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Abstract: This review aims to highlight the important contribution of the cerebellum in the Anticipatory
Postural Adjustments (APAs). These are unconscious muscular activities, accompanying every
voluntary movement, which are crucial for optimizing motor performance by contrasting any
destabilization of the whole body and of each single segment. Moreover, APAs are deeply involved
in initiating the displacement of the center of mass in whole-body reaching movements or when
starting gait. Here we present literature that illustrates how the peculiar abilities of the cerebellum
(i) to predict, and contrast in advance, the upcoming mechanical events; (ii) to adapt motor outputs to
the mechanical context, and (iii) to control the temporal relationship between task-relevant events,
are all exploited in the APA control. Moreover, recent papers are discussed which underline the key
role of cerebellum ontogenesis in the correct maturation of APAs. Finally, on the basis of a survey of
animal and human studies about cortical and subcortical compensatory processes that follow brain
lesions, we propose a candidate neural network that could compensate for cerebellar deficits and
suggest how to verify such a hypothesis.

Keywords: cerebellum; cerebellum ontogenesis; ataxia; anticipatory postural adjustments;
compensatory network

1. Introduction

The aim of this review is to highlight the important contribution of the cerebellum in the genesis
and control of the Anticipatory Postural Adjustments (APAs). After all, prediction and anticipation of
incoming information are two of the most important cerebellar functions, which guarantee that the
anticipated actions are properly set up, also taking into account the changes in the environment [1,2].

APAs are unconscious muscular activities aimed to contrast the reaction forces caused by the
primary movement, in order to grant whole-body balance, as well as to set up the mechanical context
for initiating the displacement of the center of mass in whole-body reaching movements or when
starting gait. APAs are associated with movements that involve tiny to large masses and build up one
or more fixation chains throughout postural muscles. This biological mechanism has an extreme value
not only in the maintenance of upright posture, in balance, and in locomotion, but also in optimizing
the performance of each voluntary movement by avoiding any destabilization, both of the whole
body and of each single segment. As detailed in Section 3, such chains may spread over different
limbs (inter-limb APAs) or also develop within the same limb in which one of the distal segments is
voluntarily moved (intra-limb APAs).
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For a critical and rich analysis of the cerebellar role in this anticipatory mechanism, it has been
necessary to reach a wide overview of this argument, encompassing studies on both inter- and intra-limb
APAs, taking also into account literature regarding the contribution of other neural structures.

2. Overview of Cerebellar Functions

From classical literature, the cerebellum is well known to govern movement coordination and
motor learning [3–5] (for more recent reviews, see [6,7]), but it has been also recognized as involved in
cognitive and emotional processing [8,9]. Taking into account the peculiar anatomy of the cerebellum
with a parallel repetition of microcircuits [8], its dense connectivity with cerebral cortex, basal
ganglia, brainstem, and spinal cord, and that it contains about 50% of the brain neurons [10], it is not
inappropriate to think that the cerebellum is involved in so many different processes.

One of the most important cerebellar functions is correlated to ensure that the anticipated actions
are correctly in tune with changes in the environment [1,2]. The cerebellum is thought to contain
neural representations reproducing the dynamic properties of the body and to exploit them to create
sensorimotor predictions; this allows performing accurate motor forecasts linked to environmental
stimuli and to body kinematics [11].

This subcortical structure is essential not only in the prediction of incoming information, but also
in controlling the temporal relationship between task-relevant events [12]. To grant a correct output in
motor coordination, it is necessary to define spatiotemporal sequences of body segment movements.
In this regard, the cerebellum is able to operate as an internal “timing machine”, providing a precise
temporal representation for motor and nonmotor tasks [13]. Another characteristic function of the
cerebellum is sequence learning; in fact, in a work of Shin and Ivry (2003) [14], patients with cerebellar
damage did not show learning the spatial and temporal sequences simultaneously presented.

The wide neural network in which the cerebellum communicates with the cerebral cortex, basal
ganglia, and limbic system allows not only the control of timing, as well as the predictive and learning
function, but also some high-level cognitive and emotional processing, like attention, language, memory,
and reasoning [15–17]. Consequently, patients with cerebellar lesions can also show cognitive-affective
alterations [18].

