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Grapevine downy mildew caused by Plasmopara viticola is one of the most important
diseases in vineyards. Oospores that overwinter in the leaf litter above the soil are the sole
source of inoculum for primary infections of P. viticola; in addition to triggering the first
infections in the season, the oospores in leaf litter also contribute to disease development
during the season. In the current study, a quantitative polymerase chain reaction (qPCR)
method that was previously developed to detect P. viticola DNA in fresh grapevine leaves
was assessed for its ability to quantify P. viticola oospores in diseased, senescent
grapevine leaves. The qPCR assay was specific to P. viticola and sensitive to
decreasing amounts of both genomic DNA and numbers of P. viticola oospores used
to generate qPCR standard curves. When the qPCR assay was compared to microscope
counts of oospores in leaves with different levels of P. viticola infestation, a strong linear
relationship (R2 = 0.70) was obtained between the numbers of P. viticola oospores per
gram of leaves as determined by qPCR vs. microscopic observation. Unlike microscopic
observation, the qPCR assay was able to detect significant differences between leaf
samples with a low level of oospore infestation (25% infested leaves and 75% non-
infested leaves) vs. samples without infestation, and this ability was not influenced by the
weight of the leaf sample. The results indicate that the qPCR method is sensitive and
provides reliable estimates of the number of P. viticola oospores in grapevine leaves.
Additional research is needed to determine whether the qPCR method is useful for
quantifying P. viticola oospores in grapevine leaf litter.

Keywords: grapevine downy mildew, oospore density, qPCR, infestation level, overwintering inoculum,
microscope counts
INTRODUCTION

Diseases represent a constant threat to grapevine production and may cause considerable yield and
economic losses. Grapevine downy mildew (DM), which is caused by the oomycete Plasmopara
viticola (Berk et Curt.) Berlese and de Toni, is an important disease in vineyards located in areas
with frequent rain and planted with susceptible cultivars of Vitis vinifera (Lafon and Clerjeau, 1988).
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P. viticola has dimorphic reproductive forms, i.e., sexual and
asexual forms, which are responsible for primary and secondary
DM infections, respectively. Oospores represent the sexual stage
of P. viticola and are formed after the fusion of an antheridium
and an oogonium in the affected leaf tissue from mid-summer to
autumn (Burruano, 2000; Rossi et al., 2013). The formation of
oospores does not require particular temperatures but seems to
be favoured by dry conditions (which impede asexual
sporulation) or by leaf senescence (Gessler et al., 2011).
Oospores overwinter in the leaf litter above the soil surface
(Kennelly et al., 2007; Rossi et al., 2013). During winter, oospores
reach morphological maturity, i.e., the oospore wall becomes
thick, the nuclei fuse, an ooplast is formed, and large lipid
globules separate into smaller ones (Vercesi et al., 1999).
Germination of morphologically mature oospores is prevented
by dormancy (Galet, 1977; Rossi and Caffi, 2007), a process
regulated by the environment, nutrient permeability, and
endogenous inhibitors. When the dormancy is broken,
oospores are considered physiologically mature and are able to
germinate under favorable environmental conditions (Rossi and
Caffi, 2007). Oospore germination ends with the formation of a
macrosporangium containing zoospores (Galbiati and Longhin,
1984). The germination of oospores requires a minimum
temperature of 12–13°C (the optimum is between 20 and 24°
C) (Laviola et al., 1986; Gessler et al., 2011), and also requires the
moistening of the leaf litter by rainfall or water flux from the
atmosphere (Arens, 1929; Rossi et al., 2008a; Rossi et al., 2013).
Dry conditions prolong the dormant period and may damage
oospores if protracted (Arens, 1929; Gessler et al., 2011). Some
oospores remain dormant but viable for an entire season or even
for several years (Kennelly et al., 2007; Caffi et al., 2011).

Oospores are the sole source of inoculum for primary
infections of P. viticola, and were long considered to play a
role only in triggering the epidemic in the early grapevine season;
the subsequent explosive increase of the disease was attributed to
asexual multiplication and secondary infections (Blaeser and
Weltzien, 1979; Lalancette et al., 1988; Lafon and Clerjeau,
1988). The use of DNA microsatellites, which enables the
identification of genotypes causing single DM leaf lesions,
showed that new P. viticola genotypes enter into the epidemic
during most of the grape-growing season, indicating that
oospores continue to germinate throughout the season, and
that the primary inoculum not only triggers epidemics but
contributes to their progress (Kump et al., 1998; Gobbin et al.,
2003; Rumbou and Gessler, 2004; Gobbin et al., 2005; Gobbin
et al., 2006). Oospores constitute a very large and diverse
inoculum pool, leading to a pathogen population with high
genotypic diversity. This diversity allows the pathogen to adapt
to several microclimates and various host varieties (Rossi
et al., 2013).

