
catalysts

Article

Asymmetric Hydrogenation of 1-aryl
substituted-3,4-Dihydroisoquinolines with Iridium
Catalysts Bearing Different
Phosphorus-Based Ligands

Giorgio Facchetti 1,*, Michael S. Christodoulou 1 , Eleonora Binda 2, Marco Fusè 3 and
Isabella Rimoldi 1,*

1 Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Venezian 21,
20133 Milano, Italy; michail.christodoulou@unimi.it

2 Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi, 19, 20133 Milano, Italy;
eleonora.binda@studenti.unimi.it

3 Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy; marco.fuse@sns.it
* Correspondence: giorgio.facchetti@unimi.it (G.F.); isabella.rimoldi@unimi.it (I.R.);

Received: 24 July 2020; Accepted: 4 August 2020; Published: 10 August 2020
����������
�������

Abstract: Starting from the chiral 5,6,7,8-tetrahydroquinolin-8-ol core, a series of amino-phosphorus-
based ligands was realized. The so-obtained amino-phosphine ligand (L1), amino-phosphinite (L2)
and amino-phosphite (L3) were evaluated in iridium complexes together with the heterobiaryl
diphosphines tetraMe-BITIOP (L4), Diophep (L5) and L6 and L7 ligands, characterized by mixed
chirality. Their catalytic performance in the asymmetric hydrogenation (AH) of the model substrate
6,7-dimethoxy-1-phenyl-3,4-dihydroisoquinoline 1a led us to identify Ir-L4 and Ir-L5 catalysts as
the most effective. The application of these catalytic systems to a library of differently substituted
1-aryl-3,4-dihydroisoquinolines afforded the corresponding products with variable enantioselective
levels. The 4-nitrophenyl derivative 3b was obtained in a complete conversion and with an excellent
94% e.e. using Ir-L4, and a good 76% e.e. was achieved in the reduction of 2-nitrophenyl derivative
6a using Ir-L5.

Keywords: atropoisomeric chirality; chiral diphosphines; amino phosphine; imines reduction;
iridium complexes

1. Introduction

Many pharmaceutically active compounds owe their physiological activity to the presence of
an aminic group in their structure. In particular, 1,2,3,4–tetrahydroquinolines and their analogs are
very important building blocks for the synthesis of biologically active compounds [1–3] such as
salsolidine [4–7] and carnegine [8], solifenacin [9], cryptostyline [10], complex alkaloids [11–14] and
new derivatives active as anti-HIV agents [15] and as anticonvulsants (as an inhibitor of carbonic
anhydrase [16] or as a non-competitive antagonist via interaction with the glutamate ionotropic AMPA
receptor complex) [17] (Figure 1).

The traditional organic methods for the synthesis of tetrahydroquinoline are based on condensation,
the cyclization/reduction sequence and intramolecular nucleophilic addition [18–23]. Many efforts
have been made to improve the synthetic approach via catalytic methods [7,24–31]. Considering the
convenience in terms of efficiency and atom economy, asymmetric hydrogenation (AH) of prochiral
imines, using phosphine-based metal complexes as catalysts, was evinced as the most practical
application. It is well known that the steric hindrance of the ligands plays an important role in the
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asymmetric reduction of this substrate, and matching the hindrance of both catalyst and substrate could
enhance the performance of the asymmetric reduction. Among the very first works in the asymmetric
hydrogenation of such a class of substrates [32,33], Zhang’s group [28] and Ratovelomanana-Vidal’s
group [34,35] have made a breakthrough, setting up an innovative strategy for the reduction of
dihydroisoquinolines. The atropoisomerism, stemming from a restricted rotation around aryl–aryl bonds,
constitutes the structural feature accounting for the selectivity in many diphosphine ligands, both as
binaphane-type ligands and as classic chiral ones [36,37]. On the contrary, the amino-monophosphine
ligands bearing a 1,1′-bi-2-naphthol as an additional source of chirality have been less studied. In this
work, we compared three different types of phosphine ligands bearing an atropoisomeric chirality in
iridium (III) complexes for the reduction of substituted cyclic aromatic 1-aryl imines.

