has q-expansion
∑

n>0 an(g) · q
n, then its p-depletion g[p] is the weight-l p-adic modular form

with q-expansion
∑

n∤p an(g) · q
n (cp. Equation (15)). Let d = q d

dq be Serre’s

derivative operator on LJqK, which sends (the q-expansion of) a p-adic modular
form of weight u to a p-adic modular form of weight u+ 2. For each integer n
(not necessarily positive), the sequence of p-adic modular forms dn+(p−1)pm

g[p],
then converges, for m → ∞, to a p-adic modular form dng[p] of weight l+ 2n.
It follows that Ξk(g, h) defines a p-adic modular form of weight k. As proved in
Section 4.7 (see in particular Equation (46)) the form Ξk(g, h) belongs to the
space Mn-o

k (N,L) of nearly-overconvergent forms of weight k defined over L
(cp. Section 3.3 or [41, 14]). Under the additional assumption ordp(αf ) < k−1,
the work of Coleman defines a natural fw

α -isotypic projection

efw
α
: Mn-o

k (N,L) → Sk(Np,L)fw
α
,

where Sk(N,L)fw
α

is the fw
α -isotypic component of Sk(Np, χf )L (cp. Sec-

tion 3.3). In this case define

Ip(f, g, h) =
(fw

α , efw
α
· Ξk(g, h))Np

(fw
α , fw

α )Np
,

where (ζ, ξ)M =
∫

Y1(M)
ζ(z)ξ̄(z)yu−2 dx dy is the Petersson scalar product on

Su(M,C).1 It is easily seen that the p-adic period Ip(f, g, h) is algebraic and
belongs to L.

Theorem A. Assume that p ∤ N and that ordp(αf ) < k − 1. Then

logp(κ(f, g, h))(η
α
f ⊗ ωg ⊗ ωh)

is equal to

(−1)kN c−2(c− k)!(1−
βf

αf
)(1−

βf

pαf
)

(1 −
βfαgαh

pc )(1 −
βfαgβh

pc )(1−
βfβgαh

pc )(1 −
βfβgβh

pc )
· Ip(f, g, h),

where c = c(k, l,m) denotes the positive integer (k + l +m− 2)/2.

The proof of Theorem A is given in Section 4. It uses the work of Ban-
nai, Bannai–Kings, Besser, Nekovář, Nizio l [1, 2, 10, 11, 31, 35, 36, 33] in an
essential way. See also [5, 4, 14, 6, 7, 26] for related results.

1If fw
α is ordinary (i.e., ordp(αf ) = 0), there is no need to prove that Ξk(g, h) is nearly-

overconvergent in order to define efw
α

·Ξk(g, h) and Ip(f, g, h). In this case Hida [22] defines

an ordinary projector eord from the space Mk(N,L) of weight-k p-adic modular forms over
L to the space Mord

k
(Np,L) of classical p-ordinary modular forms. The composition of eord

with the natural projection Mord
k

(Np,L) → Sk(Np,L)fw
α

onto the fw
α -isotypic component

is an extension of the Coleman morphism efw
α

to Mk(N,L).
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1.2. Applications to the Bloch–Kato conjecture. Throughout this sec-
tion, (f, g, h) is a triple of newforms of weights (k, l,m) = (k, 1, 1) and con-
ductors (Nf , Ng, Nh). The following assumption is in force.

Assumption 1.3.

1. The product of χf , χg and χh is the trivial character.
2. p does not divide Nf ·Ng ·Nh and (Nf , Ng, Nh) = 1.
3. For ξ = g, h the p-th Hecke polynomial X2 − ap(ξ) ·X +χξ(p) is separable.
4. f is p-ordinary (that is its p-th Fourier coefficient is a p-adic unit).

Let
Sel(Q, V (f, g, h)) →֒ H1(Q, V (f, g, h))

be the Bloch–Kato Selmer group of the GQ-representation V (f, g, h) and let

H1
str(Q, V (f, g, h)) = ker

(

resp : Sel(Q, V (f, g, h)) → H1(Qp, V (f, g, h))
)

be its strict Selmer subgroup. Write L(f ⊗g⊗h, s) for the complex L-series of
the tensor product of the motives of f, g and h. Under Assumptions 1.3.1 and
1.3.2, it admits an analytic continuation and satisfies a functional equation
with sign +1 at the central critical point s = k/2. The following theorem
(proved in Section 5) is the main result of this note.

Theorem B. If L(f ⊗ g ⊗ h, s) does not vanish at s = k/2, then the Selmer

group Sel(Q, V (f, g, h)) is equal to the strict Selmer group H1
str(Q, V (f, g, h)).

The Bloch–Kato conjecture predicts that the Selmer group Sel(Q, V (f, g, h))
is trivial if (and only if) the L-series L(f ⊗ g ⊗ h, s) does not vanish at the
central critical point s = k/2. As explained below, the methods of this paper
fall short of proving this conjecture. Nonetheless, the previous result provides
strong evidence in support of it.

When k = 2, Theorem B gives a significantly simpler proof of the main
result proved by Darmon and Rotger in [15] (cp. Section 1.3.1 below) and has
important applications to the equivariant Birch and Swinnerton-Dyer conjec-
ture. Let A be an elliptic curve defined over the rationals and let L = L̺

be the splitting field of the tensor product ̺ = ̺1 ⊗ ̺2 of two irreducible,
odd Artin representations satisfying det(̺1) = det(̺2)

−1. Then Theorem B
and the Serre modularity conjecture prove that the non-vanishing of the L-
series L(A, ̺, s) at s = 1 implies the triviality of the ̺-isotypic component
A(L)̺ = (A(L)⊗ZV̺)

Gal(L/Q) of the Mordell–Weil group of A over L. Indeed,
L(A, ̺, s) = L(f ⊗ g ⊗ h, s), where f, g and h are the cusp forms associated
with A, ̺1 and ̺2 by modularity, and a non-torsion element of A(L)̺ gives rise,
via the p-adic Kummer map, to a class in Sel(Q, V (f, g, h)) with nontrivial re-
striction at p, id est not in H1

str(Q, V (f, g, h)). One can then apply Theorem B
with any (carefully choosen) prime p for which Assumption 1.3 is satisfied.

More generally, let f be a newform of weight k > 2 and let ̺ = ̺1 ⊗ ̺2 be
as above. The representation V (f) can be realized in the middle cohomology

Vk = Hk−1
ét (Ek−2 ⊗Q Q̄,Qp) of the i-fold fibre product E i = E1(N)i of the

universal elliptic curve E1(N) → Y1(N) over the open modular curve of level
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Diagonal classes and the Bloch–Kato conjecture 321

Γ1(N) over Q. The p-adic Abel–Jacobi map and the f -isotypic projection
Vk → V (f) gives a morphism

rp : CH
k/2(Ek−2

L )0 → Sel(L, Vf ),

where E i
L = E i ⊗Q L, the Gal(L/Q)-module CHi( · )0 is the Chow group of

homologically trivial codimension i cycles on · modulo rational equivalence and
Vf denotes the k/2-th Tate twist of V (f). If (Assumption 1.3 is satisfied and)
L(f, ̺, s) = L(f⊗g⊗h, s) does not vanish at s = k/2, Theorem B proves that rp
maps the ̺-component CHk/2(Ek−2

L )̺0 = H0(Gal(L/Q),CHk/2(Ek−2
L )0 ⊗Z V̺)

to the restricted Selmer group H1
str(Q, V (f, g, h)). In contrast with the weight

two case, when k > 2, this is far from proving the (conjectural) vanishing of the

f -isotypic component of CHk/2(Ek−2
L )̺0, as the injectivity of the Abel–Jacobi

maps is arguably the deepest aspect of the Beilinson–Bloch–Kato conjectures.
Despite this, Theorem B still provides strong evidence in support of the Bloch–
Kato conjecture for the ̺-twist of the self-dual motive associated with f .

1.3.1. Outline of the proof and comparison with [15]. The general strategy un-
derlying the proof of Theorem B dates back to Kato’s work on the cyclotomic
main conjecture, as revisited and extended in a series of recent works, includ-
ing [14, 4, 28, 7, 42, 15, 27]. It can be summarized as follows. (We refer the
reader to Section 5 for the actual proof of Theorem B.)

For ξ = g, h, fix a root αξ of the Hecke polynomial X2 − ap(ξ) ·X + χξ(p)
and write ξα(q) = ξ(q)− (χξ(p)/α) · ξ(q

p) for the corresponding p-stabilization
of ξ. According to a result of Wiles, there exist Hida families g = gα and
h = hα specializing, respectively, to gα and hα in weight one. For each integer
u in a dense subset of a small p-adic disc U centered at one, the constructions
outlined in the previous section associate to f and the weight-u specializations
gu and hu an algebraic number Ip(f, gu,hu). A method due to Hida (cp. [23])
shows that these algebraic numbers are p-adically interpolated by an analytic
function Lp(f, gh) on U . Thanks to the proof by Harris–Kudla of a conjecture
of Jacquet, the value of Lp(f, gh) at u = 1 is related to the complex special
value L(f ⊗ g ⊗ h, k/2). The key technical step in the proof of Theorem B
consists in showing that there exists a class κ(f, gh), in a suitable big Selmer
group with coefficients in the Tate algebra of analytic functions on U , such
that

(3) Lp(f, gh) = L
(

resp(κ(f, gh))
)

,

where L is a branch of the appropriate Perrin-Riou big logarithm map. (We
refer to Theorem 5.3 for a precise statement of this result.) Once this is
proved, the previous discussion relates L(f ⊗ g ⊗ h, k/2) to the value at u = 1
of the right-hand side of Equation (3), which in turn is related by results of
Colmez–Perrin-Riou to the Bloch–Kato dual exponential of the specialization
κ(f, gα, hα) of κ(f, gh) at u = 1. Assuming that L(f ⊗ g ⊗ h, s) does not
vanish at s = k/2, this produces a ramified class κ(f, gα, hα) in the relaxed-
at-p Selmer group of V (f, g, h) over Q. Under Assumption 1.3.3, one actually
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produces four ramified classes κ(f, gi, hj), one for each choice of the roots i
and j of the p-th Hecke polynomials of g and h. The p-adic residues of these
classes are easily seen to be linearly independent, hence Theorem B follows
from an application of Poitou–Tate duality.

Theorem 5.3 (or better its proof) shows that Equation (3) can be deduced
directly from Theorem A and a simple density argument. More precisely,
take a sequence ui of integers congruent to 1 modulo p − 1, which converges
to infinity in the ordinary topology and to 1 in the p-adic topology (e.g.,
take ui = 1 + (p − 1)pi). We prove that the existence of a class κ(f, gh)
satisfying Equation (3) is a direct consequence of the explicit reciprocity law
at each crystalline weight-ui specialization (f, gui

,hui) of the triple (f, g,h).
For this strategy to work, it is crucial to use the good integrality properties
enjoyed by the diagonal classes introduced in [8] (cp. Section 2 and the proof
of Theorem 5.3). This simple method applies to the study of the analytic rank-
zero case of the equivariant Bloch–Kato conjecture in many other interesting
settings (e.g., the one considered in [7]).

In the significant special case k = 2, Theorem B recasts the main result
of [15]. The proof of the latter follows a different pattern. More precisely, loc.
cit. constructs an explicit class κ(f, gh) satisfying the identity (3) by using del-
icate geometric arguments. For each positive integer s, a twisted diagonal cycle

is defined in the Chow group of codimension two cycles in the triple product of
the modular curve X1(Nps) of level Γ1(Nps) over Q. The p-adic Abel–Jacobi
images of these cycles satisfy certain compatibilities under the natural maps
from X1(Nps+1) to X1(Nps), from which κ(f, gh) arises as the inverse limit
of classes in the ordinary parts of the middle étale cohomology with constant
coefficients of the cubes of the curves X1(Nps). Once κ(f, gh) is constructed,
reciprocity laws for its specializations at triples of the form (f, g2,χ,h2,χ−1)
are proved, where g2,χ denotes the non-crystalline specialization of g at an
arithmetic point of weight 2 and character χ of conductor divisible by p. This
entails working on varieties with bad reduction at p, which makes it harder to
obtain the reciprocity laws directly. In this special setting, Equation (3) follows
from these reciprocity laws and the properties of the Perrin-Riou logarithm.

2. Diagonal classes

This section recalls the definition of the diagonal classes introduced in [8],
to which we refer for more details.