The detection of P. viticola oospores in grape leaf tissue has
been mainly based on two methods: i) direct microscopic
observations after leaf clearing and staining (Burruano, 2000;
Dıéz-Navajas et al., 2007; Taylor, 2018) or after filtration of the
leaf tissue (Vercesi et al., 2000; Toffolatti et al., 2007); and ii)
indirect estimation via a “floating grape leaf disc” bioassay (Hill,
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1998). In the latter assay, leaf fragments containing oospores are
immersed in water in the presence of non-infested floating leaf
discs so that the zoospores originating from the oospores swim to
the stomata of the discs and cause infection, the severity of which
is proportional to the oospore number. These methods have been
used to study oospore formation and germination processes
(Lehoczky, 1965; Vercesi et al., 2002; Vercesi et al., 2010),
mating types (Wong et al., 2001; Taylor, 2018), fungicide
resistance in oospores (Bissbort et al., 1997; Wong and Wilcox,
2001; Gisi et al., 2007; Toffolatti et al., 2007; Toffolatti et al., 2011;
Toffolatti et al., 2018), and oospore production in partially
resistant grapevine cultivars (Brown et al., 1999; Delbac et al.,
2018). The methods have also been used to assess the effect
of environmental conditions on oospore maturation and
germination dynamics in vineyards (Hill, 2001; Pertot and
Zulini, 2003; Toffolatti et al., 2004; Rossi et al., 2008a; Caffi
et al., 2009).

No studies have been conducted with the goal of
enumerating the oospores in leaf litter in order to assess of
the P. viticola inoculum potential in a vineyard. A possible
reason is that both microscopy and leaf disc bioassays are too
expensive and time-consuming for assessing the high numbers
of oospores (as many as several hundred per g of leaf residue)
that can be present in the leaf litter. Molecular methods that
have been used for the quantification of the inoculum in other
pathosystems (Pavón et al., 2008; Li et al., 2010; Hussain et al.,
2014; Van der Heyden et al., 2019) could be potentially used for
P. viticola. Although polymerase chain reaction (PCR) and
real-time PCR (Valsesia et al., 2005; Gindro et al., 2014) have
been developed for the detection and quantification of
P. viticola in fresh grape leaves, molecular methods have
not been developed for the detection and quantification
of oospores.

The objective of this study was to determine whether a
quantitative real-time PCR (qPCR) assay previously developed
for the detection of P. viticolaDNA in fresh leaves (Valsesia et al.,
2005) could be used to quantify P. viticola oospores in diseased,
senescent grapevine leaves.
MATERIALS AND METHODS

Plant and P. viticola Material
In 2018, P. viticola sporangia and oospores were collected from
vine plots that had not been treated with fungicides and that
were located in an experimental vineyard (cv. Merlot) on the
campus of Università Cattolica del Sacro Cuore (UCSC) in
Piacenza (Italy).

In late May of 2018, sporangia of P. viticola were collected
from leaves showing typical DM lesions (oil spots) with fresh
sporulation on the abaxial surface of the leaf blade. A sterile
cotton swab was used to gently remove the sporangia, which
were suspended in sterile-distilled water and examined with a
light microscope (40× magnification). After the sporangial
suspension was centrifugated at 14,000 rpm for 10 min, the
aqueous phase was discarded, and the sporangia in the pellet
August 2020 | Volume 11 | Article 1202
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were stored at −20°C until they were used for extraction of
genomic DNA.