Catalysts 2020, 10, x FOR PEER REVIEW 2 of 11 

 

 

Figure 1. Representative bioactive compounds based on tetrahydroquinolines  

The traditional organic methods for the synthesis of tetrahydroquinoline are based on 
condensation, the cyclization/reduction sequence and intramolecular nucleophilic addition [18–23]. 
Many efforts have been made to improve the synthetic approach via catalytic methods [7,24–31]. 
Considering the convenience in terms of efficiency and atom economy, asymmetric hydrogenation 
(AH) of prochiral imines, using phosphine-based metal complexes as catalysts, was evinced as the 
most practical application. It is well known that the steric hindrance of the ligands plays an important 
role in the asymmetric reduction of this substrate, and matching the hindrance of both catalyst and 
substrate could enhance the performance of the asymmetric reduction. Among the very first works 
in the asymmetric hydrogenation of such a class of substrates [32,33], Zhang’s group [28] and 
Ratovelomanana-Vidal’s group [34,35] have made a breakthrough, setting up an innovative strategy 
for the reduction of dihydroisoquinolines. The atropoisomerism, stemming from a restricted rotation 
around aryl–aryl bonds, constitutes the structural feature accounting for the selectivity in many 
diphosphine ligands, both as binaphane-type ligands and as classic chiral ones [36,37]. On the 
contrary, the amino-monophosphine ligands bearing a 1,1′-bi-2-naphthol as an additional source of 
chirality have been less studied. In this work, we compared three different types of phosphine ligands 
bearing an atropoisomeric chirality in iridium (III) complexes for the reduction of substituted cyclic 
aromatic 1-aryl imines. 

2. Results and Discussion 

Atropoisomerism is a special characteristic that, based on the 1,1′-bi-2-naphthol moiety, 
furnishes one of the most common and efficient sources of chirality in the pool of phosphine ligands.  

Based on our experience in the use of the chiral 8-amino-5,6,7,8-tetrahydroquinoline scaffold and 
its derivatives as ligands in transition metal complexes, and considering their employment as sources 
of chirality in organometallic catalysts for asymmetric reduction or for C–B bond formation reactions 
[38–40], we decided to focus our attention on the synthesis of three amino monophosphine ligands: 
amino-phosphine (L1), -phosphinite (L2) [41,42] and -phosphite (L3). For the synthesis of amino 
monophosphines, we started from the chiral 5,6,7,8-tetrahydroquinolin-ol, the enantiomers of which 
were successfully separated through enzymatic DKR by Candida antarctica lipase B with high yield 
and purity [43]. The synthesis of the three different types of amino monophosphines proceeded as 
reported in Scheme 1. These ligands were synthesized with the aim of evaluating the importance of 

Figure 1. Representative bioactive compounds based on tetrahydroquinolines

2. Results and Discussion

Atropoisomerism is a special characteristic that, based on the 1,1′-bi-2-naphthol moiety, furnishes
one of the most common and efficient sources of chirality in the pool of phosphine ligands.

Based on our experience in the use of the chiral 8-amino-5,6,7,8-tetrahydroquinoline scaffold
and its derivatives as ligands in transition metal complexes, and considering their employment as
sources of chirality in organometallic catalysts for asymmetric reduction or for C–B bond formation
reactions [38–40], we decided to focus our attention on the synthesis of three amino monophosphine
ligands: amino-phosphine (L1), -phosphinite (L2) [41,42] and -phosphite (L3). For the synthesis of
amino monophosphines, we started from the chiral 5,6,7,8-tetrahydroquinolin-ol, the enantiomers of
which were successfully separated through enzymatic DKR by Candida antarctica lipase B with high
yield and purity [43]. The synthesis of the three different types of amino monophosphines proceeded
as reported in Scheme 1. These ligands were synthesized with the aim of evaluating the importance
of the atropoisomeric scaffold when starting from an amino-phosphine in order to afford ligand L3,
in which the 1,1′-bi-2-naphthol moiety resulted in an additional source of chirality or/and of additional
steric hindrance.

In the case of the monophosphine L1, the synthesis proceeded without racemization at the
chiral center at position 8 of the tetrahydroquinoline, as evinced by chiral HPLC analysis (see SI).
These monophosphines were used in comparison with other atropoisomeric phosphines known from
the literature, in each of which atropoisomerism assumed peculiar features: in L4 [44,45] and L5 [46],
the heterobiaryl moiety afforded the core of the diphosphines, introducing an axial chirality element
comparable to the one arising from a 1,1′-bi-2-naphthol, although with a different steric hindrance.
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Moreover, L5 provided mixed stereogenic elements similar to L6 and L7 [47] in which the ligands
comprise one stereogenic sp3 carbon atom backbone and the stereogenic axis of the biaryl moiety
(Table 1).
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Scheme 1. Synthesis of 8-(diphenylphosphanyl)-5,6,7,8-tetrahydroquinoline, PN-CAMPY-R L1, (R)-8-
((diphenylphosphanyl)oxy)-5,6,7,8-tetrahydroquinoline, OPN-CAMPY-R L2 and (8R)-8-(((4R)-dinaphtho
[2,1-d:1′,2′-f][1,3,2]dioxaphosphepin-4-yl)oxy)-5,6,7,8-tetrahydroquinoline, OPO2N-CAMPY-RRax L3.

