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Abstract: Iron is a fundamental element in human history, from the dawn of civilization to
contemporary days. The ancients used the metal to shape tools, to forge weapons, and even
as a dietary supplement. This last indication has been handed down until today, when martial
therapy is considered fundamental to correct deficiency states of anemia. The improvement of
the martial status is mainly targeted with dietary supplements that often couple diverse co-factors,
but other methods are available, such as parenteral preparations, dietary interventions, or real-world
approaches. The oral absorption of this metal occurs in the duodenum and is highly dependent upon
its oxidation state, with many absorption influencers possibly interfering with the intestinal uptake.
Bone marrow and spleen represent the initial and ultimate step of iron metabolism, respectively,
and the most part of body iron circulates bound to specific proteins and mainly serves to synthesize
hemoglobin for new red blood cells. Whatever the martial status is, today’s knowledge about iron
biochemistry allows us to embrace exceedingly personalized interventions, which however owe their
success to the mythical and historical events that always accompanied this metal.

Keywords: iron; anemia; vitamin; dietary supplements; nutraceutical; functional food; integrative
medicine; preoperative care; transfusion-alternative strategy; elective surgical procedures

1. Etymology and Ages of Iron Myths

Mars, the god of war for the ancient Romans, had to be worshiped prior to battle by believing
soldiers. Known as Ares by Greeks, he was said to love bloody battles. Since the Hittites of Near East
and other metalsmiths in the Mediterranean region began to learn how to heat iron with charcoal
powder, harder and more durable weapons than previous bronze or iron-only counterparts had
undoubtedly made battles fiercer. These discoveries occurred around 1200 B.C. after the collapse of the
Bronze Age kingdoms, which gave rise to the so-called Iron Age [1,2].
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Iron was easy to find and extract, as it is one of the most abundant elements on our planet, being
constitutive of both the inner and outer cores of Earth and its surface crust since the beginning of the
world. The chemical symbol Fe comes from the Latin name of iron, ferrum, and it is placed in the
periodic table among transition metals with coordinates group 8, block d, and period 4. Still existing
as full energy form in the core of supernova remnants, common oxidation states of iron are −2, 0, 2
(Fe2+, ferrous status), 3, and 6, with the ferric status (Fe3+) being the most stable on Earth’s aerobic
atmosphere and neutral pH environments [3]. Nevertheless, this prevalent form remains unavailable
for organisms, which evolved to acquire diverse mechanisms for incorporating the metal, such as the
reduction of Fe3+ to Fe2+. The inorganic oxide presents as a solid matter, shiny and silvery, hard and
dense, good conductor of heat, often forming colored compounds. Probably, the dim reddish-orange
appearance inspired the Romans to name the Red Planet like their god of war. Egyptians referred to it
as “Her Desher”, which means “the red one” [4]. Indeed, the iron-containing dust or rust of the planet
makes it appear mostly red like blood, thus mirroring the unpleasant violence of battles to ancient
peoples. From the medieval alchemist’s symbolism, iron had always been represented as an oblique
arrow originating from a circle (♂), which had been also used by astrologist to represent Mars, with his
shield and spear, and nowadays by scholars to refer to the male gender as a Carl Linnaeus’ heritage [5].

2. The Martial Status in Humans

Although the evolution of biological beings diverged millennials ago, iron had been incorporated
by plants and animals in an exceptionally similar manner in order to exploit its role in respiration.
Plants acquired two key mechanisms: strategy I (H+ extrusion to promote Fe3+ reduction) and strategy
II (release of specific Fe3+-chelating phytosiderophores and subsequent high-affinity uptake) [6].
In Homo sapiens, the complex regulation of deposits allocation (↑ release if ↑ requirements) and
erythrocytes (RBCs) cycle assures the metal to be conserved in complex forms bound to proteins,
with the intestinal passage (↑ absorption if ↓ reserves) being the main regulatory point of body iron
balance. These mechanisms assure a total body iron of about 2.3 g in women and 3.8 g in men, with
almost 60–70% being incorporated in the main circulating protein hemoglobin (Hb), 20% in iron
deposits of ferritin, and about 15% in other proteins, mostly myoglobin in muscle tissue together with
heme and non-heme enzymes and the iron transport protein transferrin (Tf) [7]. The blood content of
the metal refers to a subject’s martial status (from Italian profilo marziale: profilo “profile” and marziale
“martial”). This allegory still reminds of physical strength and stamina of the Roman god of war,
and it is reasonable given the role of these iron-containing proteins in supplying tissues with oxygen.
Despite the evolved biological strategies to incorporate iron from environments, both humans and
plants commonly suffer from iron deficiency syndromes [8], which refer to the most common form
of “anemia” (from Greek ἀναιµία: ἀν- “without” and -αἷµα “blood”) that is known to affect a third of
the world’s population. Of note, children and pregnant women of the poorest regions of the world
represent 55% of all anemia cases [9], which derive from the coexistence of physiological increased
needs in conditions of both low bioavailability (e.g., cereal-based diet) and other causal factors, such as
poverty, hookworm infections, and schistosomiasis [10]. Anemia was already acknowledged in the
past when the lack of energy that a soldier could feel before the war could make a difference between
victory and defeat. The hemorrhagic anemia often happened after battles and now easily occurs after
surgeries. Nowadays, it is known that anemia is ascribed to different conditions, possibly mirroring
a dysfunction of hematopoietic organs, hereditary diseases (e.g., sickle cell disease), or secondary
conditions (e.g., vitamin B12 deficiency in pernicious anemia).