Let N > 3 be a positive integer and let Y1(N) be the affine modular curve
of level Γ1(N) over Z[1/N ], classifying isomorphism classes of pairs (E,P ),
where E is an elliptic curve over a Z[1/N ]-scheme S and P is a section in
E(S) of exact order N . Let R be a Z[1/N ]-algebra, let Y = Y1(N)R be the
base change of Y1(N) to R and let v : E → Y be the universal elliptic curve
over Y . There is a natural functor ·ét from the category of p-adic representa-
tions of GL2(Zp) to the category of p-adic étale sheaves on Y . If St denotes
the standard representation of GL2(Zp), then S = Stét is equal to the relative
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étale cohomology R1v∗Zp of E over Y . In particular, one has detét = Zp(−1)
for the determinant det of St (see [8, Section 3] and the references therein, in
particular, [19, Prop. A I.8] for more details). For each nonnegative integer
u, denote by Su = Symmu

Zp
(St) the symmetric quotient of the u-fold tensor

power of St and by Su = Symmu
Zp

S the étale sheaf corresponding to Su under

·ét. Write H ·
ét(Y,Su) for the continuous étale cohomology groups (in the sense

of Janssen [24]) of Y with coefficients in Su.

Notation. In this rest of this section Y = Y1(N)Q denotes the modular curve
over Q. We also fix a rational prime p > 3.

Let (k, l,m) be a balanced triple in (Z>2)
3 such that k + l + m is even.

(Balanced means that k, l and m are the lengths of the sides of a triangle.) The
Clebsch–Gordan decomposition of classical invariant theory gives a canonical
generator Detr of H0(GL2(Zp), Sr ⊗ det−r), where r = (r1, r2, r3) is equal to
(k − 2, l − 2,m− 2), r is equal to (r1 + r2 + r3)/2 and Sr is a shorthand for
Sr1 ⊗Zp Sr2 ⊗Zp Sr3 . After setting Sr = Sr1 ⊗Zp Sr2 ⊗Zp Sr3 , the invariant
Detr corresponds (under ·ét) to a global section

Det
ét
r = Det

ét
N,r ∈ H0

ét(Y,Sr(r)).

Let d : Y →֒ Y 3 be the diagonal embedding and let

S[r] = Sr1 ⊠ Sr2 ⊠ Sr3 ,

so that d∗S[r] = Sr. The push-forward of Detétr along d gives a class in

H4
ét(Y

3,S[r](r+2)), and the Hochschild–Serre spectral sequence yields a nat-

ural map HSét from H4
ét(Y

3,S[r](r+2)) to the global Galois cohomology group

H1(Q, WN,r) of the lattice

WN,r = H3
ét(Y

3
Q̄
,S[r])(r + 2)

in the p-adic representation WN,r = WN,r ⊗Z Q. The class

(4) κN,r = HSét ◦ d∗(Det
ét
r ) ∈ H1(Q, WN,r)

is called the diagonal class of level N and weights (k, l,m). The results of [33]
imply that (after inverting p) κN,r belongs to the Bloch–Kato Selmer group
Sel(Q,WN,r) of WN,r over Q (cp. [8] and Section 4.1 below).

Let L be a finite extension of Qp and consider a triple of modular forms

f ∈ Sk(N,χf )L, g ∈ Sl(N,χg)L and h ∈ Sm(N,χh)L,

where (k, l,m) is a balanced triple with k, l,m > 2 and k + l + m even. As-
sume that f, g and h are (nonzero) eigenforms for the Hecke operator Tℓ with
eigenvalues λℓ(f), λℓ(g) and λℓ(h), for each prime ℓ not dividing N . As in the
introduction, assume in addition that they satisfy the self-duality condition
Equation (1), namely, that the product of the characters of f, g and h is the
trivial character modulo N . Let

prfgh : WN,r ⊗Qp L → V (f, g, h)

Münster Journal of Mathematics Vol. 13 (2020), 317–352



324 Massimo Bertolini, Marco Adamo Seveso, and Rodolfo Venerucci

be the maximal L-quotient of WN,r ⊗Qp L on which the Hecke operator Tℓ ⊗
id⊗ id (resp., id⊗ Tℓ ⊗ id, id⊗ id⊗ Tℓ) acts as multiplication by λℓ(f) (resp.,
λℓ(g), λℓ(h)) for each prime ℓ not dividing N/pordp(N), and 〈d1〉 ⊗ 〈d2〉 ⊗ 〈d3〉
acts as multiplication by χf(d1) · χg(d2) · χh(d3) for each di in (Z/NZ)∗. The
L[GQ]-module V (f, g, h) is a direct summand of WN,r ⊗Qp L, isomorphic to
the direct sum of a finite number of copies of the (r + 2)-th Tate twist of the
tensor product of the L-adic Deligne representations of f, g and h. Define

κ(f, g, h) = prfgh∗(κN,r) ∈ Sel(Q, V (f, g, h))

to be the image of κN,r under the map induced in cohomology by prfgh.

3. Cohomology and modular forms

This section briefly recalls the needed facts on the de Rham and rigid co-
homology of modular curves over Zp. We refer to [25, 39, 13, 2, 5] for the
details.

Notation. In this section Y = Y1(N)Qp and X = X1(N)Qp denote the open
and compact modular curves of level Γ1(N) over Qp. Let C = X − Y and
let u : E → Y be the universal elliptic curve. Let L be a finite extension of
Qp(ζN ), where ζN = e2πi/N .

3.1. De Rham cohomology. Let ω = u∗Ω
1
E/Y and SdR = R1u∗Ω

•
E/Y de-

note, respectively, the line bundle of relative differentials and the first relative
de Rham cohomology of E/Y , extended to vector bundles on X as in [39,

Section 2.3]. For i > 0, set SdR,i = Symmi
OX

SdR and ωi = ω⊗i; one has a

natural isomorphism between ω2 and Ω1
X(logC), called the Kodaira–Spencer

isomorphism. For 0 6 q 6 i, denote by FilqSdR,i = ωq ⊗OX SdR,i−q the q-th
step in the Hodge filtration and by S ·

dR,i = S ·
dR,i(X) the logarithmic de Rham

complex of X :

S
·
dR,i =

[

∇ : SdR,i → SdR,i ⊗OX Ω1
X(logC)

]

(concentrated in degrees zero and one), where ∇ is the Gauß–Manin connec-
tion. For each open subscheme U of X , write S ·

dR,i(U) for the restriction of
S ·

dR,i to U . Write

(5) HdR(Y,Si) = HΓ(Y,S ·
dR,i(Y ))

for the de Rham cohomology of Y with values in (SdR,i(Y ),Fil•,∇). According
to [16, Cor. II.3.15], this is naturally isomorphic to the de Rham cohomology
HdR(X,Si) = HdR(X,S ·

dR,i), viz. to the cohomology groups of the derived

complex RΓ(X,S ·
dR,i). The Hodge filtration and the Kodaira–Spencer iso-

morphism then give a natural isomorphism

Mi+2(N,L) = Fil1H1
dR(Y,Si)L,

where Mi(N,L) = Γ(X,ωi)L is the space of weight-i modular forms of level
Γ1(N) defined over L.
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3.1.1. Comparison with étale cohomology. Let k > 2 and let f in Sk(N,χf )L
be an eigenvector for the Hecke operator Tℓ, with eigenvalue λℓ(f), for each
prime ℓ not dividing No = N/pordp(N). Denote by

VdR(f) = H0(Qp, BdR ⊗Qp V (f))

the de Rham module of the restriction to GQp of the GQ-representation V (f)
defined in the introduction. The comparison isomorphism between étale and
de Rham cohomology proved by Faltings–Tsuji [18, 40] yields a natural iso-
morphism of filtered modules

(6) VdR(f) ∼= H1
dR(Y,Sk−2)f ,

where the right-hand side is the direct summand of H1
dR(Y,Sk−2)L on which

the Hecke operator Tℓ (resp., diamond operator 〈d〉) acts as multiplication
by λℓ(f) (resp., χf (d)) for each prime ℓ not dividing No (resp., each unit
d in Z/NZ). We identify VdR(f) with a direct summand of H1

dR(Y,Sk−2)L
under the previous isomorphism, so that the f -isotypic component Sk(N,L)f
of Mk(N,L) becomes identified with Fil1VdR(f). Define

ωf ∈ Fil1VdR(f)

to be the element corresponding to the modular form f in Mk(N,L)f under
these identifications.

If (f, g, h) is a triple of modular forms as in Section 2, the isomorphism (6)
and the Künneth decomposition for de Rham cohomology induce a natural
isomorphism of filtered modules (considered as an equality)

(7) VdR(f, g, h) ∼= H3
dR(Y

3,S[r])fgh ⊗Qp Qp[r + 2].

Here VdR(f, g, h) = H0(Qp, V (f, g, h)⊗Qp BdR) and Qp[n] = DdR(Qp(n)) for

each n in Z. The filtered vector bundle with connection S[r],dR on Y 3 is
defined by SdR,k−2 ⊠ SdR,l−2 ⊠ SdR,m−2. Finally, the fgh-isotypic compo-
nent H3

dR(Y
3,Sr)fgh of H3

dR(Y
3,S[r])L = H3

dR(Y
3,SdR,[r])L is defined as in

Section 2.

3.1.2. Duality. Let

( · , · ) : SdR ⊗OY SdR → OY (−1)

be the perfect relative Poincaré duality pairing, arising from the dualities
( · , · )x : H

1
dR(Ex/k) ⊗Qp H1

dR(Ex/k) → k on the fibres at x : Spec(k) → Y
(with k a field extension of Qp). Here OY (n) (for n in Z) denotes the sheaf OY ,
equipped with the trivial connection and with the filtration Fil•OY (n), given
by FilqQp(n) = OY for q 6 −n and FilqOY (n) = 0 for q > 1 − n. For each
i > 0, the pairing ( · , · ) induces a duality

(8) ( · , · )i : SdR,i ⊗OY SdR,i → OY (−i),

whose restriction to the fibre at x : Spec(k) → Y is given by

(9) (α,β)i,x =
1

i!

∑

σ∈Si

(α1, βσ(1))x · · · (αi, βσ(i))x
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for each α = α1 · · ·αi and β = β1 · · ·βi in Symmi
kH

1
dR(Ex/k). This in turn

induces a perfect duality

(10) ( · , · )i : H
1
dR(Y,Si)⊗QpH

1
dR,c(Y,Si) → H2

dR,c(Y,OY (−i)) ∼= Qp[−i−1].

Let (f, g, h) be as in Section 2 and (as in the introduction) set ξw = wNξ,
for ξ equal to f , g and h. As ξw is cuspidal, the morphism H1

dR,c → H1
dR maps

the ξw-isotypic component of H1
dR,c(Y,Si)L isomorphically onto VdR(ξ

w) (cp.

Equation (6)), and ( · , · )u+2 induces a perfect pairing

(11) ( · , · )ξ : VdR(ξ)⊗L VdR(ξ
w) → L[1− u],

where u is the weight of ξ. With a slight abuse of notation, write again

wN : H1
dR,·(Y,Si) → H1

dR,·(Y,Si)

for the geometric Atkin–Lehner isomorphism (cp. [8, Section 2.3.1]), which
induces an isomorphism wN : VdR(ξ) → VdR(ξ

w). The composition of ( · , · )ξ
and id⊗ wN then yields a perfect duality

〈 · , · 〉ξ : VdR(ξ)⊗L VdR(ξ) → L[1− u],

under which Su(N,L)ξ = Fil1VdR(ξ) is the orthogonal complement of itself.
Define the perfect duality

(12) 〈 · , · 〉fgh : VdR(f, g, h)⊗L VdR(f, g, h) → L[1]

to be the tensor product of the pairings 〈 · , · 〉ξ for ξ = f, g, h. As easily checked,
the Bloch–Kato exponential gives an isomorphism expp between the tangent

space tgdR(f, g, h) of VdR(f, g, h) and the finite part H1
fin(Qp, V

∗(f, g, h)) of
the local cohomology group H1(Qp, V (f, g, h)). After identifying tgdR(f, g, h)

with the L-linear dual of Fil0VdR(f, g, h) via the perfect duality 〈 · , · 〉fgh, the
inverse of expp then gives rise to an L-linear isomorphism

logp : H
1
fin(Qp, V (f, g, h)) ∼= HomL

(

Fil0VdR(f, g, h), L
)

.

In particular, the image under logp of (the restriction at p of) the Selmer class
κ(f, g, h) yields a functional

(13) logp(κ(f, g, h)) : Fil
0VdR(f, g, h) → L.