The most common motor outcome of cerebellar lesions is ataxia (from the Greek word
αταξισ, i.e., lack of order). Ataxia is a neuropathological state consisting of lack of movement
coordination. This condition is characterized by hypotonia, dysmetria, asynergy, dyschronometria,
and dysdiadochokinesia [11,19]. In addition, the cognitive-affective alterations linked to this pathology
lead to a lack in the organization of thought, called “dysmetria of thought”, comprising impairment
of executive functions (abstract reasoning, working memory, planning) and difficulties with spatial
cognition [20]. Nevertheless, the “lack of order” mainly affects the control of balance and gait.

Babinski [5] reported that a cerebellar lesion disrupted the coordination between voluntary
movement and equilibrium stabilization, demonstrating the important involvement of the cerebellum
in postural organization [21]. Cerebellar patients typically show enhanced postural sway [22], abnormal
response to perturbations, reduced control of equilibrium during movements of other body parts,
and irregular oscillations of the trunk. Moreover, these patients often suffer from dysfunctional
co-contractions, that is, co-activation of muscle pairs with opposing actions of major limb joints,
during postural control [23]. Gait ataxia is often described as a “drunken gait” characterized by
walking incoordination, variable foot placement, abnormal foot trajectories, a widened base of support,
a deviating path of movement, and irregular interjoint coordination patterns [24–26]. Indeed, it has
been reported that the cerebellum contributes in generating appropriate patterns of limb movements
and in modulating their activation duration during locomotion [27]; moreover, since it processes
sensory-motor information integrating feedforward and feedback mechanisms [28], it is also able to
provide adaptability to the locomotor output through error-feedback learning [29].
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3. Overview of Anticipatory Postural Adjustments

Considering the human body as an “articulated chain” in which a combination of anatomical
rigid structures work together, we should consider that every anatomical segment is closely linked to
others. Therefore, when a segment is voluntarily moved (primary movement), a reaction force occurs
which perturbates all adjacent segments. For this reason, each motor action should be associated
with a specific anticipatory program which is able to counterbalance the reaction force caused by the
prime mover [30,31]. This anticipatory program consists of unconscious muscular activities, called
Anticipatory Postural Adjustments (APAs), which create one or more fixation chains spreading over
several muscles of the same limb or of different limbs, in order to counteract the perturbating reaction
force [32]. When voluntary actions involve large masses, APAs spread over several muscles of different
limbs and they are called inter-limb APAs. They aim to stabilize the whole-body postural equilibrium.
When voluntary actions concern tiny masses, APAs develop also in the same limb in which one of the
distal segments is moved. These latter activities are called intra-limb APAs and they have been shown
to optimize movement performance by stabilizing the limb’s proximal segments [33,34]. Therefore,
basically, the aim of APAs can be summarized as the stabilization and fine-tuning of the whole-body
equilibrium as well as of the local equilibrium of body segments.

The majority of APAs literature has been focused on the inter-limb postural chains which precede
voluntary actions such as shoulder flexion and extension or elbow flexion [35–37] and also movements
involving the lower limbs, hips, and trunk [38,39]. For example, when flexing both arms at the shoulder
level, a dorsal muscle postural chain develops, comprising Erector Spinae (ES), Biceps Femoris
(BF), and Soleus (SOL), in order to counterbalance the reaction force due to arms movement [40].
In fact, the perturbation induced by this primary movement may dislocate the projection on the
ground of the body Center of Mass (CoM) and cause a whole-body equilibrium disturbance [30,31,36].
The maintenance of the body’s dynamic stability needs inter-limb APAs; this is particularly evident
during gait initiation since they create the propulsive forces to move the CoM forwards. Gait initiation
is the transient period between quiet standing posture and steady-state walking. This is the most used
functional task to investigate how the Central Nervous System (CNS) controls equilibrium during
a whole-body movement involving modifications in the base of support and CoM progression [41].
During gait initiation in healthy subjects, the Centre of Pressure (CoP, the barycenter of the ground
reaction forces) first moves backwards and towards the future swing foot. The onset of such CoP
shift is usually defined as APA onset. The horizontal gap created between CoP and CoM produces an
“imbalance” torque that drives the CoM forwards and towards the future stance foot (imbalance phase).
Subsequently, the CoP moves laterally towards the stance foot (unloading phase), so that the body
weight is supported on that side and the swing foot can execute the first step [42]. The CoP shift during
APA is associated with a typical electromyographic sequence involving inhibition of the activity in the
Soleus (SOL) muscles, tonically active during quiet stance, shortly followed by activation of Tibialis
Anterior (TA) muscles, normally silent during quiet stance. In particular, in the stance leg, the SOL
inhibition precedes TA excitation by about 100 ms [39].