3. Folk Medicine

“In about 400 B.C. Hippocrates, the father of modern medicine, is supposed to have founded
his first hospital beside a stream so that he could have watercress beds close by to boost his patients’
recovery” [11]. Indeed, watercress (Nasturtium officinale B.), which is part of the cruciferous vegetables,
has an iron content (4 mg/100 g) comparable to that of spinach and a concentration of ascorbic
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acid (145 mg/100 g) higher than that of lemon (129 mg/100 g), greatly favoring iron absorption (see
Section 4.2). These properties could be associated to the legendary consumption of watercress to
acquire stamina before battles, on behalf of the Greek general Xenophon [11]. Iron had been used in folk
medicine for millennia, and often for other purposes than mere bloody ones. Around 3500 B.C. ancient
Egyptians used iron powder for baldness [12], which is now more elegantly named non-scarring
alopecia. Reflecting on the tradition of physical strength associated with Ares, Greeks used a mixture
of wine and iron to treat male impotency [12], thus possibly taking advantage of alcohol effects in
augmenting self-confidence and dodging psychogenic inability. Among the consistent grandma’s
remedies, the consumption of a tablespoon of blackstrap molasses (the viscous by-product from
sugar cane or beets) is supposed “to pump more iron into your body” [13]. This could reflect the
remarkable content of iron (5 mg/100 g) and the presence of some absorption enhancers which may
help in correcting iron deficiency [14]. Despite nowadays-ethical issues, the tradition of eating horse
liver (average of iron: 10–20 mg/100 g) marinated few hours in lemon juice (average of ascorbic acid:
99 mg/100 g) is still common among the elderly of southern Italy. They believe that this preparation
could sustain the recovery from illness and tiredness, which is indeed often associated with low
blood iron.

4. Current Knowledge on Iron Homeostasis

4.1. Overview of Iron Metabolism

4.1.1. Gastric Processing

Upon ingestion, food is mixed with gastric juice to obtain proper solubilization of different
micronutrients. In particular, iron needs to be reduced and prevented to form insoluble complexes
upon chelation with low molecular weight substances. Several positive or negative reactions can
occur at the level of the stomach (see Section 4.2) that can prevent the appropriate solubilization of the
inorganic iron, thereby influencing its bioavailability upon entrance of the proximal small intestine [15].
Iron absorption mostly occurs at the level of the duodenum, close to the pyloric proximity in order to
exploit the residual acidity before pH buffering.

4.1.2. Intestinal Passage

The ferrireductase duodenal cytochrome b (DCYTB) helps to keep iron reduced at the absorption
site, thus allowing the internalization through the divalent metal transporter (DMT1) [16], which is
part of the family of proton-coupled metal ion transporters (SLC11A2). Concerning heme-iron, it is not
yet clear how it can be internalized into the enterocyte [17]. The low-affinity heme carrier protein (HCP)
has been proposed to have a role, with the metal being subsequently freed from the porphyrin ring by a
heme oxygenase [18]. On the apical border, also dietary ferritin may be absorbed through endocytosis
and then subjected to lysosomal digestion [19]. If there is positive iron homeostasis, reduced iron can
be complexed with apoferritin to form ferritin deposits. If iron is required, the basolateral transporter
ferroportin (SLC40A1) exports ferrous iron that is subsequently incorporated into apotransferrin by
either the membrane-bound hephestin (copper-dependent ferroxidase, so named from “Hephaestus”,
the Greek god of metalworking) or the circulating ceruloplasmin (ferroxidase produced by the liver) [20].