3.1.3. The class ηαf . Assume in this section ordp(N) 6 1 and let f be as in
Section 3.1.1. Assume in addition that p does not divide the conductor of
the character of f . Then V (f) is a semi-stable representation of GQp . As a

consequence, VdR(f) = H0(Qp, Bst ⊗Qp V (f)) is equipped with a semi-stable
Frobenius endomorphism ϕ. As in the introduction, let αf and βf be the
roots of the p-th Hecke polynomial hf,p(X) = X2−λp(f) ·X+χf (p)p

k−1 and
assume that L contains Qp(αf , βf ). Under the assumptions of Section 1.1 the
characteristic polynomial of ϕ is a power of hf,p(X) and VdR(f) is the direct

sum of Fil1VdR(f) = Sk(N,L)f and the ϕ-eigenspace VdR(f)
ϕ=αf (cp. [38]).

It follows from this and Section 3.1.2 that there exists a unique de Rham class

ηαf ∈ VdR(f)
ϕ=αf
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such that, for each ξ in Sk(N,L)f , one has (cp. the introduction)

〈ηαf , ωξ〉f =
(ξw, fw)N
(fw, fw)N

.

If (f, g, h) is a triple of modular forms as in Section 2, the Künneth product
of ηαf , ωg and ωh defines a class

(14) ηαf ⊗ ωg ⊗ ωh ∈ Fil0VdR(f, g, h).

(To show that the class ηαf ⊗ ωg ⊗ ωh indeed belongs to the zeroth step of

the Hodge filtration of VdR(f, g, h), note that Fil1VdR(ξ) = Filu−1VdR(ξ) for a
modular form ξ of weight u and recall that the triple (k, l,m) is balanced.)

3.2. p-adic modular forms. Let Xrig and Y rig be the rigid analytic varieties
over Qp associated with X and Y , respectively, and let Xord and Y ord be their
ordinary loci. Let L be a finite extension of Qp(µN ) and fix a generator ζN of
µN (L). For each integer s, denote by

Ms(N,L) = Γ(Xord,ωs)L

the space of Katz p-adic modular forms of weight s and level Γ1(N) defined
over L. Let RN = OLJqK ⊗Z Q and let Tate(q) = (Gm/qZ, ζN ) be the Tate
generalized elliptic curve with Γ1(N)-level structure over RN . As Tate(q) is
defined by a global affine equation y2 + xy = x3 + b(q) ·x+ c(q) over ZJqK, the
invertible sheaf ω|Tate(q) = ı∗ω has a canonical generator ωcan = dx/(2y + x)
(cp. [25, Section A.1.2]). Given a section ω of ωs over a neighborhood of
Tate(q), its restriction ω|Tate(q) to Tate(q) is then of the form fω · ωs

can for a
unique element fω in RN , called the q-expansion of ω. The q-expansion map
indeed gives an injective morphism

Ms(N,L) →֒ RN ,

which we consider as an inclusion. If f in RN is the q-expansion of a p-adic
modular form of weight s, we write ωf for the corresponding section of ωs−2

over the ordinary locus (so that ω = ωfω).
The module Ms(N,L) is equipped with the action of the Hecke operator

U = Up and of the Verschiebung V , defined on q-expansions by

U
(

∑

n>0

an · qn
)

=
∑

n>0

anp · q
n and V

(

∑

n>0

an · qn
)

=
∑

n>0

an · qnp,

respectively. In particular, for each p-adic modular form f =
∑

n>0 an(f) · q
n

in Ms(N,L), its p-depletion

(15) f [p] = (1− V U)f =
∑

p∤n

an(f) · q
n

is again a p-adic modular form of weight s. The derivation d = q d
dq on RN

restricts to Serre’s operator

d : Ms(N,L) → Ms+2(N,L).
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In addition, Ms(N,L) is equipped with the Hecke operators Tℓ and 〈d〉 for
primes ℓ not dividing Np and units d in Z/NZ, which restrict to the usual
Hecke operators on the space Ms(N,L) of classical modular forms if s > 0.

3.3. Rigid cohomology. In this section p does not divide N , so that Y1(N)Zp

and X1(N)Zp are smooth models of Y and X , respectively, over Zp.

Denote by ı : Y rig →֒ Xrig and by  : Xord →֒ Xrig the natural inclusions
and by ı† and † the corresponding Berthelot functors from the category of
abelian sheaves on Xrig to itself [3]. If F is a coherent sheaf on X and κ = ı, ,
we write κ†F for the image of the analytic sheaf F |Xrig under κ†. Set

S
·
rig,i = ı†S ·

dR,i

and denote again by Fil· and ∇ the filtration and connection on

Srig,i = S
0
rig,i

induced by the corresponding structures on SdR,i. The abelian sheaf Srig,i is
also equipped with a Frobenius endomorphism ϕ, such that (Srig,i,Fil

·,∇, ϕ)
is an overconvergent filtered ϕ-isocrystal on the special fibre YFp of Y1(N)Zp

(cp. [2, Appendix A]). According to a result of Dwork [25, Thm. A2.3.6], the
restriction of Srig = Srig,1 to the ordinary locus admits a unique ϕ-equivariant

splitting splur : Srig|Y ord → Fil1Srig|Y ord = ω|Y ord of the Hodge filtration such
that the Frobenius ϕ acts invertibly on its kernel. Write again

splur : Srig,i|Y ord → ωi|Y ord

for the map induced on the i-th symmetric powers, called the unit root splitting.
The cohomology of RΓ(Xrig, ı†S ·

dR,i) and RΓ(Xrig, †S ·
dR,i) compute the

rigid cohomology groups

Hrig(YFp ,Si) = Hrig(YFp/Qp, ı
†
SdR,i)

and

Hrig(Y
ord
Fp

,Si) = Hrig(Y
ord
Fp

/Qp, 
†
SdR,i),

respectively, where YFp = Y1(N)Fp and Y ord
Fp

is the complement in YFp of the

finitely many Fp2 -rational supersingular points. Theorem 5.4 of [13] proves
that the Hodge filtration induces an isomorphism

(16) [ · ]i+2 :
M †

i+2(N,L)

di+1M †
−i(N,L)

∼= H1
rig(Y

ord
Fp

,Si)L.

Here M †
s (N,L) = Γ(Xrig, †ωs)L is the space of overconvergent modular forms

of level weight s ∈ Z and level Γ1(N) defined over L, and di+2 is the (i+2)-th
iterate of the Serre derivative operator d (denote by θ in loc. cit.). The L-
submodule M †

s (N,L) of Ms(N,L) is invariant under the action of the Hecke
operators U , Tℓ for primes ℓ not dividing Np, 〈d〉 for units d in (Z/NZ)∗, and
under the action of the Verschiebung V . Loc. cit. proves that the isomorphism
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[ · ]i+2 intertwines the action of the rigid Frobenius ϕ on H1
rig(Y

ord
Fp

,Si) with

that of pi+1〈p〉V on overconvergent modular forms, that is,

(17) ϕ ◦ [ · ]i+2 = [ · ]i+2 ◦ p
i+1〈p〉V.

(Note that our model Y1(N) of the modular curve of level Γ1(N), in which
Tate(q) is not defined over Q, differs from the one used in [13]. This explains
the appearance of the diamond operator 〈p〉 in the previous equation.)

The restriction of the unit-root splitting to the global sections of Srig,i and
the Kodaira–Spencer isomorphism induce an injective map

splur : Γ
(

Xrig,S 1
rig,i

)

L
→֒ Mi+2(N,L).

Its image Mn-o
i+2(N,L) is called the space of nearly-overconvergent modular

forms. The composition of the inverse of [ · ]i+2 with the natural map

Γ
(

Xrig,S 1
rig,i

)

→ H1
rig(Y

ord
Fp

,Si)

then yields a morphism

(18) e† : Mn-o
i+2(N,L) → M †

i+2(N,L)
/

di+1M †
−i(N,L).

Let f in Sk(N,χf )L be a cusp form of weight k > 2, level Γ1(N), char-
acter χf : (Z/NZ)∗ → L∗ and Fourier coefficients in L. Assume that f is an
eigenvector of the Hecke operator Tℓ, with eigenvalue aℓ(f), for each prime ℓ
not dividing N . Let αf , βf and fw

α ∈ Sk(Np, χ̄f)L be as in Section 1.1 (see in
particular Equation (2)). Define

(19) H1
rig(Y

ord
Fp

,Sk−2)L ։ H1
rig(Y

ord
Fp

,Sk−2)fw
α

to be the maximal quotient on which

ϕ = χ̄f (p) · βf , Tℓ = χ̄f (p) · aℓ(f) and 〈d〉 = χ̄f (d)

for each prime ℓ not dividing Np and each unit d in Z/NZ. According to Equa-

tion (17), the inclusion Sk(Np,L) →֒ M †
k(N,L) and the Coleman isomorphism

[ · ]k defined in Equation (16) induce a morphism

[ · ]αf : Sk(Np,L)fw
α
→ H1

rig(Y
ord
Fp

,Sk−2)fw
α
,

where Sk(Np,L)fw
α

is the fw
α -isotypic quotient of Sk(Np,L).

If one further assumes that fw
α has small slope, viz. ordp(αf ) < k− 1, then

[ · ]αf is an isomorphism:

(20) [ · ]αf : Sk(Np,L)fw
α
∼= H1

rig(Y
ord
Fp

,Sk−2)fw
α
.

Indeed, [13, Thm. 6.1 and Lem. 6.3] proves that the natural map

Sk(Np,L) → M †
k(N,L)/dk−1M †

2−k(M,L)

induces an isomorphism on the fw
α -isotypic quotients, provided that fw

α has
small slope. In this case, define

(21) efw
α
: Mn-o

k (N,L) → Sk(Np,L)fw
α
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to be the composition of the morphism e† defined in Equation (18) with the
projection to the fw

α -isotypic quotient. The morphism efw
α

is the (Coleman)
fw
α -isotypic projector mentioned in Section 1.1.

3.4. Explicit formulas (cp. [2, Section 4]). Let Ỹ → Y ord be the affine for-
mal scheme over Zp which classifies trivialized elliptic curves with Γ1(N)-level
structure defined over p-rings. (We recall that a trivialization on an elliptic

E → S is an S-isomorphism between the formal multiplicative group Ĝm over
S and the formal completion Ê of E along the zero section.) Let M̃(N,Zp) be

the coordinate ring of Ỹ , the space of Katz generalized p-adic modular forms

of level Γ1(N). Write R̃N for the p-adic completion of Zp[ζN ]((q)). Evaluation

at the Tate curve Tate(q) over R̃N gives a q-expansion map

M̃(N,Zp) →֒ R̃N ,

which we consider as an inclusion. Then M̃(N,Zp) is invariant under the

action on R̃N of the Hecke operator U , of the Verschiebung V and of Serre’s
derivative operator d = q d

dq .

Denote by ω̃ and S̃rig,i the restrictions of ω and Srig,i, respectively, to Ỹ .

These are free M̃(N,Zp)-modules. More precisely, let E → Ỹ be the univer-

sal elliptic curve with trivialization ψ : Ĝm
∼= Ê . The line bundle ω̃ is then

generated by the global section ω̃can satisfying ψ∗ω̃can = dT/(1 + T ) (with

Gm = Spec(Z[T, T−1])), which specializes to ωcan on Tate(q). Let Ω̃ be the

module of Kähler differentials of the Zp-algebra M̃(N,Zp) and denote by δ̃can
the differential in Ω̃ corresponding to ω̃2

can under the Kodaira–Spencer isomor-

phism. The derivation of M̃(N,Zp) corresponding to δ̃can is Serre’s operator d.
After setting η̃can = ∇d(ω̃can), one has

S̃rig = M̃(N,Zp) · ω̃can ⊕ M̃(N,Zp) · η̃can,

and the action of the Gauß–Manin connection ∇ is described by the formula

(22) ∇(f · ω̃can + g · η̃can) =
(

df · ω̃can + (f + dg) · η̃can
)

⊗ δ̃can.

The action of the Frobenius ϕ can also be described explicitly (paying some
attention to the fact that Tate(q) is not defined over Q). In particular,

(23) ϕ

(

ω̃can

η̃can

)

=

(

p
1

)(

ω̃can

η̃can

)

.