The catalytic investigation was applied to the asymmetric hydrogenation of a series of
synthesized cyclic aromatic 1-aryl imines under different reaction conditions, employing Ir-precatalysts
generated in situ. For a preliminary screening, the commercially available 6,7-dimethoxy-1-phenyl-3,
4-dihydroisoquinoline 1a was used as a model substrate in order to set up the reaction.

Among the variables of the conditions taken into consideration, the ones able to impact the outcome
of the reaction included the use of different types of additives (1,3-dichloro-5,5-dimethylhydantoin,
DCDMH [48], FeCl3, N-bromosuccinimide, NBS, N-chlorosuccinimide [32] or H3PO4 [9]) and of the
solvent employed (THF, toluene, CH2Cl2) [49] (see SI, Table S1; data refer to substrate 1a). In the
reactions in which L1, L2, L3 and L7 were used as ligands, the presence of an additive proved
mandatory (Table 1, entries 1, 3, 5 and 17). From the obtained results, the optimized protocol for the
AH reaction comprised a 100/1 substrate/catalyst ratio in toluene under 20 atm of molecular hydrogen
in the presence of 10% molar of additive at 20◦C for 12 h. Neither the increase in temperature nor
a higher hydrogen pressure allowed significant variations to be obtained in terms of enantioselectivity.

The obtained data underlined that the best results in terms of conversion and enantioselectivity
were achieved by using NBS as an additive for all ligands (Table 1, entries 2, 4, 6, 9, 11, 13, 16
and 18). Regarding the phosphorous ligands, the amino-monophosphines L1-L3 proved less active,
and only modest enantiomeric excesses accompanied the reaction (20–39% e.e., Table 1, entries 2,
4 and 6), although the addition of the 1,1′-bi-2-naphtol moiety in the ligand slightly increased the
enantioselectivity (Table 1, entry 6). The same results were obtained in the presence of ligands L6 and
L7, in which the mixed types of chirality (sp3 and axial) did not match (Table 1, entries 16 and 18).
The best results were obtained by the classical atropoisomeric diphosphines L4 and L5 (Table 1, entries
9 and 13). In particular, in the presence of tetraMe-BITIOP as the ligand, good enantioselectivity was
achieved with either NBS or DCDMH as the additive, although the conversion was completed only in
the presence of NBS within 12 h (Table 1, entry 7 vs. entry 9). An increase in the substrate/catalyst ratio
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to 250/1 did not affect the enantioselectivity of the reaction, with only a minimum erosion in terms of
conversion within the settled reaction time (12 h) (Table 1, entry 11).

Table 1. Screening of different iridium complexes bearing L1–7.
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10 L4-R FeCl3 85 72
11 L4-R [a] NBS 90 71
12 L5-SSSax - 10 38
13 L5-SSSax NBS 69 55
14 L6-RRax - 21 27
15 L6-RRax DCDMH 5 25
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Reactions were conducted using 1 mol % iridium complex in toluene with or without an additive
(catalyst:additive = 1:10) at 20 ◦C and 20 atm of H2 pressure for 12 h. [a] The reaction was conducted using
0.4 mol % iridium complex. [b] Conversion was determined by 1H-NMR, while enantiomeric excess was determined
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The synthesis of differently substituted derivatives of the standard substrate 1a was accomplished
following the well-known Bischler–Napieralski cyclodehydration [50]. All the obtained products
were fully characterized by NMR and MS analysis results in accordance with the data reported in
the literature, with the exception of 1-(3,5-bis(trifluoromethyl)phenyl)-3,4-dihydroisoquinoline, 11a,
here reported for the first time to the best of our knowledge. Considering that the best performances
were obtained using atropoisomeric diphosphines L4 and L5 in situ coordinated with the iridium(III)
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metal center (see Table S1 in SI for comparison), the asymmetric hydrogenation of the substrates
reported below was carried out under the following optimized reaction conditions established for
the standard substrate 1a: substrate/catalyst ratio of 100/1 (final substrate concentration of 10 mM)
in toluene in the presence of 10% molar of NBS as an additive under 20 atm of hydrogen pressure at
20 ◦C for 12 h. This allowed a comparison of the reactivity of the catalytic systems to be made relative
to the structural and electronic differences of the substrates.