In parallel, the intra-limb APAs associated with movements that involve little masses optimize the
movement performance by preserving the local equilibrium of the limb [43]. Examples of intra-limb
APAs are reported for elbow movements [44–46], as well as wrist flexions as documented by Aoki et al.
in 1991 [47], who reported a pattern of muscular activity in various arm muscles about 50 to 60 ms
before the movement. Moreover, Caronni and Cavallari [33] described an anticipatory postural chain
developing in several upper-limb muscles, that stabilizes the segmental equilibrium of the arm during
index-finger tapping. With the prone hand, a brisk finger flexion was preceded by an excitatory burst
in Extensor Carpi Radialis (ECR), Triceps Brachii (TB), and Superior Trapezius (ST), while Flexor
Carpi Radialis (FCR), Biceps Brachii (BB), and Anterior Deltoid (AD) showed a concomitant inhibition
of their tonic activity. The coupled activities of TB–BB and ST–AD counterbalanced the elbow and
shoulder flexion torques produced by the reaction force that the index-finger flexion discharged on
the metacarpophalangeal (MP) joint. Interestingly, when the hand posture was changed from prone
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to supine, the APA pattern reverted in sign in the elbow and shoulder postural muscles but not
in ECR and FCR. Therefore, BB and AD showed an excitation pattern, while TB resulted inhibited.
These observations demonstrate the ability of APAs to adapt to the mechanical requirements of the
postural context.

Despite the different classification, inter- and intra-limb APAs share similar control mechanisms.
Indeed, APAs create fixation chains in several muscles to avoid the destabilization produced by the
reaction forces. As mentioned above, APAs revert in sign when movement direction is reverted [33,40]
and adapt to changes in the postural context and also in movement speed [48–50]; moreover, they
have an important link with the movement precision [34,51]. Besides the kinematic aspects, inter- and
intra-limb APAs also share the same neural structures. The involvement of Primary Motor Cortex
(PMC) in both inter- [52] and intra-limb APAs has been studied [33]. For example, the inhibition of
PMC through transcranial magnetic stimulation on the left M1 induced a delay of the APA onset
in the contralateral Latissimus Dorsi muscle while the subject abducted his left arm [53]. Even the
Supplementary Motor Area (SMA) has been correlated to the modulation of APAs. In fact, during
a bimanual task, patients suffering unilateral SMA lesion showed impaired inter-limb APAs in the
forearm contralateral to the lesion [54]. Furthermore, a study carried out with the transcranial direct
current stimulation highlighted the role of SMA in modifying intra-limb APA amplitude associated
to the index-finger tapping motor task [55]. Schmitz et al. (2005) [56] reported the involvement
of Sensorimotor Areas, using functional Magnetic Resonance Imaging, while Schepens and Drew
(2004) [57] reported that the Pontomedullary Reticular Formation, a site of integration of signals from
both cortical and subcortical structures, is able to mediate APAs in time and magnitude, to optimize
motor control of posture and movement in the cat. Moreover, basal ganglia have been reported to
contribute to APA control (Figure 1); in particular, a disruption in intra-limb APAs associated with
the index finger flexion [58] and an impairment in inter-limb APAs during a bimanual load-lifting
task [59] have been found in patients with Parkinson’s disease.
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Figure 1. Role of Cerebellum and Basal Ganglia in APA programming. Cerebellum and Basal Ganglia
receive information about the environmental context and body schema from the Parietal Associative
Cortices, as well as about the motor goal from SMA and Premotor Cortices. In turn, Basal Ganglia
define the pattern of muscular recruitment (i.e., the muscles which should be excited or inhibited), while
the timing and the coordination of such actions is defined by the cerebellum. Through their Thalamic
projections, the final motor program reaches the Primary Motor Cortex, which routes it to both the focal
and postural muscles. Note that the APA command reaches the postural muscles before the voluntary
command activates the focal muscles.
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4. Cerebellum and Anticipatory Postural Control