In late September of 2018, leaves showing typical DM
mosaic-like symptoms were collected from vines in the
experimental vineyard (cv. Merlot) (Figure 1A). Although
still attached to the vines at the time of collection, the leaves
were diseased and senescent and would have soon fallen to the
soil surface. The leaf petioles were removed and the leaf blades
Frontiers in Plant Science | www.frontiersin.org 3
were wrapped in moistened blotting paper to prevent
desiccation, placed in polyethylene bags, and stored at 4°C.
To confirm the presence of P. viticola oospores in the freshly
collected leaves, leaf pieces (1–2 cm2) with typical mosaic-like
lesions were immersed in an acetic acid-ethanol (1/3 v/v)
solution overnight at room temperature. The bleached leaf
pieces were rinsed in distilled water and examined by light
microscopy at 10–20× magnification (Figures 1B, C). Oospore
suspensions were obtained as described by Vercesi et al. (2000),
with a few modifications. Leaf pieces (approximately 1–2 cm2)
were cut from the leaf blades with mosaic-like symptoms,
weighed with an analytical balance (RADWAG PS45000/C2.
Radom, Poland), and then finely ground in a mortar
containing 20 mL of sterile-distilled water. The homogenate
was passed through a series of three nylon filters with pore sizes
of 100, 75, and 45 mm by thorough washing with sterile-
distilled water. The material retained on the 45-mm mesh
filter, which was presumed to contain the oospores based on
oospore size, was resuspended in 15 mL of sterile-distilled
water. The collected P. viticola oospores were counted with a
hemacytometer at 40× (Figure 1D), and the counts were
expressed as numbers of oospores per milliliter of suspension
and per gram of leaf piece. The latter weight refers to leaves
wrapped in blotting paper, for which 1 g of wrapped leaf = 1.3 g
of fresh leaf = 0.34 g of dry leaf (i.e., after drying at 65°C
for 24 h).

Non-infested, senescent leaves were also used, and these were
collected from potted grape plants (cv. Merlot) that were growing
in isolation in a greenhouse at the University campus.

Real-Time qPCR
DNA Extraction Method
Genomic DNA was obtained from P. viticola sporangia
suspensions, oospore suspensions, and oospore-containing leaf
pieces. The DNA was extracted as described by Toffolatti et al.
(2007) with minor modifications in sample preparation; a 1-mL
volume of each sporangia and oospore suspension, prepared as
described above, was centrifuged at 14000 rpm for 10 min, and
the aqueous phase was discarded. The pellets of sporangia and
oospores as well as leaf pieces containing oospores (100 mg) were
placed in 2-mL microcentrifuge tubes containing 500 µL of cetyl
trimethylammonium bromide (CTAB) extraction buffer (2% CTAB,
100 mM Tris-HCl pH 8.0, 20 mM ethylenediaminetetraacetic acid
[EDTA], 1.4 M NaCl, and 1% polyvinylpyrrolidone [PVP]), 100 mg
of glass sand (425–600 µm diameter), and two glass beads (5 mm
diameter). The sporangia, oospores, or leaf pieces in the tubes were
then ground for 1 min at 30 cycles/s with a TissueLyser II (Qiagen,
Milano). The tubes were subsequently placed in a heat block at 65°C
for 90 min. DNA was purified with chloroform-isoamyl alcohol
(24:1) (v:v), precipitated with isopropanol, and resuspended in 40 µL
of sterile ultrapure water. The yield and purity of the extracted DNA
were determined using a NanoPhotometer® N60 (Implen
GmbH, München).

qPCR Assay
The qPCR assay was based on two specific primers and a hydrolysis
probe (Giop) designed to target the internal transcribed spacer
A

B

D

C

FIGURE 1 | Senescent grape leaves showing typical downy mildew mosaic-
like symptoms collected at the end of grapevine growing season (A);
Stereomicroscope observation of Plasmopara viticola oospores inside
bleached leaf pieces at 10× (B) and 20× (C); Light microscope observation of
P. viticola oospore in suspension at 40× (D).
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1 (ITS 1) -5.8S rDNA of P. viticola (Valsesia et al., 2005),
with the fluorescent reporter FAM (6-carboxyfluorescein) as a
substitute for VIC reporter dye. The primer sequences were as
follows: Giop F: 5′-TCC TGC AAT TCG CAT TAC GT-3′; Giop
R: 5′-GGT TGC AGC TAA TGG ATT CCT A-3′; Giop P: 5′-6-
FAM-TCG CAG TTC GCA GCG TTC TTC A-BHQ-1-3′.
Reaction mixtures contained 1× Luna Universal Probe qPCR
Master Mix (New England Biolabs, Ipswich), 250 nM of probe
GiopP, 700 nM of each primer (GiopF/R), and 2 µL of DNA
template in a final volume of 10 µL. An Applied Biosystems
StepOnePlus™ System (Thermo Fisher Scientific Inc., Waltham)
was used, and reaction conditions consisted of an initial
incubation at 95°C for 1 min followed by 40 cycles of 95°C for
15 s and 60°C for 30 s.

