
Towards Active Learning Interfaces for
Multi-Inhabitant Activity Recognition

Claudio Bettini, Gabriele Civitarese
EveryWare Lab, Dept. of Computer Science

University of Milan
Milan, Italy

{claudio.bettini, gabriele.civitarese}@unimi.it

Abstract—Semi-supervised approaches for activity recognition
are a promising way to address the labeled data scarcity problem.
Those methods only require a small training set in order
to be initialized, and the model is continuously updated and
improved over time. Among the several solutions existing in the
literature, active learning is emerging as an effective technique
to significantly boost the recognition rate: when the model is
uncertain about the current activity performed by the user, the
system asks her to provide the ground truth. This feedback is
then used to update the recognition model. While active learning
has been mostly proposed in single-inhabitant settings, several
questions arise when such a system has to be implemented in a
realistic environment with multiple users. Who to ask a feedback
when the system is uncertain about a collaborative activity? In
this paper, we investigate this and more questions on this topic,
proposing a preliminary study of the requirements of an active
learning interface for multi-inhabitant settings. In particular, we
formalize the problem and we describe the solutions adopted in
our system prototype.

Index Terms—active learning, interface, multi-inhabitant, ac-
tivity recognition

I. INTRODUCTION

Smart-home activity recognition is a research field which
has been deeply studied in the last decades [1]. This topic
is still hot in the pervasive computing community, since
continuously monitoring the activities performed in a home
environment by its inhabitants enables several health-care
applications, like the early diagnosis of cognitive disorders
for the elderly population [2]. Typically, the activity recog-
nition problem is tackled with supervised machine learning
methods [3]. While these approaches lead to high recognition
rates, it is unfeasible to acquire the high amount of labeled data
that they require. For this reason, semi-supervised learning
techniques for activity recognition are arising [4]. Those
methods require a small amount of labeled data to initialize
the recognition model, which is continuously improved over
time. Among the many semi-supervised learning approaches,
active learning is one of the most effective [5], [6]. An active
learning approach consists of asking the user a feedback about
the activity she is performing when the model is uncertain
about the current prediction. The feedback is then used to
update and improve the recognition model [7].

The majority of works in the literature proposed methods to
detect activities in single-inhabitant settings. On the one hand,
this scenario is realistic considering the amount of elderly

subjects which live alone in their home [8]. However, it often
happens that multiple subjects live in the same home. Those
subjects may perform the same activity in cooperation or
different individual activities in parallel [9]. Hence, multi-
inhabitant activity recognition methods have been proposed
to tackle this issue [10].

Since we are currently investigating the application of
semi-supervised methods based on active learning to multi-
inhabitant settings, we faced an interesting research question:
who to ask a feedback when the system is uncertain about
collaborative activities? The answer to this question is not
trivial. In order to minimize the intrusiveness, we do not want
to send a question to all the users involved in the uncertain
collaborative activity. The choice of the user to query should
be based on context information (e.g., his/her availability).

Another important aspect to consider is the type of interface
which is used to prompt the query. A naive approach would
consist in prompting the query directly on the personal device
of the selected user (e.g., smartphone, smartwatch). However,
notifications on personal devices can be considered very
distracting. A promising direction is deploying one or more
vocal assistants in the home, thus allowing the inhabitants
to provide a feedback using their voice without physically
interacting with prompting devices.

In this paper, we investigate the requirements and the emerg-
ing issues that arise in the design of an active learning interface
for multi-inhabitant activity recognition systems. Hence, we
hypothesize realistic solutions to address this problem. Our
method considers the users context to decide how to prompt
active learning queries. The considered context includes the
availability and the interruptibility of each inhabitant.

The paper offers the following main contributions:

• A formalization of the problem of prompting active
learning queries in multi-inhabitant environments

• The identification and discussion of the main challenges
in multi-inhabitant active learning systems

• A description of the solutions adopted for our system
prototype.

This paper is organized as follows. In Section II we dis-
cuss about the related work on smart-home interfaces which
inspired this work. Section III formalizes the problem of
prompting active learning queries in multi-inhabitant settings.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/333585130?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Our method is presented in details in Section IV. In Sec-
tion V we discuss alternative interfaces that can be used in
multi-inhabitant active learning systems. Finally, Section VI
concludes the paper.