The contribution of the cerebellum to APA regulation (Figure 1) has been deeply documented.
In 2005, Diedrichsen et al. [60] studied APAs associated with the “barman task” in patients with
unilateral or bilateral cerebellar damage. In this bimanual movement, subjects supported an object
with one hand, while they had to lift the object voluntarily with the other hand (active lifting) or
the object was lifted by an experimenter (passive lifting). In healthy subjects, when the object was
lifted by the other hand, an inhibitory APA chain was observed, synchronous to the recruitment
of the prime mover and preceding the lifting. However, when the object was unexpectedly lifted
by an external force (by the experimenter), an impaired balance of the arm occurred, which could
only be compensated by a sensory feedback, a postural reflex [61]. Therefore, the APA feedforward
command, generated during the active lifting, allowed greater stabilization of balance. On the contrary,
patients with cerebellar damage showed poorly timed adjustments, with the APAs beginning earlier
than in healthy participants, confirming the essential role played by the cerebellum in timing motor
sequences [12,13] and extending it also to the context of the feedforward APA control. Moreover, in this
work, it has been reported that cerebellar damage abolished APA “plasticity” since these patients were
unable to learn new APA schemes. This evidence suggests the engagement of the cerebellum not only
in the predictive but also in the adaptive control of motor timing (Figure 1).

As stated before, inter-limb APAs are evident in gait initiation. Literature showed altered gait
initiation in several neurological dysfunctions characterized by poor motor control [62,63] and in
particular, in pathologies involving the cerebellum. For example, Timman and Horak (2001) [64]
described adults with cerebellar deficits showing reduced force production, length, and velocity of
the first step, accompanied by impairments in the use of predictive information to adapt APAs to the
mechanical needs of gait initiation. More recently, Richard et al. (2017) [65] tested the involvement of
the SMA–pontine–cerebello–thalamo–cortical pathway in gait initiation throughout a technique of
repetitive transcranial magnetic stimulation, called continuous theta burst stimulation (cTBS), which is
able to consistently reduce motor cortical excitability with long-term depression effects [66]. The cTBS
functional inhibition over the cerebellum showed a considerable role of this structure in the muscle
coordination, as well as in coupling between the anticipatory postural control and the execution phase
during gait initiation.

Literature regarding cerebellar control in intra-limb APA is generally poor. In this regard, it is
worth recalling that cerebellar damage altered timing and amplitude scale of muscular activity during
arm movements [67,68] and that patients with acute cerebellar lesions did not show a normal intra-limb
anticipatory adjustment in unimanual motor tasks, like in grip force when lifting or moving an
object [69,70]. In this regard, Bruttini et al. (2015) [71] focused on the involvement of the cerebellum
in intra-limb APAs, testing the postural chain that stabilizes the arm during a brisk index-finger
flexion [33] in ataxic adult patients. Electromyographyc recordings of postural muscles were analyzed
in a group of adult subjects with a slowly progressive adult-onset cerebellar syndrome and then
compared with those from a group of age-matched healthy subjects. Results showed that the intra-limb
APA pattern associated with the index-finger flexion remained unchanged between the two groups,
while a timing disruption of intra-limb APAs occurred in ataxic patients. The delayed APAs described
in Bruttini’s work are in line with those found by Yamaura at al. (2013) [72] in transgenic Spinocerebellar
ataxic mice. These animals activated hindlimb postural muscles markedly later than neck prime
movers, in order to reach and drink from a flask while standing; that is, they showed delayed APAs
with respect to the wild-type mice. Actually, delayed APAs during the index-finger flexion task would
diverge from the anticipated APAs observed in the bimanual barman task after cerebellar lesion [60].
However, the early APAs in cerebellar subjects might be interpreted as a safety strategy to avoid a
violent elbow flexion during the unloading of the hand, but such strategy could be thought of as
unnecessary during the index-finger flexion task; consequently, anticipated APAs would have not
occurred. From a speculative perspective, it could be argued that when the cerebellum is impaired,
so that its “automation” facility is unavailable, APA control should be devolved to other brain areas,
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maybe at higher levels in the motor control pathway. Should this be true, it is no wonder that APA
deficits differ from one motor task to another, because the higher the hierarchical level that takes care
of APAs, the more complex and task-specific would be the underlying decision process.

5. Role of Cerebellum in the Ontogenesis of APA Control

Taking into account the rich connections between the cerebellum and several regions of the
cerebral cortex involved in motor control, posture, locomotion, and cognitive/emotional processes,
aberrant cerebellar growth might have significant consequences on the functional organization of the
cerebral cortex [73,74]. In fact, the cerebellum supports the optimization of behavior, especially in
procedural learning and skill acquisition. Therefore, an early damage of the cerebellum may induce
significant changes in the structure and function of cerebro-cerebellar systems, with long-term effects
on motor behavior.