As evinced by the data reported in Figure 2, for all the 1-aryl imines, the best results in terms of
enantioselectivity and conversion were afforded by using the L4 ligand, providing an e.e. of up to 94%
along with 99% conversion for the substrate 3a. The only exceptions were obtained in the reduction
of 1-phenyl-1,2,3,4-tetrahydroisoquinoline, 8a, for which L5 raised the enantiomeric excess to 75%
with a good conversion of 86%, and in the reduction of the substrate 6a, for which a 76% e.e. was
reached, although with a modest conversion of 45%. Indeed, the reduction of the substrates 8a-11a,
characterized by the absence of the two methoxy groups on the quinoline ring, confirmed the pivotal
role of the p-NO2 group in furnishing enantiodiscrimination in the reaction when Ir-L4 was used as
the catalyst, allowing it to obtain 10b with 81% e.e. The differences in both enantioselectivity and
conversion rate between the two diphosphines could be due to the basicity and, consequently, to the
more electron-rich properties of L4 compared with L5 and, conversely, to the steric hindrance of L5,
which is greater than that of L4.
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3. Conclusions

Different types of chiral phosphines serving as a source of chirality in an atropoisomeric moiety
due to the presence of axial biaryl asymmetry were evaluated in the reduction of a standard cyclic
imine, 6,7-dimethoxy-1-phenyl-3,4-dihydroisoquinoline 1a. By this preliminary screening, the classical
atropoisomeric diphosphines, L4 and L5, proved the most effective ligands in iridium complexes for
the asymmetric hydrogenation of this substrate, while the amino-monophosphines L1, L2 and L3
were less stereoselective as ligands despite the presence of the additional 1,1′-bi-2-naphthol moiety.
Th ligands L6 and L7, comprising both the stereogenic sp3 carbon atom backbone and the stereogenic
axis of the biaryl moiety, resulted in poor enantioselectivity. With the optimal reaction conditions in
hand, we were able to extend the scope of the reaction to a series of 1-aryl cyclic imines, different
from an electronic point of view for the presence of electron-withdrawing or electron-donor groups
on the 1-phenyl substituent. An excellent 94% e.e. was achieved in the AH of the substrate 3a using
the Ir-L4 complex, with a complete conversion for substrate 7a, although with a lower but still good
71% e.e. A remarkable point is the 82% e.e. reached in the reduction of the steric-hindered imine 5a.
The Ir-catalytic system, [Ir(COD)Cl]2 and the L5 ligand, afforded the best results in the AH of the
1-(2-nitro)phenyl-substituted substrate 6a with a 76% e.e. and in the AH of the simple but demanding
substrate 8a, affording the product with a good e.e. of 75% and with 86% conversion.

4. Experimental

General: 1H-, 13C- and 31P-NMR spectra were recorded in CDCl3 or C6D6 on Bruker DRX Avance
400 and 300 MHz equipped with a non-reverse probe. Chemical shifts (in ppm) were referenced
to the residual solvent proton/phosphorous peak. MS analyses were performed by using a Thermo
Finnigan (MA, USA) LCQ Advantage system MS spectrometer with an electrospray ionization source
and an ‘Ion Trap’ mass analyzer. The MS spectra were obtained by direct infusion of a sample solution
in MeOH under ionization, ESI positive. Catalytic reactions were monitored by HPLC analysis
with Merck-Hitachi L-7100 equipped with Detector UV6000LP and a chiral column (Chiralcel OD-H,
Chiralpak AD, Lux Cellulose-2 or Lux Amylose-2).