II. RELATED WORK

Active learning for activity recognition has been widely
studied in the literature [4]–[7]. However, the majority of
proposed methodologies simply evaluated their methods on
existing datasets, simulating the user feedback using the
ground truth. We believe that a more realistic evaluation of
active learning effectiveness should involve real smart-home
interfaces that prompt queries to the inhabitants while they
are performing daily activities.

The main requirements of a smart-home interface are usabil-
ity and acceptability [11]. In this direction, the work in [12]
compared different smart-home interfaces modalities. From
that study, it emerges that users appreciate voice interfaces
since they can be used from anywhere in the home with-
out using hands. However, touch interfaces are sometimes
considered a better option since they make users feel more
comfortable, perceiving a stronger sense of control. That study
also highlights that users would rather use a wall mounted
interface (e.g., a tablet) rather than a personal mobile device
(e.g., a smartphone), since the former is perceived as less
distracting.

The majority of smart-home interfaces proposed in the lit-
erature are mainly related to domotics applications [11], [13].
Nowadays, many commercial solutions are very common (e.g.,
Alexa, Google Home) [14]. Those interfaces are currently not
suitable for active learning, since they do not actively interact
with the user. Indeed, those interfaces require an input from
the user to start the conversation. Moreover, while existing
solutions implement voice recognition methods to understand
which user is communicating with the interface, this is mainly
related to access control.

Finally, an important aspect to consider in order to enable
real-time active learning is user’s interruptibility [15]. Indeed,
it is necessary to analyze user’s context (e.g., the current
activity, the prompting modality, the importance of the prompt)
to understand if she can be interrupted at a specific time instant
to provide a feedback [16].

To the best of our knowledge, no prior work investigated
active learning interfaces for multi-inhabitant activity recogni-
tion. Our solution takes advantage of inhabitants’ contextual
information to decide how to prompt active learning queries
with the objective of achieving a good trade-off between
acceptability, usability and utility.

III. PROBLEM FORMULATION

Let U = {u1, u2, . . . , un} be the set of users (the inhabi-
tants of the smart-home) and A = {A1, A2, . . . , An} the set of
considered human activities. The smart-home system (named
just system in the following) continuously records a stream of
time-stamped sensor events and, given an instant t and a user
u, it provides a stream s(u)t of sensor events associated with

user u and collected in a time window [t, t−k] where k is the
window size parameter. For example, suppose that Alice turns
on the cooker at time t′. The corresponding sensor event (and
its timestamp) generated by the plug sensor connected to the
cooker is recorded by our system, and it is part of s(Alice)t

when 0 ≤ t− t′ ≤ k.
The overall goal of the system is to periodically predict, for

each user, the activity that she has been performing. We also
would like the system to identify situations in which activities
are jointly performed by multiple users. Formally, given an
instant t, the system should return a set of tuples
PAt = {〈(ur, . . . , us), Ai〉|ur, . . . , us are all the users pre-
dicted to jointly perform activity Ai at time t}.

Since we assume that each user is performing a single
activity at a time, the same user cannot appear in more than
one tuple. Moreover, each user that is present in a monitored
room should appear in a tuple.

Since the system we are considering is based on active
learning, the final prediction is obtained by evaluating the
probability of users performing a given activity, and actively
querying users whenever the system confidence on the predic-
tion is insufficient.

For the sake of usability, we assume that queries are directed
to a specific user u?, and ask which of two activities a set
of users U (with u? ∈ U ) is performing. A third alternative
is given with the answer “None of those” with the intended
semantics that U is neither performing Ai nor Aj . Hence, a
technical problem we are facing is specifying at each time t
in which the system requires a feedback, the parameters of the
query

Qt(u?, Ut, Ai, Aj)

where u? is the query target user, and Ut is the set of
candidates users collaboratively performing activity Ai or
activity Aj .

IV. SYSTEM ARCHITECTURE AND SOLUTION

In this section we show our multi-inhabitant activity recog-
nition system based on active learning. The architecture of our
method is depicted in Figure 1. In the following, we describe
in detail each component of our architecture.