Ontogenesis of posture starts from infants (0–6 months) [75–77] and toddlers (6–18 months) [78–80].
In particular, the postural activities in sitting and reaching movements have been observed as early as
three months, but only from six months do infants develop the ability to adapt postural activity to the
specific mechanical situation [81]. Interestingly, three months and six months are the ages in which an
increasing functional activity is detected in specific cerebral areas such as the cerebellum, basal ganglia,
and frontal cortices [82,83]. The development of APAs starts later (13–14 months) [81], and is related to
the development of independent walking [78,80]. During growth, other functional tasks were studied
to detect APAs, such as load lifting and release [84,85], upright stance without support [86], rising arms
during standing [87], and gait initiation [88,89]. From these works, it emerges that the feedforward
control of posture is present but still immature at the age of 4–5 and it approaches that of adults only at
8 years of age [90]. However, the neural network for APA control seems to complete its maturation
only after the age of 11 [91].

Despite the importance of the cerebellum during the developmental stages, there is poor literature
regarding APAs in children with cerebellar deficit. Lesions of the cerebellum lead to posture and muscle
tone disorders. Particularly in early development, cerebellar deficits produce long-term alterations
which underlay the potential contribution of this structure also to atypical development [74]. In this
context, we analyzed quiet stance and gait initiation parameters in children affected by Pediatric
Cerebellar Ataxia (PCA) and compared them to those measured in healthy children [92]. PCAs are
a heterogeneous group of cerebellar developmental disorders characterized by dysfunctional motor
coordination and very early cerebellar symptoms. Static posturography highlighted alterations in
cerebellar children, while the spatial and temporal parameters of APAs during gait initiation were not
notably disturbed by the pathology. First step length and velocity were instead different between the
groups. From a descriptive analysis of electromyographic recordings, cerebellar patients showed more
alterations in the timing distribution of the muscular actions with respect to healthy controls, while the
muscular pattern preceding the first step was preserved. The alteration in time delay between SOL
inhibition and TA activation, in both stance and swing legs, agreed with literature that assigns to the
cerebellum the involvement in feedforward muscle synergies [23,64] and in the timing relationship
among motor events [12,93–95]. Therefore, this work supports the hypothesis that the cerebellum
plays a key role also during human development, in particular, in building up internal models of
gait initiation timings. Moreover, considering that the APA pattern was not affected by cerebellar
dysfunction, pattern selection is a functional skill which may be attributed to other brain structures,
like the basal ganglia [58].

6. Compensatory Strategies in Cerebellar Dysfunctions

Another considerable issue emerged from our work on PCA. Children who had a slow-progressive
course of disease showed a worse postural behavior with respect to both children with non-progressive
disease and healthy children, a result which might be due to the different nature of the pathology. In fact,
the still intact cerebral areas in children with non-progressive PCA could cope with a stable lesion since
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embryogenesis by creating new neural pathways. On the contrary, the continuous degeneration in
children with slow-progressive PCA might conflict with the consolidation of compensatory functional
strategies. In this context, the possibility to exploit neural plasticity in order to overcome the
deficits produced by a stable lesion is also supported by the case of a 17-year-old subject suffering
cerebellar complete agenesis, who showed only a mild ataxia without apparent difficulty in performing
complex motor tasks [96]. It is also interesting to note that patients with adult-onset cerebellar lesions
described in Bruttini’s work (2015) [71] showed more pronounced deficits with respect to children with
slow-progressive PCA. The gradual worsening of motor control from children with non-progressive
ataxia to children with slow-progressive ataxia and to adult ataxic patients (Figure 2) agrees with the
observation that the compensation abilities in intact brain areas gradually but consistently decrease
over the lifespan [97]. This idea dates back to the early 1940s, as proposed in the seminal papers
of Margaret Kennard [98,99], who firstly showed a negative correlation between age and extent of
compensation ensuing from motor cortex lesions in the monkey. Plasticity is an argument of increasing
interest and considering that the cerebellum is fully involved in motor learning and plasticity, it should
be looked into.
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Figure 2. Role of the cerebellum in the ontogenesis of the APA control. Cerebellar deficits interfere
with the correct development of postural control. The later the appearance of the cerebellar deficit,
the weaker seems to be the ability of the CNS to develop a compensatory strategy. This is particularly
apparent when the disease has a progressive course, since it contrasts with the strategy consolidation.