4.1.3. Systemic Delivery

Tf binds all iron circulating in plasma and represents the most dynamic compartment, with a
turnover rate of about ten times a day that meets the erythropoiesis requirements [21]. The complex
Tf-iron interacts with a ubiquitously located receptor and is then internalized through receptor-mediated
endocytosis [22]. The subsequent acidification of the vesicle lumen by proton pumps allows the
offloading of iron-bound Tf and the entry in two different pathways: a recycling pathway, which implies
recycling of Tf back to the plasma membrane for iron reloading, and the endosomal degradation
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pathway, which ends with the release of iron from the endosome thanks to SLC11A2 [23]. Iron can
then be sequestered in the iron storage protein, ferritin, when it is not required for incorporation into
functional iron proteins (heme, non-heme, Fe-S proteins) [24]. The iron regulatory proteins (IRP1 and
IRP2) regulate cellular iron homeostasis by regulating iron uptake, utilization, and storage, which may
be inferred from the concentration of circulating ferritin as it is normally secreted by cells in quantities
proportional to intracellular deposits. The less prevalent hemosiderin is another iron storage complex
that less easily releases the metal upon increased requirements [24].

4.1.4. Physiological Roles

Hematopoietic tissues incorporate most of the blood iron, whereas other tissues, such as myocytes,
internalize smaller quantities. In fact, erythrocyte precursors in the bone marrow of vertebrae,
sternum, and ribs, highly express Tf receptors together with that of the kidney erythropoietin (EPO),
thereby boosting the differentiation of cells that are part of the erythropoietic lineage during hypoxic
conditions [17]. Of note, effective erythropoiesis requires folate and cobalamin to sustain the pyrimidine
synthesis, with the terminal enzyme of the heme biosynthetic pathway (i.e., the ferrochelatase) having
a key role in catalyzing the insertion of Fe2+ into the proto-porphyrin ring structure to form the heme
molecule [24]. In the reticuloendothelial system of the human spleen, resident macrophages of the red
pulp are in charge of senescent RBCs clearance [25], being capable of metabolizing hemoglobin through
proteolysis, heme through heme oxygenase activity, and ferritin through lysosomal degradation.
Unless it is not required, the metal exits the macrophages thanks to the SLC40A1, is oxidized by
ceruloplasmin and bound to Tf, thus subsequently replenishing most of the Tf iron pool [26].

4.1.5. Homeostatic Regulation

Other than the abovementioned IRP system, which mainly controls cellular iron uptake and
deposits, there is also a general regulatory system for iron homeostasis. Primarily produced by
hepatocytes, hepcidin is the master regulator that coordinates dietary absorption, storage, and tissue
distribution [27]. Increased hepcidin reduces the number of exposed SLC11 and SLC40, thus blocking
the intestinal passage. Consequently, it affects the release of iron from macrophages and hepatocytes,
the latter having a great capability for iron deposition in the ferritin form [28]. Reduced iron entry into
the bloodstream results in low Tf saturation and lesser iron to be delivered to tissues that expose Tf
receptors. Dysregulation of these mechanisms results in iron disorders. Anemia from chronic disease
is known to be associated with overexpression of hepcidin, macrophage iron loading, low blood
iron, and reduced erythropoiesis [29]. Conversely, negligible hepcidin expression causes higher
iron entry into the bloodstream, high Tf saturation, and excess iron accumulation in vital organs
(e.g., hemochromatosis) [30].