A. Sensing infrastructure

In this work, we assume that users perform activities in
a smart-home equipped with several environmental sensors.
Those sensors are in charge of monitoring the interaction of
each user with the environment. Examples of such sensors
are magnetic sensors to detect opening/closing of drawers
and doors, pressure sensors on the chairs to detect when
inhabitants are sitting, power plugs to detect home appliances
usage, etc.. The stream of raw sensor data is continuously
transmitted in real-time to the MULTI-INHABITANT ACTIVITY
RECOGNITION module.



Multi-Inhabitant 
Activity Recognition

Context-Aware
Active Learning Query builder

Feedback
Semantic Analysis

Active Learning
Interface

Sensing
infrastructure

Raw sensor
data

Activities predictions

FeedbackRefined feedback

Query

Micro-localization
infrastructure

User's location

User's 
location

Fig. 1. The architecture of our system.

B. Micro-localization infrastructure

The MICRO-LOCALIZATION INFRASTRUCTURE is in
charge of inferring at each time t the location l(u)t of a user
u in the home. In our system prototype, each user u wears
a smart-watch which is in charge of continuously collecting
WiFi signal strengths to infer l(u)t. While this approach
identifies and locates each user in the home, it requires users to
continuously carry their personal devices. Ideally, for the sake
of usability, micro-localization should be based on wearable
sensors or other technologies which do not impose the use
personal devices.

For the sake of this work, we assume to have a micro-
localization service which is always accurate in computing
l(u)t at the room granularity. As we will explain in the
following, user’s location is a context information which is
used both in MULTI-INHABITANT ACTIVITY RECOGNITION
and CONTEXT-AWARE ACTIVE LEARNING modules.

C. Multi-inhabitant activity recognition

Periodically, the system computes, for each user u, the prob-
ability distribution over the possible activities being performed
by u at the current time t:

h(s(u)t) = 〈pA1
, pA2

, . . . , pAn
〉

where pAi
is the probability P (Ai|s(u)t) that the user u at

time t is performing activity Ai ∈ A, based on the sensor data
stream s(u)t as defined in Section III. We also have pAi

∈
[0, 1] ∀i and

∑n
i=1 pAi

= 1.
At each time instant t, the multi-inhabitant activity recogni-

tion layer forwards to the CONTEXT-AWARE ACTIVE LEARN-
ING module the activity prediction h(s(u))t for each user u.

Note that associating environmental sensor events to the cor-
rect user (i.e., computing s(u)t) is an open research problem

(also known as data association) [17]. In our system prototype,
data association is based on l(u)t: we associate to each user
the sensor events triggered in the room where she is currently
located. This allows us to obtain, for each user u ∈ U, a
personalized s(u)t at each time t. Then, we compute h(s(u)t)
taking advantage of a deep learning classifier.

For the sake of this paper, the specific method for data
association is not relevant and we assume to have a system
which accurately associates sensor events to the subject that
triggered them. Regarding the classifier, our specific solution
is also irrelevant, and the only requirement for this module is
an on-line algorithm that is initialised using a small training
set, and that can refine its model based on feedback.

D. Context-aware active learning

In the following, we show our context-aware approach to
issue active learning queries in multi-inhabitant settings and
our semantic-based method to refine the feedback provided by
the users.

1) Query builder: The QUERY BUILDER module is in
charge of using available context data to decide if at time t
(when the periodical system prediction needs to be provided)
a query is needed, and, if this is the case, which are the query
parameters. Moreover, once the query is specified, it should
also decide if the current situation is appropriate to interrupt
the target user asking for a feedback.

This task involves first understanding if the system is uncer-
tain about the activity performed by a user or a group of users
Ut. If this is the case we need to determine the parameters of
the query Qt(u?, Ut, Ai, Aj) which include deciding which
user u? ∈ Ut to query.

a) Defining uncertainty: In order to evaluate the system’s
uncertainty we use the entropy measure, which has been
widely used for active learning [18]. For each h(s(u)t) re-
ceived by the MULTI-INHABITANT ACTIVITY RECOGNITION
module, the QUERY BUILDER computes the entropy H as
follows:

H(h(s(u)t)) =
∑
i

pAi log
1

pAi

When H(h(s(u)t)) is higher than a threshold δ, we assume
that the system is uncertain about the activity currently per-
formed by u at time t.

b) Deciding the set of users and the candidate activities:
Intuitively, a group of users jointly performing an activity
should include users that are in the same place, and that,
according to the system prediction are performing the same
activity1. If the system has high confidence on the predicted
activity for all of these users, then there is no need to issue
a query. However, when the system is uncertain about the
activity performed by any of those users, we consider as
candidate set Ut for a query the subset of the users for which
the system shows uncertainty about the performed activity and

1Note that here we make the assumption that users that are performing
the same activity in the same room at the same time are actually jointly
performing the activity. This is indeed the case in our considered setting.