6.1. Neural Plasticity and Compensatory Mechanisms

The idea that intact brain areas may reorganize their activity to compensate for other functionally
impaired areas (e.g., because of cerebral lesions or degenerations) is not new. For example, back at the end
of the last century, several papers by Spear, Tong, et al. [100–102] reported that the posteromedial lateral
suprasylvian (PMLS) visual cortical area in the cat showed physiological compensation after damage
to hierarchically lower visual areas (Brodmann’s 17, 18, and 19), provided that the damage occurred
early in the animal’s life. Even if such compensation could not completely overcome the deficits [101],
PMLS neurons could develop the properties they would have had in the absence of brain damage.
Moreover, tracing methods revealed an increased projection from the retina through the thalamus to the
PMLS after lesion [103], showing that neural pathway reorganization plays a role in the compensatory
process. Later, Bridge et al. [104] reported such neural pathway reorganization in a blindsight man,
who suffered the loss of the left primary visual cortex. In addition to the normal pathways found in
healthy subjects, he showed two major features: a pathway from right lateral geniculate nucleus to left
MT+ / V5 area and a strong cortico-cortical bilateral connection between MT+ / V5.
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Further evidence supporting a compensatory activation of intact brain areas comes from studies
of language production and comprehension deficits, following prefrontal stroke [105] and left temporal
lobe damage [106]. In both cases, a specific compensatory pathway involving extra-lesion areas was
highlighted. Another study recorded event-related brain potentials in patients with a lesion in the
perisylvian area of the language-dominant hemisphere that impaired their ability to apply syntax and
grammar rules [107]. Results suggested that these patients overcame their syntactic deficit by relying
on another, more semantic processing route. A recent study on patients with cognitive dysfunctions
following pontine ischemia [108], probably due to damages in the fronto-cerebellar circuits, reported a
hyperactivity of frontal areas and suggested that it could compensate for the cognitive impairments.

Another masterpiece of brain compensation regards the recovery of hand motor functions after
stroke in the primary motor area (M1). In this condition, multiple structures are called into play, such as
the contralateral undamaged M1, the bilateral premotor, and the supplementary and somatosensory
areas, as well as the cerebellum and basal ganglia (for a review, see [109]). More recently, a PET
study in the monkey [110] showed not only an enhanced activity in the ventral premotor cortex
during the early post-recovery period after M1 lesion, but also an increased functional connectivity
within the perilesional M1 in the late post-recovery. Another study on macaque [111] provided
evidence that fronto-cerebellar circuits may reorganize to sustain functional recovery after M1 lesions.
Furthermore, the neural pathway reorganization quoted above has been observed in rats after lesions
of the sensorimotor cortices [112]. After neonatal hemidecortication, corticospinal fibers from the
intact contralateral sensorimotor cortex send collateral sprouts to the ipsilateral spinal cord, mediating
cortical excitation to ipsilateral forelimb, with a different contribution of rostral and caudal forelimb
motor areas.

Evidence of compensation in several brain functions has also been reported after complete
hemispherectomy, both in children [113] and in adults [114], highlighting the considerable brain ability
to reorganize and rewire the cortex in order to cope with such an extensive lesion, especially early
in life.

On these premises, as well as on the bases of many other observations, Herbet and Duffau recently
published a review [115] forwarding the idea that the traditional “localizationist view”, in which any
given function is sustained by a discrete cortical area, isolated from the others, should be abandoned.
They indeed propose an alternative “meta-networking” theory, in which brain functions stem from the
spatiotemporal integration of many relatively specialized networks, a view that fits not only with the
brain ability to learn complex tasks but also with the frequent observation that postlesional reshaping
is associated with functional compensation after brain damage.