4.2. Absorption Influencers

Iron easily changes its state of oxidation to form coordination complexes with other atoms capable
of donating electrons, and some components named absorption influencers can frustrate or potentiate
the intestinal passage. These influencers can be disruptors (i.e., negative effectors) or enhancers
(i.e., positive effectors). For instance, well-known disruptors are specific gastrointestinal conditions,
such as peptic ulcer diseases or even Helicobacter pylori gastritis [31]. A slowly bleeding from an
ulcer that goes unnoticed may cause hemorrhagic anemia whereas chronic gastritis at the level of
the body can cause an acid output reduction. Similarly, H. pylori infection leads to a reduction of the
levels of L-ascorbic acid in the digestive fluid juice and some strains of this infective agent are even
able to compete with the host for binding iron [32]. In addition, some medications, such as antacids,
are known to substantially reduce iron absorption because of the lumen acidity neutralization, which is
known to prevent the reduction of inorganic oxides. Other negative effectors are mainly of dietetic
origin and form insoluble salts in the stomach, such as tannins, oxalic and phytic acids, polyphenols,
or compete for/inhibit absorption, such as manganese, zinc, lead [33], and calcium [34]. Conversely,
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positive effectors are fructose, copper, vitamin A, and β-carotene, with the main absorption enhancer
among all being the L-ascorbic acid. This water-soluble vitamin (daily needs for adults: 95–110 mg),
historically indicated for the prevention and treatment of scurvy, has a reducing potential able prevent
the oxidation of neighbouring molecules. It is known to exert positive pharmaceutical actions in the
lumen of the stomach and small intestine by reducing non-heme Fe3+ to Fe2+ and acting as weak
chelator, similarly to citric and lactic acid, to help solubilizing the metal. In cells, L-ascorbic acid can
promote the release of iron from deposits.

4.3. Diagnostics of Iron Deficiency

4.3.1. Understanting the Iron Deficiency

Anemia from iron deficiency is the most common anemia type [35] and may derive from inadequate
intake (e.g., poor diet quality), malabsorption (e.g., gastritis, celiac disease, gastritis, gastrointestinal
resection, iron refractory iron deficiency anemia), increased physiological requirement (e.g., growth,
menses, pregnancy), or pathological blood loss (e.g., internal bleedings, menorrhagia, intravascular
hemolysis). The nutritional iron deficiency is the most common cause of iron deficiencies and is mainly
triggered by increased needs not fully guaranteed by dietary intakes [36]. This condition is eventually
associated with a detectable change in different laboratory tests [37,38]. In 2007, a joint assessment of
the WHO and the Centers for Disease Control and Prevention (CDC) indicated ferritin as a primary
measure of the martial status at the population level and the soluble Tf receptor (sTfR) as a second
promising parameter that warranted continued evaluation [39]. These two biomarkers are useful to
categorize the anemia type as both mirror the intracellular iron homeostasis. As abovementioned,
small quantities of ferritin are present in the serum reflecting the amounts deposited in cells. Similarly,
small amounts of sTfR derive from the extracellular cleavage of the Tf receptor, and increased serum
levels mirror negative iron homeostasis [40,41]. Nevertheless, ferritin is also an acute-phase protein
involved in the inflammatory response against pathogens therefore being of limited use during
infective and inflammatory conditions, but also in case of liver disease, tumor, hyperthyroidism,
and heavy alcohol intake [42]. If not properly assessed, the prevalence of iron deficiency may be
underestimated [43], as ferritin increases during inflammatory conditions irrespective of the martial
status [44]. Consequently, it has been suggested to rise the cut-off value from 12 to 30 µg/L since an
adjustment of ferritin values according to the individual’s inflammatory status has found no consensus
yet. The sTfR is less influenced by inflammation, but other acute-phase mechanisms, such as hypoxia
or iron-limited erythropoiesis, are known to possibly affect its circulating levels [45]. Regardless of
the etiology, frank anemic conditions represent risk factors for bad conditions, especially in fragile
individuals undergoing orthopedic surgery [46,47], and specific diagnostic algorithms are available to
categorize the type to properly tailoring the intervention.

4.3.2. The Martial Status Biomarkers during Iron Deficiency

The depletion of storages, iron-deficient erythropoiesis, and iron-deficient anemia are the
increasingly severe consequences that arise upon iron deficiency, with the affection of erythroid cell
development and feature being acknowledged by impaired RBCs homeostasis but even intracellular
iron-containing proteins [48]. Although the measurement of blood parameters relies on well-established
and widely used analytical methods, many concerns persist regarding the pre-analytical phase
management and assay comparability/standardization.