Specificity
The specificity of the qPCR assay for P. viticola was determined
in a test that included fungi and other oomycetes frequently
found in grapevines (Table 1); these species were not previously
assessed by Valsesia et al. (2005). The fungal strains were
obtained from the culture collection of the Department of
Sustainable Crop Production of the UCSC, Piacenza (Italy).
Erysiphe necator Schwein. isolates were collected in the field in
2017 and 2018 and were maintained in the greenhouse on
inoculated grape plants (cv. Merlot). Except in the case of P.
viticola and E. necator, genomic DNA was obtained from 100 mg
of fresh mycelium (obtained by scrapping the surface of 10-day-
old colonies growing on potato dextrose agar, PDA). Genomic
DNA was obtained from sporangial suspensions in the case of P.
viticola and from leaf discs with sporulating powdery mildew
colonies (100 mg of leaf material) in the case of E. necator. The
DNA extraction method was previously described by Si Ammour
et al. (2019).
Frontiers in Plant Science | www.frontiersin.org 4
qPCR Standard Curves
The analytical sensitivity of the assay was assessed following an
absolute quantification approach. Standard curves of the Giop
assay were obtained using genomic DNA of P. viticola as
template in a 10-fold dilution series (from 1 to 10–5 ng), and
DNA from oospores suspensions as template in a 10-fold
dilution series (from 12,000 to 1 oospore/mL, equivalent to
6,000 to 0.5 oospores/g of leaf sample). Real-time qPCR assays
were carried out twice, and for each DNA template, each dilution
was replicated three times. A water control was included in
triplicate in each assay. Standard curves of the qPCR assay were
produced by linear regression, and the coefficient of
determination (R2) was calculated. The amplification efficiency
(E) was determined from the slope of the standard curves (Bustin
et al., 2009).

Microscope Counts vs. qPCR Assay
In experiment 1, five leaf samples with different levels of P.
viticola infestation were prepared by mixing DM-infested and
non-infested leaf pieces, described above, in the following
proportions: 0 g infested/100 g non-infested (infestation 0%),
25/75 (25%), 50/50 (50%), 75/25 (75%), and 100/0. In
experiment 2, leaf samples were prepared that consisted of 1,
2, or 3 g of DM-infested leaves.

Samples of both experiments were managed as described
earlier, and numbers of oospores were determined by the Giop
qPCR assay in three biological replicates in each assay and by
microscope counts of oospore suspensions in four replicate
samples for each infestation level in experiment 1 or in two
replicate samples for each sample weight in experiment 2. Six
replicate microscopic counts were carried out for each biological
replicate sample in each experiment. The two experiments were
performed twice.

Data Analysis
All statistical analyses were carried out using SPSS (version 24;
IBM SPSS Statistics, IBM Corp., USA). An analysis of variance
(ANOVA) was used to test differences among leaf samples in the
two experiments. Before ANOVA, numbers of oospores per g of
leaf were transformed using the decimal logarithm function to
make variances homogeneous. A post-hoc comparison of means
was conducted by using the Student-Newman-Keuls test
at P<0.05.
RESULTS

qPCR Specificity and Standard Curves
In the specificity test for P. viticola, the Giop probe/primer set did
not amplify the purified DNA of non-target organisms but did
amplify the purified DNA of P. viticola (Table 1). The Giop
standard curve generated by a 10-fold serial dilution of P. viticola
purified DNA obtained from sporangia suspensions was linear,
with an efficiency of 110% and an R2 (the coefficient of
determination) of 0.99 (Table 2, eq. 1). Similarly, the oospore
standard curves generated by five-fold serial dilutions of
TABLE 1 | List of fungi, oomycetes, and plants used for testing the specificity of
a real-time qPCR assay targeting Plasmopara viticola DNA, and the
corresponding results.