6.2. A Possible Pathway for Compensating Cerebellar Dysfunction

By applying the above considerations to the cerebellum, it would be interesting to figure out
which brain areas might be involved in compensating for cerebellar dysfunction. Even though the
cerebellum is engaged in a wide and rich neural network, so that many cortical areas may contribute to
the compensation, recent discoveries suggest a new candidate: the basal ganglia network. Classically,
the cerebellum and basal ganglia were considered independent systems, which play distinct roles in
motor, cognitive, and behavioral control. Actually, there is increasing evidence showing subcortical
bidirectional connections between basal ganglia and cerebellum [16] (Figure 3a). In particular,
transneuronal transport of the rabies virus in monkeys demonstrated that the subthalamic and the
dentate nuclei have disynaptic projections addressed to, respectively, the cerebellar cortex [116] and
the striatum [117]. Moreover, it has been recently reported that the pedunculopontine tegmental
nucleus (PPTg), which is known to communicate with the basal ganglia, also activates the deep
cerebellar nuclei [118]. Therefore, the PPTg could act as an interface between the basal ganglia and
cerebellum, involving the latter in motor and cognitive functions [119]. The densely interconnected
network among the cerebellum, basal ganglia, and cerebral cortex allows focusing on a different way
in which these areas could influence cerebral functions. An abnormal activity at one node could thus
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spread throughout the entire network and cause dysfunctions at other nodes in the network [120].
In this regard, it has been observed that patients with Parkinson’s disease (PD) show abnormal
functioning also in the cerebellum [121,122] and when they perform simple motor tasks, functional MRI
highlighted an increase of cerebellar–putamen activity correlated with better motor performance [123]
(Figure 3b). This evidence suggests a compensative role played by the cerebellum in the basal ganglia
dysfunctions. It has also been observed that this compensatory ability contributes to avoiding the full
manifestation of the motor symptoms during the initial stage of PD, but this mechanism saturates with
time, leading these patients to develop cerebellar symptoms too [124]. Altogether, these observations
allow hypothesizing that intact basal ganglia might compensate for cerebellar deficits, as well as intact
cerebellum compensates in patients with basal ganglia impairments (Figure 3c).
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Figure 3. Subcortical compensatory networks. (a) Reciprocal interconnections between cerebellum
and basal ganglia have been described in healthy conditions [116,117]. Panel (b) shows how the
pathway from cerebellum to basal ganglia enhances its activity (thick black arrow) in Parkinson’s
disease, to compensate the basal ganglia deficit [123]. Symmetrically, in (c), it is proposed that the
pathway from basal ganglia to cerebellum (thick red arrow) may allow the former to compensate for
cerebellar deficits in ataxia.

7. Conclusions and Future Research

This review aimed to collect information regarding the role of the cerebellum in the control of
Anticipatory Postural Adjustments. It also supports the view that the function of the cerebellum is to
coordinate, like an “orchestra director”, the timing of muscular events, which follow each other both in
the execution of the voluntary action and in the postural activities that accompany it.

Considering the interesting observations carried out on inter-limb APAs in children with PCA
(Section 5), it would be interesting to insert the missing piece of this puzzle: to investigate the
intra-limb APA control in cerebellar children, in order to gain more information regarding the cerebellar
ontogenesis in stabilizing and optimizing motor performance. In this context, it might be possible
to test activities of postural muscles that stabilize the arm when the index finger is briskly flexed in
children with pediatric cerebellar ataxia. If a timing disruption occurs, we might further confirm
the essential function of the cerebellum in controlling the temporal relationships between muscular
activities, but also verify its important role during human development. In this way, we could
deepen the knowledge on the cerebellar contribution to postural control since human embryogenesis.
Moreover, to deepen the knowledge regarding the neural areas, like basal ganglia, possibly involved in
the compensatory role in children with cerebellar impairments, it would be interesting to study the
connectivity of the brain networks through MRI. Indeed, recent methods of functional and diffusion
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MRI are able to highlight the involvement of specific areas and to reconstruct the streams among these
neural structures.

The study of APAs in patients with cerebellar damage is not only crucial for understanding the
essential functions of the cerebellum, but also for clinical monitoring. Indeed, the analysis of APAs
during a motor task (from gait initiation to index-finger flexion) may be an additional tool to the
established diagnostic methods for a complete clinical evaluation of cerebellar patients.

Finally, a better knowledge of which neural structures actually compensate for the effects of
cerebellar dysfunction could be of great help in therapy and rehabilitation, as it could suggest new
targets for pharmacological and brain stimulation treatments, as well as for rehabilitation procedures.
As a purely speculative example, if basal ganglia actually compensate for cerebellar dysfunction,
it would then be important to test whether such compensation may overload and/or be detrimental for
basal ganglia over time. If so, a pharmacological or brain stimulation approach similar to that used for
PD patients might be envisaged.
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