Let i be an integer, let L be a finite extension of Qp[ζN ] and write M̃(N,L)

for the base change of M̃(N,Zp) to L. Identify Γ(Ỹ , ω̃i) with M̃(N,Zp) via
ω̃can, and ω2 with Ω1

X(logC) under the Kodaira–Spencer isomorphism. Then

restriction to Ỹ gives an injective map Mi(N,L) →֒ M̃(N,L) compatible with
the q-expansion maps, which we consider as an inclusion. As the pullback of
δ̃can to the Tate curve is equal to dq/q, one deduces that the restriction to Ỹ

of a classical modular form f in Mi+2(N,L) is given by f(q) · ω̃i
can ⊗ δ̃can.
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4. Proof of Theorem A

This section proves Theorem A stated in Section 1.1.

Notation. Let the notations and assumptions be as in loc. cit. In particular,
N > 1 is a positive integer not divisible by p and (k, l,m) is a geometric bal-
anced triple in (Z>2)

3. Throughout this section one writes Y = Y1(N)Zp and
X = X1(N)Zp for the open and closed modular curves over Zp, respectively.
Moreover, (as in Section 2), r = (r1, r2, r3) equals (k − 2, l − 2,m − 2) and
r denotes the nonnegative integer (r1 + r2 + r3)/2. To ease notation, in this
section only we write S· = Sét,· for the Qp-linear extensions of the p-adic
étale sheaves denoted by the same symbol in Section 2. (For example, the
étale cohomology groups H ·

ét(Y,Si) = H ·
ét(Y,Sét,i) are Qp-vector spaces).

4.1. Syntomic and finite polynomial cohomology. This section recalls
the needed facts on rigid syntomic and finite polynomial cohomology. We use
[12] and [2, Appendix A] as main references.

For each smooth pair U = (U, Ū) over Zp, write S(U ) for the category of
admissible filtered overconvergent ϕ-isocrystals on U defined in [2, Def. A.2].
We also call an element of S(U ) a syntomic sheaf on U . For each syntomic
sheaf F on U and each polynomial P (t) in 1 + t · L[t], denote by H ·

P (U ,F )
the Besser rigid finite-polynomial cohomology groups of U with values in F .
In the special case P (t) = 1 − t, these are the syntomic cohomology groups
defined in loc. cit. and denoted by H ·

syn(U ,F ). The definition given there
readily generalizes to the more general setting considered here (cp. [10, 12]).
Moreover, one can define finite polynomial cohomology groups with compact
support H ·

P,c(U ,F ) as in [12].

4.1.1. Syntomic sheaves I: the case U = Zp. Write Zp for the smooth pair
(Spec(Zp), Spec(Zp)) and let P (t) =

∏

i(1 − αit) and Q(t) =
∏

j(1 − βjt) be

polynomials in 1 + t · L[t] (with αi, βj in Q̄p).
The category S(Zp) of syntomic sheaves on Zp is simply the one of filtered

ϕ-modules over Qp. For F in S(Zp) consider on FL = F ⊗Qp L the (induced
filtration and the) L-linear endomorphism ϕ = ϕ ⊗Qp L. Then the finite

polynomial cohomology group Hi
P (Zp, F ) vanishes when i 6= 0, 1 and one has

H0
P (Zp, F ) = F

P (ϕ)=0
L ∩ Fil0FL and H1

P (Zp, F ) = FL

/

P (ϕ) · Fil0FL

(where F
P (ϕ)=0
L denotes the kernel of P (ϕ).) Let P ⋆ Q(t) =

∏

i,j(1 − αiβjt)

and let a(x, y) and b(x, y) be any pair of two-variable polynomials satisfying

P ⋆ Q(xy) = a(x, y) · P (x) + b(x, y) ·Q(y).

Let F , G and H be filtered ϕ-modules, let γ : F ⊗Qp G → H be a morphism
of filtered ϕ-modules and let i, j be nonnegative integers which sum to one.
Define the cup-product pairing

∪fp : H
i
P (Zp, F )⊗L Hj

Q(Zp, G) → H1
P⋆Q(Zp, H)
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by cl(f) ∪fp g = cl(γ(a(x, y) · f ⊗ g)) when i = 1, respectively, f ∪fp cl(g) =
cl(γ(b(x, y) ·f⊗g)) when j = 1, for each f in F and g in G, where the variables
x and y act on F ⊗Qp G as ϕ⊗ id and id⊗ ϕ, respectively.

4.1.2. Syntomic sheaves II: the general case. Let U be a smooth pair over Zp.
A syntomic sheaf F in S(U ) admits (and is characterized by) de Rham and
rigid realisations FdR and Frig. The de Rham realization FdR is a filtered co-
herent OŪQp

-module equipped with an integrable connection with logarithmic

singularities along Ū − U . Write H ·
dR(UQp ,F ) for the de Rham cohomology

groups H ·
dR(UQp ,FdR) ∼= H ·

dR(ŪQp ,FdR) (cp. [2, Def. A.2] and the discus-
sion surrounding Equation (5)). The rigid realization Frig is an overconvergent
filtered ϕ-isocrystal (in the sense of Berthelot) on the special fibre UFp of U .

(If  : UQp →֒ ŪQp is the natural inclusion of the Raynaud generic fibre of the

p-adic completion of U into that of Ū , then Frig = †(FdR|U
rig) as a coherent

†OUrig -module with connection, where U rig is the rigid space over Qp associ-
ated with UQp . See loc. cit. for more detials.) Denote by H ·

rig(UFp ,F ) the

Berthelot rigid cohomology groupsH ·
rig(UFp/Qp,Frig). By the admissibility of

F , the natural map from de Rham to rigid cohomology gives an isomorphism

H ·
dR(UQp ,F ) ∼= H ·

rig(UFp ,F ),

which allows us to view H ·
rig(UFp ,F ) as a filtered ϕ-module, i.e., an element

of S(Zp). Indeed, Hi
rig(UFp ,F ) is the i-th direct image Riπ∗F of F under

the structural morphism π : U → Zp, and the Leray spectral sequence

synEp,q
2 = Hp

syn(Zp, H
q
rig(UFp ,F )) =⇒ Hi

syn(U ,F )

degenerates into the short exact sequences

0 → H1
syn(Zp, H

i−1
rig (UFp ,F ))

isyn
−−→ Hi

syn(U ,F )(24)
psyn

−−−→ H0
syn(Zp, H

i
rig(UFp ,F )) → 0.

More generally, for any polynomial P (t) in 1 + t · L[t] one has short exact
sequences

0 → H1
P (Zp, H

i−1
rig,·(UFp ,F )L)

iP−−→ Hi
P,·(U ,F )(25)

pP
−−→ H0

P (Zp, H
i
rig,·(UFp ,F )L) → 0,

(where NL = N⊗Qp L and “, · ”= ∅, “, c”). If P is clear from the context, we
simply write i = iP and p = pP .

Let P and Q be polynomials in 1+ t ·L[t] and let F ,G and H be syntomic
sheaves on U . To a morphism F ⊗G → H in S(U ), one associates as in [12,
Section 2] finite polynomial cup product pairings

∪fp : H
i
P (U ,F )⊗L Hj

Q,c(U ,G ) → Hi+j
P⋆Q,c(U ,F ⊗ G ).
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These are compatible with the Leray spectral sequence, viz. the diagram

(26) H1
P (Zp, H

i−1
rig

(UFp ,F))

iP

��

⊗L H0
Q(Zp, H

j
rig,c(UFp ,G ))

∪fp
//H1

P⋆Q(Zp, H
i+j−1

rig,c (UFp ,H ))

iP⋆Q

��

Hi
P (U ,F)

pP

��

⊗L Hj
Q,c(U ,G )

pQ

OO

∪fp
//Hi+j

P⋆Q,c(U ,H )

H0
P (Zp, H

i
rig(UFp ,F)) ⊗L H1

Q(Zp, H
j−1
rig,c(UFp ,G ))

iQ

OO

∪fp
//H1

P⋆Q(Zp, H
i+j−1
rig,c (UFp ,H ))

iP⋆Q

OO

commutes, where the top and bottom cup-products ∪fp are the ones associated
in Section 4.1.1 with

∪rig : H
i−1
rig (UFp ,F ) ⊗Qp H

j
rig,c(UFp ,G ) → Hi+j−1

rig,c (UFp ,H ).

For each integer n, denote by Qp(n) the n-th Tate object in S(U ). The
de Rham realization of Qp(n) is the free rank-one OŪ -module OŪ · tn, with

trivial connection and decreasing filtration given by Fil1−nQp(n) = 0 and

Fil−nQp(n) = Qp(n), and the Frobenius onQp(n)rig is defined by ϕ(tn) = p−n·
tn. (When U = Zp the filtered ϕ-module Qp(1) is then equal to DdR(Qp(1)).)
If U is geometrically connected of relative dimension d over Zp, the trace
trrig in rigid cohomology gives an isomorphism between H2d

rig,c(UFp ,Qp(d+1))

and Qp(1) and iP is an isomorphism between H2d
rig,c(UFp ,Qp(d + 1))L and

H2d+1
P,c (U ,Qp(d+ 1)). Assuming that P (t) does not vanish at t = p−1, define

the (normalized) trace isomorphism

trP = P (p−1)−1 · trrig ◦ i
−1
P : H2d+1

P,c (U ,Qp(d+ 1)) ∼= L(1).

Given a morphism F ⊗Qp G → Qp(d+ 1) in S(U ) and polynomials P and Q

in 1 + t · L[t] such that P ⋆ Q(t) does not vanish at t = p−1, the composition
of ∪fp and trP⋆Q then yields cup-product pairings

〈 · , · 〉U : Hi
P (U ,F ) ⊗L H2d+1−i

Q,c (U ,G ) → L(1).

4.1.3. Syntomic sheaves III: modular curves. We are mainly interested in the
smooth pairs

Y = (Y,X) and Y
ord = (Y ord, X),

where Y ord = Y1(N)ordZp
is the open subscheme of Y on which the Hasse invari-

ant Ep−1 is invertible. For i > 0, the sheaves SdR,i and Srig,i arise as the de
Rham and rigid realisations of a syntomic sheaf Ssyn,i on Y (cp. [2]). More
precisely, let E i denote the smooth pair (E i, Ē i) over Zp, where E i is the i-fold
fibre product of the universal elliptic curve E → Y and Ē i is the corresponding
Kuga–Sato variety (viz. Deligne’s canonical desingularization of the i-fold fibre
product of the universal generalized elliptic curve Ē → X). Then

Ssyn,i = R1(E i → Y )∗Qp

is the first higher direct image of the trivial syntomic sheaf on E i under the
smooth proper morphism E i → Y attached to the structural map Ē i → X .
We denote by the same symbol Ssyn,i its restriction to Y ord.
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Define the syntomic sheaves Ssyn,r and Ssyn,[r] on Y and Y 3 = (Y 3, X3),
respectively, as in Section 2. Set E r = E r1 ×Zp E r2 ×Zp E r3 . The Leray spec-

tral sequences associated with E 2r → Y and E r → Y 3 induce, respectively,
natural isomorphisms (“Lieberman’s trick”, cp. the proof of [17, Lem. 5.3])

(27) Hi
syn(Y ,Sr(j)) = Hi+2r

syn (E 2r,Qp(j))(εr)

and

Hi
syn(Y

3,S[r](j)) = Hi+2r
syn (E r,Qp(j))(εr),

where · (εr) are defined as follows. Let Si denote the symmetric group on i
letters. The semi-direct product Si = Si ⋊ µi

2 acts naturally as a group of
automorphisms of E i (the nontrivial element of the i-th factor of µ2 acting
as multiplication by −1 on the i-th factor E of E i). As a consequence, the
subgroup Sr = Sr1 ×Sr2 ×Sr3 of S2r acts by automorphisms on both E 2r

and E r. For any Q[Sr]-module · , one defines · (εr) to be the submodule of
elements of · on which Sr acts via the character εr = εr1 × εr2 × εr3 , where
εi : Si → µ2 maps σ⋊ (s1, . . . , si) to sign(σ) ·s1 · · · si. Similarly, in p-adic étale
cohomology there are natural isomorphisms

(28) Hi
ét(YQp ,Sr(j)) = Hi+2r

ét (E2r
Qp

,Qp(j))(εr)

and

Hi
ét(YQp ,S[r](j)) = Hi+2r

ét (Er
Qp

,Qp(j))(εr).

One has analogues of the isomorphisms (27) and (28) after replacing (Y , E ·)
with (X , Ē ·), where X and Ē denote the proper smooth pairs (X,X) and
(Ē , Ē) over Zp, respectively.