4.1. General Procedure for Synthesis of Substrates

The synthesis of substrates was conducted as reported in the literature. To a solution of
2-arylethylamine (1.0 eq.) and triethylamine (1.5 eq.) in CH2Cl2 (40 mL) at 0 ◦C, carbonyl chloride
(1.0 eq.) was slowly added. The mixture was stirred at room temperature overnight, and then it was
concentrated in vacuo. EtOAc (30 mL) was added, and the solution was washed with saturated NH4Cl
solution (30 mL). The aqueous layer was extracted with EtOAc (3 × 20 mL), and the combined organic
layers were washed with brine (50 mL) and dried with anhydrous Na2SO4. The solvent was evaporated,
and the residue was used without further purification. To a solution of N-acyl-2-arylethylamine (1.0 eq.)
and 2-chloropyridine (1.2 eq.) in CH2Cl2 (25 mL) cooled at −78 ◦C, trifluoromethanesulfonic anhydride
(1.1 eq.) was added dropwise. Then, the mixture was slowly warmed to room temperature and
stirred overnight. The reaction was quenched with saturated NaHCO3 solution and extracted with
CH2Cl2 (3 × 20 mL). The combined organic layers were washed with brine and dried with anhydrous
Na2SO4. After that, the solvent was reduced in vacuo, and the obtained product was purified by flash
chromatography (yield: 50–85%). All the obtained substrates were characterized, and the analytical
results matched those reported in the literature [25,50–54].

1-(3,5-Bis(trifluoromethyl)phenyl)-3,4-dihydroisoquinoline, (11a): pale yellow oil, yield 53%; 1H NMR
(300 MHz, CDCl3) δ 8.12 (s, 2H), 7.97 (s, 1H), 7.44 (dt, J = 7.5 Hz J = 1.2 Hz, 1H), 7.33–7.27 (m, 2H), 7.15
(d, J = 7.5 Hz, 1H), 3.94–3.89 (m, 2H), 2.87–82 (m, 2H) ppm; 13C NMR (75 MHz, CDCl3) δ: 164.9, 141.0,
138.8, 131.6 (q, 2JCF = 33 Hz, 2C), 131.4, 129.0 (q, 3JCF = 3.0 Hz, 2C), 127.9, 127.7, 127.0, 126.9, 126.8 (q,
1JCF = 273 Hz, 2C), 123.0 (q, 3JCF = 3.8 Hz), 47.9, 26.0 ppm. FTIR (NaCl) ν = 3072.04, 2941.10, 1624.11,
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1609.56, 1389.17, 1278.13, 1183.71, 1128.18, 890.92, 745.80 cm−1; MS (ESI) for C17H11F6N: m/z 344.01
[M+H]+.

4.2. Synthesis of (R)-8-(Diphenylphosphanyl)-5,6,7,8-Tetrahydroquinoline, L1

The chiral 5,6,7,8-tetrahydroquinoline-8-ol was obtained as previously reported with a yield of
89% for the (R)-enantiomer (99% e.e.) and 87% for the (S)-enantiomer (96% e.e.) [43]. To a solution of
(S)-5,6,7,8-tetrahydroquinoline-8-ol (1 mmol) in 5 mL of anhydrous THF at 0 ◦C, TEA (2.5 eq.) was
added. Methanesulfonyl chloride (1.5 eq.) was added dropwise, and the mixture was stirred at 0 ◦C for
10 min. The temperature was decreased to −78 ◦C, and potassium diphenylphosphide solution (0.5 M)
in THF (1.7 eq.) was added within 15 min. The mixture was stirred for 6 h, and the temperature was
warmed to room temperature. At the end of the reaction, 5 mL of diethyl ether and HCl (2M) was
added until the solution reached an acid pH. The organic phase was extracted with 3 × 5 mL of diethyl
ether and washed with a saturated solution of Na2CO3 until it reached a basic pH. The aqueous phase
was extracted with dichloromethane (3 × 5 mL). Combined organic layers were dried over Na2SO4,
and the solvent was evaporated. The obtained product did not need further purification. 1H-NMR
(CDCl3, 400 MHz) δ: 8.23 (d, J = 3.9 Hz, 1H), 7.53–7.21 (m, 11H), 6.99–6.95 (m, 1H), 3.93–3.88 (m, 1H),
2.75 (t, J = 6.0 Hz, 2H), 2.08–1.98 (m, 1H), 1.90–1.77 (m, 2H), 1.73–1.62 (m, 1H) ppm; 13C NMR (100
MHz, CDCl3) δ 158.6, 147.3, 137.0, 135.1, 134.8, 134.2 (2C), 133.9 (2C), 129.4, 129.0 (2C), 128.9 (2C), 128.4
(2C), 121.6, 41.7, 29.1, 26.8, 22.2 ppm; 31P-NMR (CDCl3, 160 MHz): δ 2.76 ppm; MS (ESI) for C21H20NP:
m/z 318.23 [M+H]+.