Genus and species Isolate codea qPCR result

Alternaria alternata 5 −b

Alternaria sp. 23 −

Aspergillus flavus 4 −

Aspergillus niger 3 −

Botrytis cinerea 351V −

Botrytis cinerea 213 T −

Guignardia bidwelii Q15 −

Monilia laxa 11 −

Penicillium sp. 2 −

Phomopsis viticola Ph-1 −

Rhizopus sp. 26 −

Sclerotinia sclerotiorum 22 −

Stemphylium sp. 14 −

Erysiphe necator FPc 2017 and FP 2018 −

Vitis vinifera N/A −

Plasmopara viticola FP 2017 and FP 2018 +
aCodes refer to the culture collection of the Department of Sustainable Crop Production of
the University of Piacenza (Italy); b + indicates amplified, and − indicates not amplified; c FP
indicates a field population with the year of collection.
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extracted oospore DNA were linear, with an efficiency of 121%
and an R2 of 0.99 (Table 2, eq. 2). The Giop assay was able to
amplify the lowest tested concentration of P. viticola purified
DNA, which was 10−5 ng, and a P. viticola oospore concentration
as low as 1 oospore/mL (not shown). A third linear regression
derived from the superposition of the two previous regressions
was calculated for the relationship between DNA quantity (ng)
and the number of oospores in a Cq range from 18 to 37, with an
R2 of 0.99 (Table 2, eq. 3). Based on this equation, the oospore
number increased linearly with the quantity of DNA in the
leaf sample.

Microscope Counts vs. qPCR Assay
In experiment 1, oospore numbers were estimated by microscope
counts and by the qPCR assay in samples with the following
percentages of P. viticola-infested leaves: 0, 25, 50, 75, and 100%.
The ANOVA revealed significant differences among infestation
levels, but the qPCR assay provided more consistent differences
than the microscope counts, as indicated by the post-hoc test
(Table 3). For instance, the post-hoc test for microscope counts
revealed no significant difference between the number of
oospores in the 25% and 0% infection level, which was not the
case for the qPCR assay. The standard errors for the oospore
estimation were greater with microscope counts than with qPCR
estimation, especially for the 25 and 50% infestation levels, i.e.,
Frontiers in Plant Science | www.frontiersin.org 5
the variability among replicates was greater for the microscope
counts than for the qPCR estimates (Table 3).

In experiment 2, the number of oospores per g of leaf was
determined by microscope counts and by the qPCR assay in three
sub-samples of differentweights (1, 2, and 3 g); the sub-sampleswere
obtained from the same infested leaf sample, with the expectation
that the sub-sample weight would not influence the number of
oospores detected per g of leaf. The ANOVA revealed significant
differences between sample weights for microscope counts but not
for qPCR (Table 3), showing that the formermethodwas affected by
the leaf sample weight while the latter was not.

There was a linear relationship between the number of P.
viticola oospores per gram of leaf (log10 transformed) estimated
by qPCR and enumerated with the microscope, with R2 = 0.70
(Figure 2, Table 4 eq. 1). In this linear equation, the intercept (a=
−0.147 ± 0.362) and slope (b=1.157 ± 0.100) were not
significantly different from zero (P=0.686) and one (P=0.134),
respectively (Figure 2), indicating that the qPCR did not
estimate the presence of oospores when there were no
oospores in the leaf sample, and that the number of oospores
detected by qPCR was equal to the number detected by
microscopic observation. The relationship between the number
of P. viticola oospores per gram of leaf (log10 transformed)
estimated by qPCR and the Cq value is described by a logistic
equation with a R2 of 0.87 (Table 4 eq. 2).
DISCUSSION

In 2005, Valsesia et al. (2005) described a qPCR assay for the
detection of P. viticola in fresh grape leaves. The current study
TABLE 2 | Linear regressions, coefficients of determination (R2), and reaction
efficiencies (E, %) for the qPCR standard curves used for the quantification of
Plasmopara viticola oospores; Cq is the qPCR quantification cycle.

Equation number Linear equationsa R2 E%

1 Cq = 21.60 − 3.08× log10 (DNA) 0.99 110
2 Cq = 36.262 − 2.903× log10 (est) 0.99 121
3 N oosp/g = 113,966× (DNA) 0.99 –
aLinear equations Y = a+bX: In equation 1, Y refers to the Cq value, and X refers to the
log10 transformed DNA concentration (ng). In equation 2, Y refers to the Cq value, and X
refers to the log10 transformed estimated (est) number of oospores per gram of leaf. In
equation 3, Y refers to the number of oospores per gram of leaf (N oosp/g) and X refers to
the DNA concentration (ng).
TABLE 3 | Numbers of oospores per gram of leaf estimated using two methods
(microscope count and qPCR) in grape leaves with different levels of infestation
by Plasmopara viticola (experiment 1) and with different sample weights of
infested leaves (experiment 2).