The Hecke correspondences on X and Ē equip the syntomic and finite poly-
nomial cohomology groups which appear in this section with the action of
Hecke operators away from Np, which make the exact sequences (24)–(25)
and the isomorphisms (27) Hecke equivariant.

4.1.4. Comparison with étale cohomology. Let U = (U, Ū) be a smooth pair
over Zp. The work of Nekovář and Nizo l [35, 36, 31, 33] gives comparison

morphisms

̺syn : H
i
syn(U ,Qp(n)) → Hi

ét(UQp ,Qp(n)),

satisfying the following properties. (See [11, Section 9] and the references
quoted there for more details):

• The maps ̺syn are compatible with pullbacks and proper pushforwards.
• If U is proper over Zp, then the following diagram commutes.

(29) H1
syn(Zp, H

i−1
rig

(UFp ,Qp(n)))
isyn

//F 1Hi
syn(U ,Qp(n))

̺syn

��

tg(Hi−1
dR

(UQp ,Qp(n)))

expp ++❲❲
❲❲

❲❲
❲❲

❲❲
❲❲

❲❲

1−ϕ
33❣❣❣❣❣❣❣❣❣❣❣❣❣❣

H1(Qp, H
i−1
ét

(UQ̄p
,Qp(n))) F 1Hi

ét(UQp ,Qp(n))
HSét

oo
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Here F 1Hi
ét(UQp , · ) is the kernel of Hi

ét(UQp , · ) → Hi
ét(UQ̄p

, · ) and

F 1Hi
syn(U , · ) is the kernel of psyn (that is the image of isyn, cp. Equation

(24)). Moreover, expp denotes the composition

tg
(

Hi−1
dR (UQp , · )

)

→ DdR(H
i−1
ét (UQ̄p

, · ))/Fil0 → H1(Qp, H
i−1
ét (UQ̄p

, · ))

of Faltings’ comparison isomorphism and the Bloch–Kato exponential.

In light of Equations (27)–(28) and the first property above, the maps ̺syn
for U = E r and U = E r induce, respectively, Hecke equivariant comparison
morphisms (denoted again by the same symbol)

(30) ̺syn : H
i
syn(Y ,Sr) → Hi

ét(YQp ,Sr)

and

̺syn : H
i
syn(Y

3,S[r]) → Hi
ét(Y

3
Qp

,S[r]),

which are compatible with the pullback d∗ and pushforward d∗ along the diag-
onal d : Y → Y 3. (There are similar comparison morphisms for X and X 3

in place of Y and Y 3, induced, respectively, by the maps ̺syn for U = Ē r

and U = Ē r, cp. Section 4.1.3.) In particular,

̺syn : H
0
syn(Y ,Sr(r)) → H0

ét(YQp ,Sr(r))

is an isomorphism, given by the composition of the canonical isomorphisms

H0
syn(Y ,Sr(r)) = Fil0H0

rig(YFp ,Sr(r))
ϕ=1

= Fil0Dcris(H
0
ét(YQ̄p

,Sr(r)))
ϕ=1

= H0(Qp, H
0
ét(YQ̄p

,Sr(r)))

= H0
ét(YQp ,Sr(r)),

where the first equality arises from psyn, the second is the comparison isomor-

phism, the third follows from the well-known equality Fil0Bcris ∩ Bϕ=1
cris = Qp

and the forth is defined by the inverse of the base change along the morphism
Spec(Q̄p) → Spec(Qp) (i.e., by the Hochschild–Serre spectral sequence). Let

(31) Det
syn
r ∈ H0

syn(Y ,Sr(r)) and Det
rig
r ∈ Fil0H0

rig(Y ,Sr(r))
ϕ=1

be defined by the identities ̺syn(Det
syn
r ) = Det

ét
r and psyn(Det

syn
r ) = Det

rig
r ,

respectively. (Here we write again Det
ét
r in H0

ét(YQp ,Sr(r)) for the Qp-base

change of the Clebsch–Gordan invariant Detétr in H0
ét(Y1(N)Q,Sr(r)).)

4.2. The syntomic Abel–Jacobi map. Because Y 3
Qp

is a smooth affine

threefold, the de Rham cohomology group H4
dR(Y

3
Qp

,S[r](r + 2)) vanishes.

As a consequence the inverse of isyn gives an isomorphism

HSsyn : H
4
syn(Y

3,S[r](r + 2)) ∼= H1
syn(Zp, H

3
rig(Y

3
Fp

,S[r](r + 2))L).

After setting V ∗
dR(f, g, h) = VdR(f

w, gw, hw), composing HSsyn with the map
induced by the natural projection

prfwgwhw : H3
rig(Y

3
Fp

,S[r](r + 2))L ։ V ∗
dR(f, g, h)
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(arising from the comparison isomorphism between rigid and de Rham coho-
mology) gives a surjective map

H4
syn(Y

3,S[r](r + 2)) ։ H1
syn(Zp, V

∗
dR(f, g, h)) =

V ∗
dR(f, g, h)

(1 − ϕ) · Fil0V ∗
dR(f, g, h)

,

which we denote by HS
fgh
syn . As p ∤ N , the Ramanujan–Petersson conjecture

implies that 1− ϕ is an automorphism of V ∗
dR(f, g, h). Denote by tg∗dR(f, g, h)

the tangent space of V ∗
dR(f, g, h) and define the syntomic Abel–Jacobi map

AJfghsyn : H4
syn(Y

3,S[r](r + 2)) ։ tg∗dR(f, g, h)

to be the composition of HSfghsyn with the inverse of 1 − ϕ. Then the following
diagram commutes:

(32) H4
syn(Y

3,S[r](r + 2))
AJfgh

syn
//

̺syn

��

tg∗dR(f, g, h)

expp

��

H4
ét(Y

3
Qp

,S[r](r + 2))
AJfgh

ét
// H1(Qp, V

∗(f, g, h)),

where AJfghét = prfwgwhw∗ ◦ HSét (cp. Section 2), V ∗(f, g, h) = V (fw, gw, hw)
and expp is the composition of the Faltings comparison isomorphism

tg∗dR(f, g, h)
∼= DdR(V

∗(f, g, h))/Fil0

with the Bloch–Kato exponential. This is a consequence of Equation (29)
for i = 4 and U = Ē r (so that U = Ēr is smooth and proper over Zp).

Indeed, by construction, the map AJfghsyn (resp., AJfghét ) factors through the

(fw, gw, hw)-isotypic component of H4
syn(Y

3, · ) (resp., H4
ét(Y

3
Qp

, · )), which is

naturally isomorphic to that ofH4
syn(X

3, · ) (resp., H4
ét(X

3
Qp

, · )), since f, g and

h are cuspidal forms. Similarly, V ∗(f, g, h) and V ∗
dR(f, g, h) can be realized,

respectively, in the étale and de Rham cohomology of the Kuga–Sato variety
Ēr (via Equation (28) and its analog for the de Rham cohomology). By the
definition of the maps ̺syn (cp. Equation (30)), the previous diagram can then
be rewritten in terms of cohomology groups of Ē r, and once this is done its
commutativity is a direct consequence of Equation (29) and the definitions.

The commutative diagram (32) and the compatibility of ̺syn with d∗ (cp.
Equation (30)) yield the equality

(33) logp(κ(f, g, h)) = N r · AJfghsyn

(

d∗(Det
syn
r )

)

of L-valued linear forms on Fil0VdR(f, g, h), cp. Equations (13) and (31). More
precisely, we remind that the left-hand side of the previous equation is identi-
fied with an L-linear form on Fil0VdR(f, g, h) via the twisted Poincaré duality
〈 · , · 〉fgh introduced in Equation (12). On the other hand, we identify the right-

hand side of the previous equation with a linear functional on Fil0VdR(f, g, h)
via the perfect duality

( · , · )fgh : V
∗
dR(f, g, h)⊗L VdR(f, g, h) → L(1)
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induced by the pairings ( · , · )i defined in Equation (10). Equation (33) then
follows from Equations (32), because (as easily checked)

N r · κ(fw, gw, hw) = AJfghét (d∗(Det
ét
r )) ∈ H1(Q, V ∗(f, g, h))

is the image of the diagonal class

κ(f, g, h) ∈ H1(Q, V (f, g, h))

under the map induced in cohomology by the GQ-equivariant isomorphism

w⊗3
N : V (f, g, h) ∼= V ∗(f, g, h).

Here w⊗3
N arises from the Künneth decomposition and the product of the geo-

metric Atkin–Lehner automorphisms wN of H1
ét(Y1(N)Q̄,Si), for i + 2 equal

to k, l and m. (Recall that χf · χg · χh is equal to the trivial character.)
Because H2

rig,c(Y
3
Fp

,S[r](r + 2)) = 0, each class

ω ∈ Fil0VdR(f, g, h) ⊂ Fil0H3
dR,c(Y

3
Qp

,S[r](r + 2)),

which is killed by a polynomial Pω(T ) ∈ 1 + T · L[T ] has a unique lift ω̃
in the (f, g, h)-isotypic component of the finite-polynomial cohomology group
H3

Pω ,c(Y
3,S[r](r + 2)). Assuming that Pω(p

−1) is nonzero (so that the trace

on H7
Pω ,c(Y

3,Qp(4)) is defined), the compatibility of the finite polynomial

cup-product with the Leray spectral sequence, viz. Equation (26), gives the
following identity of functionals on H4

syn(Y
3,S[r](r + 2)):

(34) AJfghsyn ( · )(ω) = 〈 · , ω̃〉Y 3 .

Here the finite polynomial cup product pairing

〈 · , · 〉Y 3 : H4
syn(Y

3,S[r](r + 2))⊗L H3
Pω ,c(Y

3,S[r](r + 2))

→ H7
Pω ,c(Y

3,Qp(4)) ∼= L(1)

is the one arising from the perfect relative Poincaré dualities of syntomic
sheaves (cp. Equations (8))

( · , · )i : Ssyn,i ⊗Qp Ssyn,i → Qp(−i).

(Unless otherwise stated, all the cup-product pairings which appear below arise
from the dualities ( · , · )i.) Since the pullback d∗ = d∗syn and push-forward
d∗ = dsyn,∗, associated with the diagonal embedding d in finite polynomial
cohomology, satisfy the projection formula, Equations (33) and (34) yield

(35) logp(κ(f, g, h))(ω) = N r · 〈Detsynr , d∗(ω̃)〉Y .

Take ω equal to the class ηαf ⊗ ωg ⊗ ωh defined in Equation (14) and Pω

equal to

Pfgh(T ) =
(

1−
pr+2T

αfαgαh

)(

1−
pr+2T

αfαgβh

)(

1−
pr+2T

αfβgαh

)(

1−
pr+2T

αfβgβh

)

.
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As by assumption χfχgχh is the trivial character, a direct computation shows
that Pfgh(p

−1) equals

E(f, g, h) =
(

1−
βfαgαh

pr+2

)(

1−
βfαgβh

pr+2

)(

1−
βfβgαh

pr+2

)(

1−
βfβgβh

pr+2

)

,

which is nonzero by the Ramanujan–Petersson conjecture under the current
hypothesis p ∤ N .

Let ξ denote either g or h and set

Pf (T ) = 1−
pr1−rT

αf
and Pξ(T ) =

(

1−
pu+1T

αξ

)(

1−
pu+1T

βξ

)

,

so that Pfgh = Pf ⋆ Pg ⋆ Ph. Let

(36) η̃αf ∈ H1
Pf ,c

(Y ,Sr1(r1 − r)), resp. ω̃ξ ∈ H1
Pξ
(Y ,Su(u+ 1))

(with u+ 2 the weight of ξ), denote the unique lift of

ηαf ∈ Fil0H1
dR,c(YQp ,Sr1(r1 − r))Pf (ϕ)=0,

resp. a lift of

ωξ ∈ Fil0H1
dR(YQp ,Su(u+ 1))Pξ(ϕ)=0,

under p. Equation (35) can then be rewritten as

(37) logp(κ(f, g, h))
(

ηαf ⊗ ωg ⊗ ωh

)

= N r · 〈η̃αf , Det
syn
r ∪ ω̃g ∪ ω̃h〉Y .

Write Sgh = Ssyn,r2 ⊗ Ssyn,r3(r2 + r3 + 2) and Pgh = Pg ⋆ Ph. After noting
that H2

dR(YQp ,Sgh) vanishes, let

Φ ∈ H1
Pgh

(

Zp, H
1
rig(YFp ,Sgh)

)

be the class defined by the identity

i(Φ) = ω̃g ∪ ω̃h.