Algorithm 1 Choosing the user to query
Input: a group of users Ut, the threshold Ω, and the overall

amount of prompted queries q
Output: the chosen user u? ∈ Ut

1: u? ← RANDOM(Ut)
2: if r ≥ Ω then
3: ε← 1

q

4: u? ←

argmax
u∈Ut

av(u), with probability (1− ε)

u?, with probability ε
5: end if
6: return u∗

having the same two activities as the most likely according to
the classifier.

Formally, the conditions to identify Ut, Ai, and Aj are
expressed as follows:
• ∀ur, us ∈ Ut, l(ur)t = l(us)

t

• ∀u ∈ Ut, H(h(s(u)t)) > δ
• ∀u ∈ Ut, Ai and Aj are the two activities with the highest

probability values in h(s(u)t), independently from their
order.

Note that the first condition is about the location, the second is
about the uncertainty of the system, and the third is identifying
the two most likely common activities.

c) Deciding the user to be queried: In order to decide
which user u ∈ Ut should be the one to answer (the parameter
u? of the query), we keep track of each user availability
with the function av(u) ∈ [0, 1]. Intuitively, the availability
indicates the average “willingness” of the user to actively
answer to prompted queries. Indeed, some users may be more
reluctant than others in interacting with the active learning
interface. The value of av(u) is computed as the ratio of the
number of queries answered by u over the overall number of
queries prompted to u, and it is updated every time a query
is prompted to u.

The specific method to find u? is shown in Algorithm 1. Our
intuition is that u? should be one of the users in the group with
the highest av(u). Technically, our system initially randomly
picks u?. When the overall number q of queries prompted by
the system is greater than a threshold Ω, we start considering
av(u) to choose u? instead of choosing randomly. However,
in order to continuously improve the estimation of av(u), we
adopt an ε-greedy approach. Indeed, we assign u? as one of the
users with the maximum av(u) with probability 1− ε, while
we still choose at random with probability ε = 1

q . Hence, the
value of ε continuously decreases as the amount q of overall
queries prompted by our system increases. This allows our
method to converge to a stable estimate of av(u). Note that,
in order to maintain a simple notation, Algorithm 1 chooses
the only user with the highest availability with probability (1−
ε) at line 4. However, more than one user could potentially
share the same highest value of availability. In that case, our
algorithm chooses at random among the users with the highest
availability value.

d) Deciding if submitting the query: We have shown how
the QUERY BUILDER module can identify all the parameters
and hence determine the complete query Qt(u?, Ut, Ai, Aj).
However, to finally decide whether to issue the query or
not, we evaluate the interruptibility of the users when per-
forming the activities involved in the query. Intuitively, the
interruptibility of a user u which is currently performing an
activity A is the estimated probability that u will temporally
suspend the execution of A (or concurrently continue A and
answer the query) to provide a feedback to the active learning
interface. For the sake of this work, we adopt the same
interruptibility model for each user u ∈ U and we represent
interruptibility as a property of activities by the function
int(Ai) ∈ [0, 1] ∀Ai ∈ A. In our current implementation,
we use common-sense knowledge to model the degree of
interruptibility assigning a value to each activity using the
following qualitative criteria:

int(A) =



0, if A is never interruptible
0.25, if A is rarely interruptible
0.5, if A is on average interruptible
0.75, if A is often interruptible
1, if A is always interruptible

Clearly, since the system is considering to issue
Qt(u?, Ut, Ai, Aj), it is unclear if the users are actually
performing Ai or Aj . Hence, we must consider the minimum
of the two interruptibility values in order to consider the
worst-case scenario.