Experiment Microscope count Estimation by qPCR

1 Infestation level (%)
0 0.000 ± 0.000 a 0.000 ± 0.000 a
25 1.525 ± 0.881 ab 3.282 ± 0.229 b
50 2.419 ± 0.811 bc 3.620 ± 0.280 bc
75 3.805 ± 0.045 c 3.907 ± 0.270 cd
100 3.861 ± 0.054 c 4.252 ± 0.230 d
P 0.001 <0.001

2 Sample weight (g)
1 3.815 ± 0.060 a 4.290 ± 0.061 a
2 3.477 ± 0.103 b 4.194 ± 0.252 a
3 3.525 ± 0.025 b 3.723 ± 0.139 a
P 0.002 0.094
Values are log10meansandstandard errors of 4 and12 replicates for experiment 1and2, respectively.
P values indicate the significance level from ANOVA; letters indicate differences among means (P <
0.05) based on the Student-Newman-Keuls test at P = 0.05.
FIGURE 2 | Relationship between estimates of the number of Plasmopara
viticola oospores per gram of leaf (log10 transformed) based on the real-time
qPCR assay and on microscope counts. Blue and orange dots represent
mean values from experiment 1 and 2, respectively. Experiment 1 had five
levels of P. viticola infested leaves (0, 25, 50, 75, and 100%) with a constant
sample weight of 1 g. Experiment 2 had three samples weights of infested
leaves: 1, 2, and 3 g. The line represents linear regression 1 in Table 4.
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assessed the suitability of that assay (with minor modifications)
for the quantification of pathogen’s overwintering inoculum, i.e.,
oospores in senescent grapevine leaves. One expectation in
developing a detection method is that the new method
performs better than or at least as well as an existing one. In
our experiments, the qPCR assay was therefore compared with
microscope counts of oospores. Our results showed that the two
methods are comparable in that there was a strong linear
relationship between the number of P. viticola oospores per
gram of grapevine leaves estimated by qPCR and enumerated
with the microscope. Furthermore, unlike microscope counts,
the qPCR assay could detect significant differences among
samples with low vs. no oospore infestation (25 vs. 0%
infestation level), and was not influenced by the leaf sample
weight, indicating that the qPCR method provides a more
sensitive and reliable estimate of the number of oospores than
microscope counts. In the comparison of the two methods
(qPCR and microscope counts), it is also important to note
that the microscopic counting of oospores in leaf tissue or in
suspensions requires careful observation by experts. In
our experiments, for example, the P. viticola oospores in
suspensions could be easily confused with similar structures
visible at the same magnification (e.g., spores of soilborne
pathogens and saprophytes). Moreover, despite the thorough
and time-consuming filtration process used to prepare oospore
suspensions, oospores could remain trapped in microscopic
fragments of leaf tissue, making observation and identification
difficult. The qPCR assay, in contrast, provides less subjective
estimates of P. viticola oospore numbers. These results, which
need to be confirmed with a range of field samples, show that the
qPCR assay provides accurate and consistent results.

It can be argued that the qPCR estimation is based on the
quantification of total genomic DNA of P. viticola in leaf samples,
which may include the oospores but also the endophytic
mycelium that generated the oospores (Lafon and Clerjeau,
1988; Gobbin et al., 2006; Rumbou and Gessler, 2006), which
would result in an overestimation of the number of oospores. The
amount of mycelium in the leaf tissue, however, should be
proportional to the number of oospores because the oospores
Frontiers in Plant Science | www.frontiersin.org 6
form following crosses of antheridia and oogonia produced by the
mycelium itself (Wong et al., 2001; Scherer and Gisi, 2006);
therefore, if an overestimation exists, it should be proportional
to the oospore numbers. Consistent with the latter assumption,
the results of the present work revealed a direct, linear relationship
between the quantity of P. viticola DNA detected by qPCR and
microscope counts in senescent grapevine leaves that would soon
drop to the soil surface and become leaf litter.