Equation (37) and a direct computation using Equation (26) then prove the
following (cp. Equation (31)).

Proposition 4.3. One has

logp(κ(f, g, h))
(

ηαf ⊗ ωg ⊗ ωh

)

=
N r

E(f, g, h)
·
〈

ηαf (r1 − r), Detrig
r ∪ Φ

〉

Y,rig
.

4.4. Restriction to the ordinary locus. Given a Qp-vector space V , a Qp-
linear endomorphism e of V and a nonzero element a of L, denote by Ve=a

(resp., V e=a) the maximal L-quotient (resp., L-submodule) of V ⊗Qp L on
which e acts as multiplication by a. As explained in the proof of Proposi-
tion III.1.4 of [34], the restriction map ·ord : H

1
rig(YFp ,Sr1) → H1

rig(Y
ord
Fp

,Sr1)

induces an isomorphism

H1
rig(YFp ,Sr1)ϕ=χ̄f (p)·βf

∼= H1
rig(Y

ord
Fp

,Sr1)ϕ=χ̄f (p)·βf
,

which commutes with the action of the Hecke operators Tℓ and 〈d〉 for ℓ ∤ Np
and d ∈ (Z/NZ)∗. (This follows from weight considerations, recalling that the
square of βf has complex absolute value k − 1 under the running assumption
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p ∤ N .) Taking the duals and using Poincaré duality, this induces an isomor-
phism

·ord : H1
rig,c(YFp ,Sr1)

ϕ=αf ∼= H1
rig,c(Y

ord
Fp

,Sr1)
ϕ=αf .

After setting

(38) Det
ord
r = (Detrig

r )ord ⊗ t−2−r ∈ H0
rig(Y

ord
Fp

,Sr(−2))

(so that Detordr ∪ Φord belongs to H1
rig(Y

ord
Fp

,Sr1)), Proposition 4.3 then gives

the following.

Proposition 4.5. One has

logp(κ(f, g, h))(η
α
f ⊗ωg⊗ωh) =

N r

E(f, g, h)
·
〈

ηα,ordf (r1+2), Detordr ∪Φord

〉

Y ord,rig
.

The linear form

〈ηα,ordf (r1 + 2), · 〉Y ord,rig : H
1
rig(Y

ord
Fp

,Sr1)L → L

factors through the quotient

H1
rig(Y

ord
Fp

,Sr1)L ։ H1
rig(Y

ord
Fp

,Sr1)fw
α

defined in Equation (19). As by assumption fw
α = (fw)α has small slope

(i.e., ordp(αf ) < k − 1), Equation (20) shows that the latter is isomorphic to
Sk(Np,L)fw

α
under the Coleman map [ · ]αf . Let

Ξ ∈ Sk(Np,L)fw
α

be the cusp form satisfying

(39) [Ξ]αf =
[

Det
ord
r ∪ Φord

]

fw
α
,

where [ · ]fw
α

denotes the projection of H1
rig(Y

ord
Fp

,Sr1) onto H1
rig(Y

ord
Fp

,Sr1)fw
α
.

Proposition 4.6. After setting E∗(f) = 1−
βf

αf
, one has

logp(κ(f, g, h))(η
α
f ⊗ ωg ⊗ ωh) =

N rE∗(f)

E(f, g, h)

(fw
α ,Ξ)Np

(fw
α , fw

α )Np
.

Proof. One has Ξ = (1− χ̄f (p)βf · V ) · ξ for a cusp form ξ ∈ Sk(N,L). Let

ωξ ∈ H1
rig(YFp ,Sr1)

be the class associated with ξ and let ωξ,ord ∈ H1
rig(Y

ord
Fp

,Sr1) be the restriction

of ωξ to the ordinary locus. Then

[Detordr ∪ Φord]fw
α
= [Ξ]αf =

[(

1−
βf · ϕ

pk−1

)

· ωξ,ord

]

fw
α

= E∗(f) · [ωξ,ord]fw
α
,

hence
〈

ηα,ordf (r1 + 2), Detordr ∪ Φord

〉

Y ord,rig
= E∗(f) ·

〈

ηα,ordf (r1 + 2), ωξ,ord

〉

Y ord,rig

= E∗(f) ·
〈

ηαf (r1 + 2), ωξ

〉

Y,rig

= E∗(f) · (ξ, fw)N/(fw, fw)N ,
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by the definitions of ηαf and ηα,ordf As easily checked (ξ, fw)N/(fw, fw)N is

equal to (Ξ, fw
α )Np/(f

w
α , fw

α )Np. The statement then follows from the previous
equation and Proposition 4.5. �

4.7. Conclusion of the proof. This section concludes the proof of Theo-
rem A.

Let ξ in Mu+2(N,L) denote either g or h and let

ωξ ∈ Fil0H1
dR(Y,Su(u+ 1))L

be the corresponding de Rham class. With a slight abuse of notation, denote
by ωξ in Γ(X,ωu(u+ 1)⊗ Ω1(C))L also the section representing ωξ, so that

ωξ|Ỹ = ξ · ω̃u
can ⊗ δ̃can ⊗ tu+1

in Γ(Ỹ , ω̃u(u+ 1)⊗ Ω̃1)L (cp. Section 3.4).
Let ω̃ξ,ord in H1

Pξ
(Y ord,Su(u+ 1)) be the restriction to the ordinary locus

of ω̃ξ (cp. Equation (36)). By construction ω̃ξ,ord is a lift under p of the
restriction of ωξ to the ordinary locus. (If u > 1 such a lift is unique, cp. [2,
Lem. 4.2]). According to [2, Prop. A.16], the class ω̃ξ,ord is uniquely represented
by (the restriction to the ordinary locus Y ord of) a pair (Fξ, ωξ), where the
overconvergent section

Fξ ∈ Γ
(

Xrig
Qp

,Srig,u(u+ 1)
)

L
satisfies ∇Fξ = Pξ(ϕ) · ωξ.

As explained in [5, Sections 3.6–3.8] (see in particular Proposition 3.24), one
can, and will, choose ω̃ξ in such a way that ω̃ξ,ord is represented by the pair
(Fξ, ωξ) with

(40) Fξ|Ỹ =

u
∑

j=0

(−1)jj!

(

u

j

)

d−1−jξ[p](q) · ω̃u−j
can η̃jcan ⊗ tu+1

in Γ(Ỹ, S̃u,rig(u + 1))L. (The equality ∇F = Pξ(ϕ) · ωξ over Ỹ can be easily
checked using Equations (22) and (23). Note that the lift ω̃ξ of ωξ, and then Fξ,
is unique if the weight of ξ is strictly greater than two, cp. [2, Lem. 4.2].)

The finite polynomial cup product ω̃g,ord ∪ ω̃h,ord = (ω̃g ∪ ω̃h)ord is repre-
sented by any 2-cocyle of the form

(41)
⋃

(

a(x, y) · Fg ⊗ ωh − b(x, y) · ωg ⊗ Fh, ωg ⊗ ωh

)

,

where a(x, y) and b(x, y) are polynomials in L[x, y] satisfying

Pgh(xy) = a(x, y) · Pg(x) + b(x, y) · Ph(y)

and x and y act via ϕ ⊗ id and id ⊗ ϕ, respectively (cp. [10, Rem. 4.3]).
Proposition 5.2.5 of [29] shows that one can take a(x, y) and b(x, y) of the
form

(42) a(x, y) = 1−χf(p)p
r2+r3+2 ·x2y2+y ·ao(x, y) and b(x, y) = x·bo(x, y),

with ao(x, y) and bo(x, y) in L[x, y]. (Recall that χgχh equals χ−1
f .)
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Let Fg,j ∈ M̃(N,L) be the ω̃j
canη̃

r2−j
can -coefficient of Fg|Ỹ . The section Fg,j

is p-depleted, viz. the n-th Fourier coefficient of its q-expansion is zero if p
divides n (cp. Equation (40)). On the other hand, the n-th Fourier coefficient
of the q-expansion

∑

n>0 an(h) · q
pn of V (h) is zero if p does not divide n. It

follows that Fg,j ·V (h) is p-depleted, hence so is each coefficient of Fg ⊗ϕ(ωh)

(as the restriction of ϕ(ωh) to Ỹ is a multiple of V (h) · ω̃r3
can⊗ δ̃can⊗tr3+1). This

implies that Up kills the class in H1
rig(Y

ord
Fp

,Sgh)L represented by Fg ∪ ϕ(ωh).

Because Up is an isomorphism, one deduces that the section Fg∪ϕ(ωh) is exact.
Similarly, one proves that ϕ(ωg) ∪ Fh is exact. Together with Equations (41)
and (42) this proves that (ω̃g ∪ ω̃h)ord is represented by

(

(1− χf (p)p
r2+r3+2 · ϕ2) · Fg ∪ ωh, 0

)

.

As Φord is characterized by the equality i(Φord) = (ω̃g ∪ ω̃h)ord, the previous
equation then yields

(43) Φord = class of (1 − χf (p)p
r2+r3+2 · ϕ2) · Fg ∪ ωh.

Identify the M̃(N,Zp)-module of global sections of S̃rig,ri with the set of

two-variable homogeneous polynomials of degree ri in M̃(N,Zp)[xi, yi] via

xj
i y

ri−j
i = ω̃j

canη̃
ri−j
can . Then S̃rig,r = S̃rig,r1 ⊗ S̃rig,r2 ⊗ S̃rig,r3 becomes identi-

fied with a submodule of M̃(N,Zp)[xi, yi : 1 6 i 6 3] and (cp. Equation (38))

(44) Det
ord
r |Ỹ = (x1y2−y1x2)

r−r3 · (x1y3−y1x3)
r−r2 · (x2y3−y2x3)

r−r1 ⊗ t−2

in Γ(Ỹ, S̃rig,r(−2))L. Note that the rigid Frobenius acts on Det
ord
r as multi-

plication by p2+r, hence (cp. Equation (39))

[Detordr ∪ Φord]fw
α
=

[(

1−
χf (p) · ϕ

2

pr1+2

)

· Detordr ∪ Fg ∪ ωh

]

fw
α

(45)

=
(

1−
βf

pαf

)

· [Detordr ∪ Fg ∪ ωh]fw
α
,

by Equation (43). According to Equations (40) and (44) the restriction of

Det
ord
r ∪ Fg ∪ ωh to Ỹ is equal to

∑

i1,i2,i3,j

(−1)r−i1−i2−i3+jj!

(

r − r3
i1

)(

r − r2
i2

)(

r − r1
i3

)(

r2
j

)

· d−1−jg[p] · h · xi1+i2
1 yr1−i1−i2

1 ⊗ δ̃can

⊗ xr−r3−i1+i3
2 yr−r1−i3+i1

2 xr3−i2−i3
3 yi2+i3

3 ∪ xr2−j
2 yj2x

r3
3 ⊗ tr2+r3 ,

where the sum runs over the tuples (i1, i2, i3, j), with 0 6 j 6 r2 and 0 6

is 6 rs for s = 1, 2, 3. The only contribution to the xr1
1 ⊗ δ̃can-component

comes from (i1, i2, i3, j) = (r − r3, r − r2, r − r1, r − r1) and is equal to (cp.
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Equation (9))

(−1)r−r1(r − r1

(

r2
r − r1

)

· d−1−r+r1g[p] · h · xr1
1 ⊗ δ̃can

⊗ xr−r1
2 yr−r3

2 yr33 ∪ xr−r3
2 yr−r1

2 xr3
3 ⊗ tr2+r3 .

As

xr−r1
2 yr−r3

2 yr33 ∪ xr−r3
2 yr−r1

2 xr3
3 = (−1)r

(

r2
r − r1

)−1

· t−r2−r3 ,

one deduces

splur(Detordr ∪ Fg ∪ ωh)|Ỹ = (−1)r1(r − r1)! · d
−1−r+r1g[p](q) · h(q) · xr1

1 ⊗ δ̃can.

This proves that (as claimed in the discussion preceding the statement of The-
orem A) the p-adic modular form

(46) d−1−r+r1g[p] · h = splur
(

(−1)r1(r − r1)!
−1 · Detordr ∪ Fg ∪ ωh

)

is nearly-overconvergent, and (after unwinding the definitions, cp. Equa-
tions (21), (39) and (45)) yields the identity

(−1)r1(r − r1)!
(

1−
βf

pαf

)

· efw
α
(d−1−r+r1g[p] · h) = Ξ.

Theorem A follows from Proposition 4.6 and the previous equation.