4.3. Synthesis of (R)-8-((Diphenylphosphanyl)oxy)-5,6,7,8-Tetrahydroquinoline and (8R)-8-(((4R)-Dinaphtho
[2,1-d:1′,2′-f][1,3,2]Dioxaphosphepin-4-yl)oxy)-5,6,7,8-Tetrahydroquinoline, L2 and L3

The chiral 5,6,7,8-tetrahydroquinolin-8-ol and (R)-(+)-1,1′-binaphthyl-2,2′-diylphosphite chloride
were obtained as previously reported. To a solution of NaH (1.1 eq.) in 5 mL of anhydrous THF at
0 ◦C was added (S)-5,6,7,8-tetrahydroquinolin-8-ol (1 mmol). The suspension was stirred for 30 min,
and chlorodiphenylphosphine or (R)-(+)-1.1′-binaphthyl-2,2′-diylphosphite chloride (1.1 eq.) was
added. The mixture was then stirred at room temperature for 1 h. Then, 10 mL of diisopropyl ether
was added, and the formed precipitate, containing the inorganic salts, was filtered off. The solvent was
evaporated, and the obtained white solid did not need further purification.

L2: 1H-NMR (C6D6, 400 MHz) δ: 8.30 (d, J = 4.4 Hz, 1H), 7.78–7.63 (m, 2H), 7.50–7.10 (m, 10H),
4.74 (t, J = 5.2 Hz, 1H), 2.76–2.65 (m, 2H), 2.16–1.68 (m, 4H) ppm; 13C NMR (100 MHz, CDCl3) δ 152.6,
146.3, 137.0, 133.4, 132.8, 134.6, 131.8 (4C), 131.2 (2C), 128.7 (2C), 127.8 (2C), 121.9, 43.2, 28.4, 23.8, 20.7
ppm; 31P-NMR (C6D6, 160 MHz): δ 111.4 ppm; MS (ESI) for C21H20NOP m/z 334.43 [M+H]+.

L3: 1H-NMR (C6D6, 400 MHz) δ: 7.96–7.02 (m, 14H), 6.84 (d, J = 8.4 Hz, 1H), 4.92 (m, 1H), 2.72–2.61
(m, 3H), 2.28–2.23 (m, 1H), 1.92–1.89 (m, 2H) ppm; 13C NMR (100 MHz, CDCl3) δ 154.0, 150.1 (2C),
145.3, 137.6, 134.6, 134.1, 133.7, 132.8, 131.8, 128.8 (2C), 128.4 (2C), 128.0 (2C), 127.7 (2C), 124.1 (2C),
123.2 (2C), 121.7, 117.9 (2C), 43.3, 28.8, 24.1, 20.8 ppm; 31P-NMR (C6D6, 160 MHz): δ 145.3 ppm; MS
(ESI) for C29H22NO3P: m/z 464.57 [M+H]+.

4.4. General Procedure for Asymmetric Hydrogenation

[Ir(COD)Cl]2 (0.5 eq.) was added to a solution of phosphine (1 eq.) in 5 mL of solvent, and the
mixture was stirred at room temperature for 15 min. The additive (10 eq.) was added and, after stirring
for an additional 15 min, the imine (100 eq.) was added to the reaction mixture. The solution was
transferred to a stainless-steel autoclave (50 mL) with a cannula. The autoclave, equipped with
temperature control and magnetic stirrer, was purged five times with hydrogen and then pressurized
at 20 atm, and the temperature was set to 20 ◦C. At the end, the autoclave was vented, and the mixture
was analyzed by HPLC equipped with a chiral column (for analytical conditions, see below).
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4.5. Analytical Conditions

The products were analyzed by 1H NMR to determine the molar conversion, whereas the
enantiomeric excess was evaluated by HPLC analysis, and the absolute configuration was assigned by
comparison with literature references [25,55].

6,7-Dimethoxy-1-phenyl-1,2,3,4-tetrahydroisoquinoline 1b [25]: R-isomer: 12.1 min (min); S-isomer:
17.3 min (maj); column: Chiralcel OD-H, eluent: 2-propanol/hexane = 30/70 (0.01% DEA), flow = 0.7 mL/min,
λ = 220 nm.