Both methods (qPCR and microscope counts) fail to
distinguish between living and dead oospores, and that could
bias the assessment of the inoculum potential in a vineyard.
Long-term survival of oospores is influenced by several factors.
For instance, exposure to high temperatures (40 to 53°C) for 1 to
24 h resulted in the death of oospores of Phytophthora capsici
(Etxeberria et al., 2011) and the inhibition of the germination of
oospores of P. kernoviae and P. infestans (Fay and Fry, 1997;
Widmer, 2011). Trichoderma asperellum, a common soil-borne
fungus, can penetrate oospores of P. capsici, develop hyphae, and
produce conidia leading to the disintegration of oospores (Jiang
et al., 2016). Other microorganisms, including the biocontrol
agents Bacillus subtilis and Trichoderma hartianum T39, can
prevent the germination of Plasmopara viticola oospores
(Vecchione et al., 2005; Dagostin et al., 2006). Glucosinolates
and their degradation products, which are generated when
Brassica plants are incorporated into soil as green manure, also
prevented the germination of Pythium irregulare oospores
(Manici et al., 2000) and significantly reduced the viability of
oospores of P. capsici when used in combination with
solarization (Lacasa et al., 2015). Therefore, the quantification
of total oospores (viable and non-viable) may overestimate the
inoculum potential in a vineyard. Methods to differentiate
between dead and viable cells by quantifying only DNA from
viable cells have been developed (Fittipaldi et al., 2012); when
propidium monoazide (PMA) is used with qPCR, for example,
the PMA enters non-viable cells, binds to DNA, and inhibits
DNA amplification during PCR (Nocker et al., 2007). A method
that used PMA-qPCR to quantify the viable resting spores of
Plasmodiophora brassicae in soil was developed by Al-Daoud
et al. (2017). This method was subsequently used to demonstrate
that a large proportion of the DNA of P. brassicae detected in soil
was derived from non-viable or immature resting spores (Gossen
et al., 2019). Adaptation of the method of Al-Daoud et al. (2017)
for P. viticola would probably result in a more accurate and
reliable estimation of the inoculum density, and this warrants
further study.

In this work, the qPCR assay was used to detect the oospores
in grapevine leaves, but oospores in grapevine leaves represent
only part of the total oospores present in a vineyard. Once the
leaf litter decomposes, the oospores are incorporated into the
soil. Although these gradually die, some remain viable for at least
65 months (Caffi et al., 2011). The oospore population in a
vineyard is therefore composed of oospores in the leaf litter and
in the soil. There is no information about the epidemiological
role of the oospores in the soil and their ability to produce
zoospores that can be splash-transported from soil to grape
leaves, but it would be useful to determine whether the qPCR
TABLE 4 | Parameters and statistics of the regression equations used for fitting
the relationships between the qPCR estimation of the number of Plasmopara
viticola oospores per gram of leaf (dependent variable Y) and 1) the microscope
counts of oospores (independent variable X) and 2) quantification cycle (Cq,
independent variable X).

Equationa Equation parameters

a b c R2 c

(1) log10(est) =
a + b×log10(obs)

−0.147 ± 0.362b 1.157 ± 0.100 – 0.70

(2) log10(est) =
c/(1+exp(−a + b×Cq))

15.285 ± 1.790 0.497 ± 0.060 3.828 ± 0.076 0.87
aEquation 1 is a linear regression Y = a+bX: y refers to the log10 transformed qPCR
estimation (est) of the number of oospores per gram of leaf, and x refers to the log10
transformed of observed (obs) number of oospores in microscope counts; Equation 2 is a
logistic equation Y=c/(1+exp(−a+bX)): y refers to the log10 transformed qPCR estimation
(est) of the number of oospores per gram of leaf, and x refers to the Cq value. bStandard
errors of the estimated parameters. cCoefficient of determination.
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assay can be used to estimate oospore numbers in vineyard soil
samples. In this regard, researchers have recently developed
techniques that overcome some of the problems in using qPCR
to quantify pathogen inoculum in soil (Pavón et al., 2008; Schena
et al., 2013; Hussain et al., 2014; Gossen et al., 2019; Van der
Heyden et al., 2019). Another limitation of this research is that it
was conducted with diseased senescent leaves that would have
soon fallen to the soil surface and become litter rather than with
leaf litter. It follows that the qPCR method and microscopic
counts should now be compared for determination of oospore
numbers in grapevine leaf litter.