5. Proof of Theorem B

This section proves Theorem B stated in Section 1.2. Let the notations and
assumptions be as in loc. cit.

5.1. Hida theory. Let L be a finite extension ofQp and let U be an L-rational
affinoid disc in the weight space W over Qp, centered at an integer uo > 1.
Let O(U) denote the ring of analytic functions on U . It can be identified with
a subring of LJu− uoK, where u− uo is a uniformiser at uo. Write U cl for the
set of positive integers in U which are congruent to uo modulo 2(p−1), and let
χ be an L-valued Dirichlet character modulo N . Denote by Sord

U (N,χ) the set
of formal q-expansions ξ =

∑

n>0 rn · qn in O(U)JqK satisfying the following
property: For each classical point u in U cl ∩ Z>2, the weight-u specialization

ξu =
∑

n>0 rn(u) · q
n is the q-expansion of a cusp form in Su(Np, χ)L, which

is an eigenvector for the Hecke operator Tℓ, for each prime ℓ not dividing Np,
and for the Hecke operator Up with eigenvalue a p-adic unit in L. For each
classical point u > 2, the form ξu is indeed the ordinary p-stabilization of a
p-ordinary eigenform ξu in Sk(N,χ)L. If u = 2, then either p divides the level
of ξu, in which case one sets ξu = ξu, or ξu is the p-stabilization of a p-ordinary
eigenform ξu of level Γ1(N).

An element of Sord
U (N,χ) (for some U as above) is called a (cuspidal) Hida

family of tame level N , character χ and center uo. One says that ξ is primitive

if ξu is a primitive form of conductor N for all classical points u > 2. Let
ξ♯ be a primitive Hida family in Sord

U (No, χ) and let N be a multiple of No.
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A level-N test vector for ξ♯ is a Hida family ξ in Sord
U (N,χ) such that, for all

u > 2 in U cl, the specializations ξ♯u and ξu have the same eigenvalues under
the action of the Hecke operators Up and Tℓ, for all primes ℓ not dividing Np.

Let N denote the least common multiple of Nf , Ng and Nh. For ξ = f, g, h,
write αξ and βξ for the roots of the p-th Hecke polynomial

X2 − ap(ξ) ·X + χξ(p)p
u−1

of ξ, where u is the weight of ξ. Assume that L contains αξ and βξ and
order αf and βf in such a way that αf is a p-adic unit. This is possible by
Assumption 1.3.4. According to a theorem of Wiles [43], there exist primitive
Hida families

g♯ =
∑

n>0

bn(u) · q
n ∈ Sord

U (Ng, χg) and h♯ =
∑

n>0

cn(u) · q
n ∈ Sord

U (Nh, χh)

of levels Ng and Nh, common center uo = 1 and tame characters χg and χh,
specializing, respectively, to the p-stabilized cusp forms gα and hα at weight
one, namely, satisfying

g
♯
1 = gα and h

♯
1 = hα.

(Recall that ξα(q) = ξ(q) − βξ · ξ(q
p) is an eigenvector for Up with eigenvalue

αξ.) Note that g♯ = g♯
α and h♯ = h♯

α depend on the choice of the roots αg and
αh of the p-th Hecke polynomials of g and h, respectively.

Let g and h be level-N test vectors for g♯ and h♯, respectively. Moreover,
let fk be the ordinary p-stabilization of a cusp form fk in Sk(N,χf )L, which is
an eigenvector of the Hecke operator Tℓ, with the same eigenvalue aℓ(f) as f ,
for each prime ℓ not dividing N . (We call fk and fk level-N test vectors for f .)
For each u > 2 in U cl, set

WNp(u) = H3
ét(Y1(Np)3

Q̄
,Sk−2 ⊠ Su−2 ⊠ Su−2)⊗Zp OL(k/2 + u− 1).

Denote by

(47) prfkguhu
: WNp(u) → V(fk, gu,hu)

the maximal OL-quotient on which the Hecke operators Up ⊗ 1⊗ 1, 1⊗Up ⊗ 1
and 1⊗1⊗Up (resp., Tℓ⊗1⊗1, 1⊗Tℓ⊗1, 1⊗1⊗Tℓ and 〈d1〉⊗〈d2〉⊗〈d3〉) act
as multiplication by αf , bp(u) and cp(u) (resp., aℓ(f), bℓ(u), cℓ(u) and χf (d1) ·
χg(d2) · χh(d3) for any prime ℓ ∤ Np and units di ∈ (Z/NZ)∗), and set

V (fk, gu,hu) = V(fk, gu,hu)⊗Z Q.

Note that V (fk, gu,hu) depends only on the level N and on the primitive
forms f, g♯u and h♯

u.
Let ‖ · ‖U be the supremum norm on O(U) and let Λ = ΛU be the corre-

sponding unit ball. The work of Hida, Perrin-Riou et al. yields a free Λ-module
V(fk, gh), equipped with a continuous Λ-linear action of GQ, satisfying the fol-
lowing properties (cp. [8, Sections 4 and 6]).
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• For each u > 2 in U cl, evaluation at u on Λ induces a natural isomorphism
of OL[GQ]-modules

(48) ρu : V(fk, gh)⊗u OL
∼= V(fk, gu,hu).

The representation V (fk, gu,hu) is isomorphic to

a
⊕

i=1

V (f)⊗L V (g♯u)⊗L V (h♯
u)((k/2 + u− 1)),

where V ( · ) = D( · ) is the L-adic Deligne representation · and the positive
integer a = aN is independent of u. If u = 1, the previous formula holds
with V(fk, g1,h1) isomorphic to a lattice in V (f, g, h)a.

• Let Ubal be the set of u > 2 in U cl with k < 2u. There exists a Λ[GQp ]-
submodule

ibal : V(fk, gh)bal → V(fk, gh),

free of rank 1
2 rankΛV(fk, gh) over Λ, such that for all u in Ubal, the Bloch–

Kato finite subspace

H1
fin(Qp, V (fk, gu,hu))

of H1(Qp, V (fk, gu,hu)) is equal to the image of the map

(49) H1(Qp, V(fk, gh)bal ⊗u L) → H1(Qp, V (fk, gu,hu))

induced by ρu.
The morphism induced in cohomology by ibal is injective, and its im-

age H1
bal(Qp, V(fk, gh)) is called the balanced subspace. Similarly, for

u in U cl, one defines the balanced subspace H1
bal(Qp, V(fk, gu,hu)) of

H1(Qp, V(fk, gu,hu)) as the image of H1(Qp, V(fk, gh)bal ⊗u OL) under
the morphism induced by ρu. The balanced Selmer group

H1
bal(Q, V( · )) →֒ H1(Q, V( · ))

is the module of global classes which are balanced at p and unramified at
any prime ℓ 6= p. Set H1

bal(Q, V( · )⊗Zp Qp) = H1
bal(Q, V( · ))⊗Zp Qp.

• There exists a (unique) morphism of O(U)-modules

L = Lfk,gh : H
1
bal(Qp, V (fk, gh)) → O(U)

such that, for each u > 1 in U cl and z in H1
bal(Qp, V (fk, gh)), one has

(50) L(z, u) =
(1−

βfk
αguαhu

pk/2+u−1 )

(1−
αfk

βguβhu

pk/2+u−1 )
·

{

(−1)u−k/2−1

(u−k/2−1)! logp(zu)f if k < 2u,

(k/2− u)! exp∗p(zu)f if k > 2u,

where the notations are as follows. One writes αfk
for the unit root of the

p-th Hecke polynomial of f and βfk
= pk−1/αfk

. Similarly, αgu
= bp(u),

αhu
= cp(u), βgu

=
χg(p)·p

u−1

αgu
and βhu

= χh(p)·p
u−1

αhu
. The class zu is the

image of z in H1(Qp, V (fk, gu,hu)) under the morphism induced by ρu,
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so that zu belongs to H1
fin(Qp, V (fk, gu,hu)) if u is in Ubal (cp. Equation

(49)). One writes

logp : H
1
fin(Qp, V (fk, gu,hu)) → Fil0VdR(fk, gu,hu)

∨

(where ∨ denotes the L-linear dual) and

exp∗p : H
1(Qp, V (fk, gu,hu)) → VdR(fk, gu,hu)

∨

for the Bloch–Kato logarithm and dual exponential, respectively, and
logp( · )f and exp∗p( · )f for their evaluations on the class

✵u = ηαfk
⊗ ωgu

⊗ ωhu
.

When u > 2, this is the class defined in Section 3.1.3, which belongs to
Fil0VdR(fk, gu,hu) if u is balanced, i.e., k < 2u (cp. Equation (14)).
Moreover, in the definition of logp and exp∗p, we identify VdR(fk, gu,hu)
with its L-linear dual under the product of the wN -twisted Poincaré dual-
ities ( · , wN ( · ))ξ for ξ equal to fk, gl and hm (cp. Equation (11), noting
that here N is the tame level of the relevant modular curves).

When u = 1, the differential ✵1 in VdR(fk, g1,h1) is defined as above,
using a suitable canonical generator ωξ1

of Dcris(V (ξ1))
ϕ=βξ , for ξ = g,h.

The latter is the weight-1 specialization of a big differential ωξ interpo-
lating ωξu

at weight u > 2. Similarly, in the definition of logp and exp∗p,
we identify VdR(fk, g1,h1) with its dual under a suitable perfect canoni-
cal pairing 〈 · , · 〉fkg1h1

, arising as the weight-1 specialization of a twisted
Poincaré duality on V (ξ). We refer to [8, Section 6.3] and its references
for the details.

5.2. p-adic L-functions and reciprocity laws. The notations and assump-
tions are as in the previous section. Hida’s method (cp. [23]) shows that the
p-adic periods (cp. Section 1.1)

Ip(fk, gu,hu) = Ip(fk, gu, hu),

for u in U cl, are interpolated by an analytic function Lp(fk, gh) in O(U).

Theorem 5.3. Shrinking U if necessary, there exists a global balanced class

κ(fk, gh) in H1
bal(Q, V (fk, gh)) such that

Lfk,gh

(

resp(κ(fk, gh))
)

= Lp(fk, gh).

Proof. Step 1. There exist an integer A > 0 and, for each balanced point u
in Ubal, a global cohomology class κ(fk, gu,hu) in H1(Q, V(fk, gu,hu)), such
that pA · κ(fk, gu,hu) belongs to H1

bal(Q, V(fk, gu,hu)) and

logp
(

resp(κ(fk, gu,hu))
)

(ηαfk
⊗ ωgu

⊗ ωhu)

is equal to

(51) (−1)u−k/2−1(u − k/2− 1)!
(1−

αfk
βgu

βhu

pk/2+u−1 )

(1−
βfk

αgu
αhu

pk/2+u−1 )
· Ip(fk, gu,hu).
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Proof of Step 1. Denote by κNp(u) the diagonal class of level Np and weights
(k, u, u) (cp. Equation (4)). Let

κ†(fk, gu,hu) ∈ H1(Q(µp), V(fk, gu,hu))

be the image of
χ̄f (p)
Nr · κNp(u) under the composition (cp. Equation (47))

WNp(u)
w′

p⊗id⊗id
−−−−−−−→ WNp(u)

prfkguhu
−−−−−−→ V(fk, gu,hu),

where w′
p is the dual p-th Atkin–Lehner endomorphism ofH1

ét(Y1(Np)Q̄,Sk−2)
as defined in [8, Section 2.3.1].

The image κ†(fk, gu,hu)⊗ 1 of κ†(fk, gu,hu) in H1(Q(µp), V (fk, gu,hu))
is a Selmer class (cp. Section 2), invariant under the action of Gal(Q(µp)/Q)
(as fk is p-old), hence can be identified with a class in the balanced Selmer
group H1

bal(Q, V (fk, gu,hu)) by Equation (49).
The explicit computations carried out in Proposition 7.3 and Lemma 7.4

of [8] prove that

logp
(

resp(κ
†(fk, gu,hu))

)

(ηαfk
⊗ ωgu

⊗ ωhu)

is equal to the product of

(1 −
βfk

αguβhu

pk/2+u−1 )(1−
βfk

βguαhu

pk/2+u−1 )(1 −
βfk

βguβhu

pk/2+u−1 )

N r(1 −
βfk

αfk

)(1 −
βfk

pαfk

)

and

logp
(

resp(κ(fk, gu, hu))
)

(ηαfk ⊗ ωgu ⊗ ωhu).