Finally, we want to balance the trade-off between interrupt-
ibility and the potential impact of the feedback to improve the
recognition model. Hence, we prompt the query only when
the following inequality is satisfied:

min(int(Ai), int(Aj)) ·H(h(s(u?)t)) ≥ σ

where σ is an empirically defined threshold. A low σ would
result in many queries that may remain unanswered, while
a high σ would lead to a reduced number of queries and a
consequent delayed improvement of the recognition model.

Once the query parameters have been selected and the
decision on submission is taken, the query is sent to the
ACTIVE LEARNING INTERFACE module.

2) Feedback semantic analysis: When a feedback is
received from the interface, it must be mapped to an activity
label in order to update the recognition model with a new
labeled example. Depending on how the interface is designed,
a feedback provided through the interface may not exactly
match one of the labels used by the recognition model.
For instance, considering a vocal interface, suppose that the
following query is prompted to Bob: “What are you doing
with Alice? Preparing a meal or Washing dishes?”. Then,
Bob provides the vocal feedback: ”We are Cooking”. Since
the feedback does not exactly match any of the activity labels
“Preparing meal” and “Washing dishes” (actually used by the



recognition model), the FEEDBACK SEMANTIC ANALYSIS
module is in charge of identifying the semantically closest
activity label.

In our system prototype, this module is implemented using
the method proposed in [19]. The approach consists of ap-
plying natural language processing algorithms to each vocal
feedback f provided by the users. In particular, the WordNet
ontology is used to compute the similarity sim(f,A) between
a feedback f and every activity A ∈ A. The activity A? =
argmaxA∈A sim(f,A) associated to the highest similarity is
then used as label to update the recognition model only when
none of the activities is sufficiently similar to f , or when two
or more activities share the same highest similarity value. This
is formalised by the following necessary conditions:
• sim(f,A?) ≥ τ
• ∃!A ∈ A s.t. sim(f,A) = sim(f,A?)

When any of the above conditions is not satisfied, different
strategies can be considered including repeating one or more
times the query.

E. Active Learning Interface

A major challenge in the envisioned system is to design
an effective interface to prompt the queries to the users and
to receive an answer. This involves identifying the type and
location of interfaces, selecting appropriate media, selecting
strategies for concurrent queries and answers timeouts. In this
paper we focus on a system with a single wall mounted tablet
interface since this was the setting for our prototype. Figure 2
shows a screenshot of our tablet interface.

Fig. 2. Our smart-home interface. The tablet runs a dedicated Android
application which is asking Bob which activity is doing with Alice. Bob
can answer using his voice or touching one of the graphics.

In Section V we discuss cases in which multiple and
different interfaces may be available.

a) Prompting the query: When a query
Qt(u?, Ut, Ai, Aj) from the QUERY BUILDER module
is received, the VOICE AND TOUCH INTERFACE prompts
a question in the form of: “u?, what are you doing with
Ut \ {u?}? Ai or Aj?”. For instance, given a query
Qt(Bob, {Bob,Alice}, Eating,Relaxing), our interface

will prompt the following query “Bob, what are you doing
with Alice? Eating or Relaxing?”. While the question visually
appears in the interface, it is also reproduced using text-to-
speech tools. The users can interact with the interface using
their voice (i.e., speech-to-text) or in a more traditional way
(i.e., touch). While voice interaction allows users to answer
without using hands (i.e., avoiding to abruptly interrupt their
activities), they sometimes prefer to use touch interfaces to
perceive more control on the system [12]. Moreover, touch
interface is also suitable in those situations where the user
can not talk for some reasons (e.g, she is at the phone).

b) Strategies for timely queries, answers timeout, and
possibly concurrent queries: In order to robustly improve the
recognition model, the query must be prompted during the
activity, and the feedback is useful only if provided soon after
the query. Since the query target user may not be available
or simply ignoring the query, if no feedback is received
within a timeout T , the interface should drop the query. If
the feedback is received within T , it is forwarded to the
FEEDBACK SEMANTIC ANALYSIS module.