The qPCR assay for P. viticola oospores could be useful for
managing DM in vineyards. Such management is currently based
on the assumption that the potential for severe disease outbreak
is always present, even when the disease was not severe in the
previous season. With this assumption, vineyard managers tend
to apply fungicides whether they are needed or not. Managers
would be less likely to apply unneeded fungicides if they knew
the oospore inoculum levels (as indicated by the qPCR assay) in
their vineyards and how those levels related to DM severity. The
modification of disease management according to inoculum level
has occurred with other pathosystems. Apple scab, for example,
can be effectively controlled by delaying fungicide applications
based on estimates of the potential ascospore numbers of
Venturia inaequalis in an orchard (MacHardy et al., 1993).
Information on the P. viticola oospore numbers in vineyards
could also be used for adapting the mathematical models for
predicting P. viticola oospore dynamics and primary infections
(Caffi et al., 2007; Rossi et al., 2008b; Caffi et al., 2009). Further
study could be performed in order to establish the relationship
between oospore density in vineyard and DM severity.
Frontiers in Plant Science | www.frontiersin.org 7
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Van der Heyden, H., Wallon, T., Lévesque, C. A., and Carisse, O. (2019). Detection
and quantification of Pythium tracheiphilum in soil by multiplex real-time
qPCR. Plant Dis. 103 (3), 475–483. doi: 10.1094/PDIS-03-18-0419-RE

Vecchione, A., Zulini, L., Pertot, I., and Musetti, R. (2005). Biological control of
Plasmopara viticola: a multisite approach. In Int. Workshop Adv. Grapevine
Wine Res. 754, 361–366.

Vercesi, A., Tornaghi, R., Sant, S., Burruano, S., and Faoro, F. (1999). A cytological
and ultrastructural study on the maturation and germination of oospores of
Plasmopara viticola from overwintering vine leaves. Mycological Res. 103 (2),
193–202. doi: 10.1017/S095375629800700X

Vercesi, A., Sirtori, C., Vavassori, A., Setti, E., and Liberati, D. (2000). Estimating
germinability of Plasmopara viticola oospores by means of neural networks.
Med. Biol. Eng. Comput. 38 (1), 109–112. doi: 10.1007/BF02344698

Vercesi, A., Vavassori, A., Faoro, F., and Bisiach, M. (2002). Effect of azoxystrobin
on the oospores of Plasmopara viticola. In Advances in downy mildew research.
(Dordrecht: Springer), 195–199.

Vercesi, A., Toffolatti, S. L., Zocchi, G., Guglielmann, R., and Ironi, L. (2010). A
new approach to modelling the dynamics of oospore germination in
Frontiers in Plant Science | www.frontiersin.org 9
Plasmopara viticola. Eur. J. Plant Pathol. 128 (1), 113–126. doi: 10.1007/
s10658-010-9635-8

Widmer, T. (2011). Effect of temperature on survival of Phytophthora kernoviae
oospores, sporangia, and mycelium. New Z. J. Forestry Sci. 41S, S15–S23.

Wong, F. P., and Wilcox, W. F. (2001). Comparative physical modes of action of
azoxystrobin, mancozeb, and metalaxyl against Plasmopara viticola
(grapevine downy mildew). Plant Dis. 85 (6), 649–656. doi: 10.1094/
PDIS.2001.85.6.649

Wong, F. P., Burr, H. N., and Wilcox, W. F. (2001). Heterothallism in Plasmopara
viticola. Plant Pathol. 50 (4), 427–432. doi: 10.1046/j.1365-3059.2001.00573.x

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Si Ammour, Bove, Toffolatti and Rossi. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
August 2020 | Volume 11 | Article 1202

https://doi.org/10.1094/PHYTO-95-0672
https://doi.org/10.1094/PHYTO-95-0672
https://doi.org/10.1094/PDIS-03-18-0419-RE
https://doi.org/10.1017/S095375629800700X
https://doi.org/10.1007/BF02344698
https://doi.org/10.1007/s10658-010-9635-8
https://doi.org/10.1007/s10658-010-9635-8
https://doi.org/10.1094/PDIS.2001.85.6.649
https://doi.org/10.1094/PDIS.2001.85.6.649
https://doi.org/10.1046/j.1365-3059.2001.00573.x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

	A Real-Time PCR Assay for the Quantification of Plasmopara viticola Oospores in Grapevine Leaves
	Introduction
	Materials and Methods
	Plant and P. viticola Material
	Real-Time qPCR
	DNA Extraction Method
	qPCR Assay
	Specificity
	qPCR Standard Curves

	Microscope Counts vs. qPCR Assay
	Data Analysis

	Results
	qPCR Specificity and Standard Curves
	Microscope Counts vs. qPCR Assay

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