According to the explicit reciprocity law Theorem A, this product is in turn
equal to

(u− k/2− 1)!
(

1−
βfk

αgu
αhu

pk/2+u−1

)−1

· Ip(fk, gu,hu).

As αfk
βgu

βhu
is in pk/2+u−1OL for u in Ubal, it follows that the class

κ(fk, gu,hu) = (−1)u−k/2−1
(

1−
αfk

βgu
βhu

pk/2+u−1

)

· κ†(fk, gu,hu)

belongs to H1(Q, V(fk, gu,hu)) and that

logp
(

resp(κ(fk, gu,hu))
)

(ηαfk
⊗ ωgu

⊗ ωhu
)

is equal to the expression displayed in Equation (51).
It remains to prove that there exists a nonnegative integer A > 0 such that

pA ·κ(fk, gu,hu) belongs to H1
bal(Q, V(fk, gu,hu)) for each u in Ubal. Because

κ(fk, gu,hu) is an OL-multiple of κ†(fk, gu,hu) and κ†(fk, gu,hu)⊗1 belongs
to H1

bal(Q, V (fk, gu,hu)), it is sufficient to exhibit a constant A > 0 such that
pA kills the torsion subgroup ofH1(Qp, V(fk, gh)/V(fk, gh)bal⊗uOL) for each
balanced point u in Ubal.
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Set Mu = V(fk, gh)/V(fk, gh)bal ⊗u OL. There is then an exact sequence

0 → M
+
u → Mu → M

−
u → 0,

where (for some positive integer a > 1)

M
+
u = OL(χ

k/2−u+1
cyc · ψu,f )

a ⊕ OL(χ
1−k/2
cyc · ψu,g)

a ⊕ OL(χ
1−k/2
cyc · ψu,h)

a

and

M
−
u = OL(χ

2−u−k/2
cyc · ψu)

a,

and where the characters ψ· are unramified and take on an arithmetic Frobenius
σ in GQp the values

ψu,f (σ) =
χf (p)αgu

αhu

αfk

, ψu,g(σ) =
χg(p)αfk

αhu

αgu

, ψu,h(σ) =
χh(p)αfk

αgu

αhu

and

ψu(σ) = αfk
αgu

αhu
.

It follows that the torsion subgroup of H1(Qp, Mu) is killed by

µ(u) =
∏

ξ=f,g,h,∅

(1− ψu,ξ(σ)).

The values µ(u), for u in U cl, are interpolated by an analytic function µ in Λ.
Moreover, µ(1) is nonzero, as by assumption p does not divide the conductor
of fk. Shrinking U if necessary, one can then assume that ordp(µ(u)) equals the
nonnegative integer ordp(µ(1)) for all u in U . Taking A = e(L/Qp) ·ordp(µ(1))
concludes the proof.

Step 2. There exist a finite subset E cl of U cl and a constant B > 0 satisfying
the following property: For each u in U cl = U cl − E cl, the isomorphism ρu
(cp. Equation (48)) induces a short exact sequence of OL-modules

0 → H1
bal(Q, V(fk, gh))⊗u OL → H1

bal(Q, V(fk, gu,hu)) → Erru → 0,

where Erru is a finite OL-module killed by pB.

Proof of Step 2. This follows from the general base-change results for Selmer
complexes proved in [32, 37].

Step 3. One has Lfk,gh(resp(κ(fk, gh))) = Lp(fk, gh) for a balanced class
κ(fk, gh) in H1

bal(Q, V (fk, gh)).

Proof of Step 3. The statement is clear if Lp(fk, gh) is zero. Assume that
Lp(fk, gh) is nonzero and let ep be its order of vanishing at u = 1. As
O(U) is a principal ideal domain, the image of Lfk,gh is a principal ideal, say
generated by an analytic function Gbal with order of vanishing ebal at u = 1.
(By convention ebal = +∞ if Lfk,gh is the zero map.) According to the
Weierstraß preparation theorem, shrinking U if necessary one can assume that
Lp(fk, gh) = (u − 1)ep · L ∗

p and Gbal = (u − 1)ebal · G ∗
bal, with L ∗

p and G ∗
bal
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units in O(U) (and (u − 1)ebal equal to zero if ebal = +∞). In order to prove
the theorem, it is sufficient to show that

(52) ebal 6 ep.

Let U cl be as in Step 2. Without loss of generality, assume that U cl is
contained in Ubal and that Lp(fk, gh) does not vanish at any point of U cl.
Let A and B be the constants which appear in Steps 1 and 2. Take C > A+B
such that ‖Lfk,gh(z)‖U 6 pC for any class z in H1

bal(Q, V(fk, gh)). (This is

possible since H1
bal(Q, V(fk, gh)) is a finitely generated Λ-module.) According

to Steps 1 and 2, for each u in U cl, there exists a global balanced class

κ̃(fk, gu,hu) ∈ H1
bal(Q, V(fk, gh))

such that (cp. Equations (50) and (51))

(53) Lfk,gh

(

resp
(

κ̃(fk, gu,hu)
)

, u
)

= pC · Lp(fk, gh)(u) 6= 0.

In particular, Gbal is nonzero, hence ebal is a nonnegative integer.
Let {uj}j>1 be a sequence in U cl which converges to 1. For each j > 1,

define γj ∈ O(U) by the equation

Lfk,gh

(

resp
(

κ̃(fk, guj
,huj )

))

= γj · Gbal.

Because ‖γj · Gbal‖U 6 pC for any j > 1, the sequence ‖γj‖U is bounded, say
by pD for some D > 0. Equation (53) and the Weierstraß preparation theorem
show that for j ≫ 0,

p−Cξj · |uj − 1|epp = |γj(uj)|p · |uj − 1|ebalp 6 pD · |uj − 1|ebalp ,

where {ξj}j≫0 converges to the positive rational number |L ∗
p (1)|p/|G

∗
bal(1)|p.

Equation (52) follows. �

5.4. Conclusion of the proof. This section concludes the proof of Theo-
rem B. Write H1

rel(Q, V (f, g, h)) for the relaxed Selmer group of V (f, g, h)
over Q, that is the set of global classes in H1(Q, V (f, g, h)) which are unram-

ified at every rational prime ℓ 6= p. Let g♯ = g♯
α, h

♯ = h♯
α, g and h be as in

the previous sections.
Let ξ denote either g or h and let Frobp be an arithmetic Frobenius in GQp .

By Assumption 1.3, the restriction to GQp of the Artin representation V (ξ) is
unramified and splits as the direct sum of the (distinct) Frobp-eigenspaces

V (ξ)α = V (ξ)Frobp=αξ/χξ(p) and V (ξ)β = V (ξ)Frobp=βξ/χξ(p).

As a consequence, the GQp -representation V (f, g, h) decomposes as

(54) V (f, g, h) = V (f)αα ⊕ V (f)αβ ⊕ V (f)βα ⊕ V (f)ββ ,

where V (f)ij = V (f)⊗L V (g)i ⊗ V (h)j ⊗Qp Qp(k/2). Similarly, for ξ = g,h,
one has V (ξ1) = V (ξ1)α ⊕ V (ξ1)β and V (fk, g1,h1) =

⊕

ij V (fk)ij .

For each p-adic representation V of GQp , let V
+ be the submodule on which

the inertia subgroup of GQp acts via the k/2-th power of the p-adic cyclotomic

character and set V − = V/V +. A class in H1
rel(Q, V (f, g, h)) belongs to the
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Bloch–Kato Selmer group Sel(Q, V (f, g, h)) precisely if its restriction at p is
in the kernel of

(55) p− : H1(Qp, V (f, g, h)) → H1(Qp, V (f, g, h)−),

and belongs to the balanced Selmer group H1
bal(Q, V (f, g, h)) precisely if its

restriction at p is in the kernel of the natural map

H1(Qp, V (f, g, h) → H1(Qp, V (f)−αβ)⊕H1(Qp, V (f)−βα)(56)

⊕H1(Qp, V (f)αα)

(where V (f)−· is a shorthand for (V (f)·)
−). A similar discussion applies with

(f, g, h) replaced by (fk, g1,h1) everywhere. After these preliminaries, we can
begin the actual proof of Theorem B, which is divided in three steps.

Step 1. There exist level-N test vectors (fk, g,h) for (f, g
♯,h♯) and a nonzero

scalar E in L∗ such that

Lp(fk, gh)(1) = E ·
L(f ⊗ g ⊗ h, k/2)

π2k−2(f, f)N
.

Proof. Under the running Assumption 1.3, this follows by the special value
formulas proved by Garrett and Harris–Kudla [20, 21] (cp. [14, Section 4]). �

Step 2. Assume that L(f ⊗ g ⊗ h, s) does not vanish at s = k/2. Then there
exists a global class κ(f, g, h)αα in the relaxed Selmer group H1

rel(Q, V (f, g, h))
such that (cp. Equations (54) and (55))

p−
(

resp(κ(f, g, h)αα)
)

is a nonzero element in H1(Qp, V (f)−ββ).

Proof. Step 1 implies that Lp(fk, gh) does not vanish at u = 1 for some triple
of level-N test vectors (fk, g,h). Theorem 5.3 then yields a global balanced
class κ(fk, gh) in H1

bal(Q, V (fk, gh)) such that

(57) exp∗p
(

resp(κ(fk, g1,h1))
)

(ηαfk
⊗ ωg1

⊗ ωh1
) 6= 0.

Here κ(fk, g1,h1) is the image of κ(fk, gh) in H1
bal(Q, V (fk, g1,h1)) under

the morphism induced in cohomology by ρ1 (cp. Equation (48)) and one uses
Assumption 1.3.2 to guarantee that the Euler factors which appear in Equation
(50) are nonzero.

The projection p− induces a canonical isomorphism

Fil0VdR(fk, g1,h1) ∼= Dcris(V (fk, g1,h1)
−),

which we consider as an equality. Then exp∗p is equal to the composition

H1(Qp, V (fk, g1,h1))
p−

−−→ H1(Qp, V (fk, g1,h2)
−)

exp∗

−−−→ Dcris(V (fk, g1,h1)
−),

where exp∗ is the dual exponential for V (fk, g1,h1)
−. Similarly, the inclusion

V (fk)(k/2)
+ → V (fk)(k/2) induces a natural isomorphism

Dcris(V (fk)(k/2)
+) ∼= VdR(fk)

ϕ=αf ⊗Qp Qp[k/2].
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After recalling that ωξ1
, for ξ = g,h, is a nonzero element of

Dcris(V (ξ1))
ϕ=βξ1 = Dcris(V (ξ1)α),

we can then identify ηαfk
⊗ ωg1

⊗ ωh1
with an element ✵1 of the crystalline

Dieudonné module of the direct summand V (fk)(k/2)
+⊗LV (g1)α⊗LV (h1)α

of V (fk, g1,h1)
+. Equation (57) can then be rewritten as

exp∗
(

κ−
p (fk, g1,h1)ββ

)

(✵1) 6= 0,

where κ−
p (fk, g1,h1)ββ is the ββ-component of

κ−
p (fk, g1,h1) = p−

(

resp(κ(fk, g1,h1))
)

.

On the other hand, since κ(fk, g1,h1) is the specialization of a balanced class,
it follows that κ−

p (fk, g1,h1) = κ−
p (fk, g1,h1)ββ belongs to H1(Qp, V (fk)

−
ββ)

(cp. the discussion around Equation (56)). In particular, κ(fk, g1,h1) is an el-
ement of the relaxed Selmer group H1

rel(Q, V (fk, g1,h1)) such that
κ−
p (fk, g1,h1) is a nonzero element of H1(Qp, V (fk)

−
ββ). Because the GQ-

representation V (fk, g1,h1) is the direct sum of a finite number of copies of
V (f, g, h), the statement follows. �

Step 3. Set V = V (f, g, h). Then there is an exact sequence of L-modules

0 → Sel(Q, V ) → H1
rel(Q, V )

∂
−→ H1(Q, V −)

→ Sel(Q, V )dual → H1
str(Q, V )dual → 0,

where ∂ is the composition of p− and resp and ·dual denotes the L-linear dual.

Proof. As V is Kummer self-dual, this is an instance of global Poitou–Tate
duality (cp. [30, Ch. 1]). �

Varying the choices of the roots αg and αh (cp. Assumption 1.3.3), Step 2
yields four classes (namely, κ(f, g, h)· for · in {α, β}2) in H1

rel(Q, V ), whose
images under the morphism ∂ are linearly independent over L. Theorem B
then follows from Step 3, after noting that H1(Qp, V

−) has dimension four
over L under Assumption 1.3.2.
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