Another important aspect to consider during the design of
a multi-inhabitant active learning interface is how to han-
dle concurrent queries. For example, at time t the QUERY
BUILDER module may be uncertain both on the activ-
ity performed by Alice and Bob and on the activity per-
formed by Carl and David, thus concurrently forwarding two
queries Q(Alice, {Alice,Bob}, Cooking,WashingDishes)
and Q(David, {David, Carl},WatchingTV,Relaxing) to
the same interface. For the sake of usability, we aim at
prompting only one of the many concurrent queries. In these
cases, our interface selects the query which maximizes the
recognition model improvement, which is the one with the
highest entropy for the target user. Continuing our example,
if H(h(s(Alice)t) = 1.2 and H(h(s(David)t)) = 0.8, our
system will prompt the first query.

V. ALTERNATIVE ACTIVE LEARNING INTERFACES

As we explained in Section IV, our prototype system uses
a single wall-mounted tablet as prompting device. In the
following, we briefly discuss different settings and alternative
devices which can be used to prompt active learning queries,
indicating their advantages and their limits.

A. Personal devices

Since our framework aims at selecting a specific user to
prompt an active learning query, personal devices like smart-
phones and smartwatches are an alternative natural solution for
the interface component. The main advantage of this choice
is that concurrent queries to different target users can be
prompted in parallel. However, studies confirm that notifica-
tions on personal devices are potentially very distracting with
respect to other prompting modalities [12]. For instance, a
user which receives a query on her smartphone located in
her pocket should temporarily interrupt her current activity
to extract the device from the pocket and provide a feedback
to the system.



B. Single and multiple vocal assistants

Vocal assistants implemented in appliances like Google
Home or Amazon Echo or hosted on tablets, should also
be considered to prompt active learning queries. The vocal
interface has the potential of requiring a significantly reduced
amount of time in order to provide a feedback to the system.
Indeed, users may even answer without interrupting their
current activity. Tablets have the advantage of supporting both
voice and touch interfaces.

The main drawback of having a single interface is that they
should issue a query only if the target user is in the same
room where the interface is located. Ideally, there should be an
interface in each room of the smarthome, an approach that is
already being considered for commercial vocal assistants and
that can be economically more sustainable than the installation
of multiple wall mounted tablets.

A drawback of this setting is that a single query can be
prompted at each time in each room. Indeed, if multiple
users are in the same room and the system issues concurrent
queries, the interface has to decide which query to show (as we
discussed in Section IV-E). An additional drawback of Internet
based vocal assistants is a possible privacy threat, since the
information about the activities being performed would be
acquired by the external service.

C. Social robots

Social robots have the potential to revolutionize the smart-
home interfaces of the future, especially for ambient assisted
living applications for elderly subjects [20]. Considering our
active learning setting, a social robot may directly interact with
the query target user, navigating to the appropriate location.
Clearly, this approach would combine the benefits of vocal
interfaces and the ones of personal devices that typically
move with the user. Among the drawbacks, social robots are
currently very primitive, expensive, and their acceptability in
home environments is still questionable [12]. Moreover, social
robots would have the same problem of vocal assistants in
handling concurrent queries, and in preserving privacy if they
use external services.

VI. CONCLUSION AND FUTURE WORK

In this paper, we studied the requirements and the main
issues in the design of an active learning interface for multi-
inhabitant activity recognition. We formalized the problem and
we provided a description of the solutions adopted for our
prototype.

In future work, we will quantitatively evaluate the effec-
tiveness of our approach in a realistic scenario, considering
real users performing activities of daily living in a home
environment and exploring different interface modalities.

From the methodology point of view, we will also explore
how to model our problem as a reinforcement learning task.
In this case, the active learning system would be in charge of
continuously learning a policy to decide whether to ask and
which user to select.

REFERENCES

[1] L. Chen, J. Hoey, C. D. Nugent, D. J. Cook, and Z. Yu, “Sensor-
based activity recognition,” IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), vol. 42, no. 6, pp. 790–
808, 2012.

[2] D. Riboni, C. Bettini, G. Civitarese, Z. H. Janjua, and R. Helaoui,
“SmartFABER: Recognizing fine-grained abnormal behaviors for early
detection of mild cognitive impairment,” Artificial Intelligence in
Medicine, vol. 67, pp. 57–74, 2016.

[3] D. J. Cook, A. S. Crandall, B. L. Thomas, and N. C. Krishnan, “Casas:
A smart home in a box,” Computer, vol. 46, no. 7, pp. 62–69, 2012.