1-(4-Fluorophenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline 2b [25]: R-isomer: 21.0 min (min);
S-isomer: 23.9 min (maj); column: Chiralpak AD, eluent: 2-propanol/hexane = 10/90, flow = 0.8 mL/min,
λ = 220 nm.

6,7-Dimethoxy-1-(4-nitrophenyl)-1,2,3,4-tetrahydroisoquinoline 3b [54]: R-isomer: 25.7 min (min);
S-isomer: 32.5 min (maj); column: Chiralcel OD-H, eluent: 2-propanol/hexane = 30/70 (0.01% DEA),
flow = 0.7 mL/min, λ = 285 nm.

1-(3,4-Dimethoxyphenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline 4b [25]: R-isomer: 23.7 min
(min); S-isomer: 33.0 min (maj); column: Chiralcel OD-H, eluent: 2-propanol/hexane = 30/70 (0.01%
DEA), flow = 0.7 mL/min, λ = 285 nm.

6,7-Dimethoxy-1-(naphthalen-1-yl)-1,2,3,4-tetrahydroisoquinoline 5b [35]: 1 isomer: 14.7 min (min);
2 isomer: 16.4 min (maj); column: Chiralcel OD-H, eluent: 2-propanol/hexane = 30/70 (0.01% DEA),
flow = 0.7 mL/min, λ = 285 nm.

6,7-Dimethoxy-1-(2-nitrophenyl)-1,2,3,4-tetrahydroisoquinoline 6b [24]: 1 isomer: 8.6 min (min);
2 isomer: 15.0 min (maj); column: Chiralcel OD-H, eluent: 2-propanol/hexane = 30/70 (0.01% DEA),
flow = 0.7 mL/min, λ = 240 nm.

1-(3,5-Bis(trifluoromethyl)phenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline 7b [56]: 1 isomer: 7.5 min
(maj); 2 isomer: 8.5 min (min); column: Lux Amilose-2, eluent: 2-propanol/hexane = 10/90 (0.01% DEA),
flow = 0.8 mL/min, λ = 220 nm.

1-Phenyl-1,2,3,4-tetrahydroisoquinoline 8b [25]: S-isomer: 13.1 (min); R-isomer: 15.4 (maj); column:
Chiralpak AD, eluent: 2-propanol/hexane = 4/96, flow = 0.8 mL/min, λ = 240 nm.

1-(4-Fluorophenyl)-1,2,3,4-tetrahydroisoquinoline 9b [25]: S-isomer: 5.5 (min); R-isomer: 7.1 (maj);
column: Lux Amylose-2, eluent: 2-propanol/hexane = 10/90, flow = 1.0 mL/min, λ = 220 nm.

1-(4-Nitrophenyl)-1,2,3,4-tetrahydroisoquinoline 10b [26]: S-isomer: 15.9 (min); R-isomer: 20.9 (maj);
column: Lux Amylose-2, eluent: 2-propanol/hexane = 10/90 (0.01% DEA), fl ow = 0.8 mL/min,
λ = 254 nm.

1-(3,5-Bis(trifluoromethyl)phenyl)-1,2,3,4-tetrahydroisoquinoline (11b): yellow solid, yield 61 %; 1H
NMR (300 MHz, CDCl3) δ: 7.84 (s, 1H), 7.80 (s, 2H), 7.36–7.32 (m, 1H), 7.20–7.21 (m, 2H), 7.12–07 (m, 1H),
5.25 (s, 1H), 3.20–3.13 (m, 2H), 2.91–2.82 (m, 2H) ppm; 13C NMR (75 MHz, CDCl3) δ: 147.9, 136.8, 135.9,
132.0 (q, 2JCF = 33 Hz, 2C), 129.9, 129.6 (q, 3JCF = 3.3 Hz, 2C), 128.1, 127.4, 126.4, 123.3 (q, 1JCF = 273 Hz,
2C), 121.9 (q, 3JCF = 3.8 Hz), 61.8, 42.7, 29.9 ppm. FTIR (NaCl) ν = 3035.13, 2901.08, 1571.24, 1350.12,
1228.89, 1165.04, 1153.73, 873.20, 778.63 cm−1; MS (ESI) for C17H13F6N: m/z 346.21 [M+H]+. HPLC: 1
isomer: 8.2(min); 2 isomer: 12.0 (maj); column: Lux Cellulose-2, eluent: 2-propanol/hexane = 5/110,
flow = 0.6 mL/min, λ = 220 nm.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/8/914/s1,
Table S1: Preliminary screening with L1-L7.
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