[4] M. Stikic, K. Van Laerhoven, and B. Schiele, “Exploring semi-
supervised and active learning for activity recognition,” in 2008 12th
IEEE International Symposium on Wearable Computers. IEEE, 2008,
pp. 81–88.

[5] E. Hoque and J. Stankovic, “Aalo: Activity recognition in smart homes
using active learning in the presence of overlapped activities,” in 2012
6th International Conference on Pervasive Computing Technologies for
Healthcare (PervasiveHealth) and Workshops. IEEE, 2012, pp. 139–
146.

[6] H. S. Hossain, M. A. A. H. Khan, and N. Roy, “Active learning enabled
activity recognition,” Pervasive and Mobile Computing, vol. 38, pp. 312–
330, 2017.

[7] G. Civitarese, C. Bettini, T. Sztyler, D. Riboni, and H. Stuckenschmidt,
“newnectar: Collaborative active learning for knowledge-based proba-
bilistic activity recognition,” Pervasive and Mobile Computing, vol. 56,
pp. 88–105, 2019.

[8] P. Rashidi and A. Mihailidis, “A survey on ambient-assisted living tools
for older adults,” IEEE journal of biomedical and health informatics,
vol. 17, no. 3, pp. 579–590, 2012.

[9] G. Singla, D. J. Cook, and M. Schmitter-Edgecombe, “Recognizing
independent and joint activities among multiple residents in smart envi-
ronments,” Journal of ambient intelligence and humanized computing,
vol. 1, no. 1, pp. 57–63, 2010.

[10] A. Benmansour, A. Bouchachia, and M. Feham, “Modeling interaction
in multi-resident activities,” Neurocomputing, vol. 230, pp. 133–142,
2017.

[11] F. Portet, M. Vacher, C. Golanski, C. Roux, and B. Meillon, “Design and
evaluation of a smart home voice interface for the elderly: acceptability
and objection aspects,” Personal and Ubiquitous Computing, vol. 17,
no. 1, pp. 127–144, 2013.

[12] M. Luria, G. Hoffman, and O. Zuckerman, “Comparing social robot,
screen and voice interfaces for smart-home control,” in Proceedings
of the 2017 CHI conference on human factors in computing systems.
ACM, 2017, pp. 580–628.

[13] S. Soda, M. Nakamura, S. Matsumoto, S. Izumi, H. Kawaguchi, and
M. Yoshimoto, “Implementing virtual agent as an interface for smart
home voice control,” in 2012 19th Asia-Pacific Software Engineering
Conference, vol. 1. IEEE, 2012, pp. 342–345.

[14] G. López, L. Quesada, and L. A. Guerrero, “Alexa vs. siri vs. cortana vs.
google assistant: a comparison of speech-based natural user interfaces,”
in International Conference on Applied Human Factors and Ergonomics.
Springer, 2017, pp. 241–250.

[15] J. Fogarty, S. E. Hudson, C. G. Atkeson, D. Avrahami, J. Forlizzi,
S. Kiesler, J. C. Lee, and J. Yang, “Predicting human interruptibility with
sensors,” ACM Transactions on Computer-Human Interaction (TOCHI),
vol. 12, no. 1, pp. 119–146, 2005.

[16] J. Cumin, F. Ramparany, J. L. Crowley et al., “Inferring availability
for communication in smart homes using context,” in 2018 IEEE
International Conference on Pervasive Computing and Communications
Workshops (PerCom Workshops). IEEE, 2018, pp. 1–6.

[17] A. Benmansour, A. Bouchachia, and M. Feham, “Multioccupant activity
recognition in pervasive smart home environments,” ACM Computing
Surveys (CSUR), vol. 48, no. 3, p. 34, 2016.

[18] B. Settles, “Active learning literature survey,” University of Wisconsin-
Madison Department of Computer Sciences, Tech. Rep., 2009.

[19] S. Fernando and M. Stevenson, “A semantic similarity approach to
paraphrase detection,” in Proceedings of the 11th Annual Research Col-
loquium of the UK Special Interest Group for Computational Linguistics,
2008, pp. 45–52.

[20] J. Broekens, M. Heerink, H. Rosendal et al., “Assistive social robots
in elderly care: a review,” Gerontechnology, vol. 8, no. 2, pp. 94–103,
2009.