• Iron storage depletion. During the first phase of iron depletion, the deposits in the bone marrow,
liver, and spleen are becoming exhausted (no stainable bone marrow iron), but no consequences on
erythropoiesis are detectable yet. This early depletion is characterized by low ferritin (<35 µg/L),
but normal Hb and other martial status indices [36]. The bone marrow is a major site for iron
storage, but all the local metal is used for erythropoiesis, easily impairing RBC generation upon
iron depletion at this site. The absence of stainable iron in the bone marrow is the gold standard
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for iron deficiency diagnosis, but it is used only in certain circumstances due to the invasive
nature of the procedure [49]. It is based on the Prussian blue staining of aspirates to detect
both hemosiderin in macrophages and iron granules in sideroblasts. The analysis requires an
experienced observer and careful attention to detail [50]. The serum fraction of ferritin represents a
portion of the total body pool that is stored in cells specialized in storing the metal and processing
heme (e.g., hepatocytes and macrophages). In healthy individuals, the normal concentrations
range between 15 and 300 µg/L, with lower values in children vs. adults, in women vs. men, and in
fertile vs. post-menopausal women. Normally, 1 µg/L of serum ferritin corresponds to 8–10 mg of
stored iron as a direct proportion. Values comprised between 12 and 15 µg/L indicate a depletion
of iron stores. The ferritin measurement is widely available, standardized, and methodologically
robust, and is based on colorimetric/fluorescent enzyme-linked immunoassays (ELISA) or on
chemiluminescent immunoassays (CLIA) ran on automated analyzers [51]. The serum is the best
matrix for a proper ferritin measurement, although plasma is also suitable depending on the
analytical method.

• Iron supply discrepancies. In the second stage of deficient erythropoiesis, the decreased rate is
ascribed to inadequate iron supply to the bone marrow. While Hb has still normal values (>115g/L),
ferritin further reduces (<20 µg/L) together with Tf saturation (<16%). Contrariwise, there is
an increase of the sTfR (>1.75 mg/dL) [36]. When the functional requirements are not met by
dietary absorption or storage release, serum iron (i.e., the amount of Fe3+ in the blood bound to
Tf) decreases while Tf increases. Because of this liaison, three assays that measure the potential of
iron supply are generally performed concomitantly, being the serum iron, the Tf concentration
(reported as the quantity of iron that can be bound to Tf = total iron binding capacity, TIBC), and the
percentage of Tf saturation (serum iron × 100/TIBC) [52]. Serum iron can be measured by either
colorimetric assays (most used) or atomic absorption spectrophotometry [53]. The concentration
of serum transferrin can be measured by immunologic methods (direct) or throughout the
determination of TIBC, whose assay is identical to the serum iron assay, but applies an additional
step (saturation of iron-binding sites of the transferrin molecule with excess iron) followed by
the removal of the unbound iron. Several analyzers measure also the unsaturated iron binding
capacity (UIBC), with TIBC being subsequently calculated by summing UIBC to serum iron [54].
Serum iron, TIBC, and transferrin saturation are indexes of an adequate iron supply, but their
utility as screening tools for iron deficiency is limited by several factors, such as the circadian
rhythm (e.g., morning peak of serum iron and Tf saturation), diet, and oral contraceptive use [55].
Nevertheless, a Tf saturation < 16% is known to reflect a suboptimal iron supply for the proper
erythrocyte development [52]. Normal values of serum iron range between 65 µg/dL to 170 µg/dL
in adult males and 50 µg/dL to 170 µg/dL in adult females. TIBC and Tf saturation normal ranges
are 250–450 µg/dL and 20–60%, respectively, in both adult males and females [48]. The serum is
the best sample matrix, but also heparin-plasma may be used, whilst EDTA- and citrate-plasma
are unsuitable due to the chelating properties of these anticoagulants. Cellular ion demands [56],
the erythroid proliferation rate [57], and the stainable bone marrow iron [58] are known to be
linked to the concentrations of the soluble form of the serine protease-cleaved membrane receptor
(sTfR) that circulates in plasma bound to Tf. Several lifestyle factors affect sTfR, such as smoking,
alcoholic drinking, sedentary behaviors, and hypernutrition [36]. Latex-enhanced immunoassays
(nephelometry and turbidimetry) and the more recent immunofluorometric assays have been
implemented to evaluate sTfR. However, the usefulness of commercial kits is limited by the poor
comparability between different tools, comprising the calibrators (free vs. transferrin-complexed
form, tissue origin), the antibodies (monoclonal vs. polyclonal), and reporting units (mg/L vs.
nmol/L) [59]. This lack of commutability together with the relatively high cost of reagents are
some of the reasons why sTfR measurements have not been widely adopted in clinical practice.
Normal range of sTfR are 0.30–1.75 mg/dL. The serum is the best matrix and it should be separated
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within 8 h from blood drawings in order to get reliable results [48]. Of note, the sTfR/serum ferritin
ratio may be more reliable than each parameter alone for the identification of iron deficiency [60].

• Iron-deficient anemia. The third stage of iron-deficient anemia is characterized by a reduction of
both Hb concentrations and RBCs below-optimal levels (i.e., functional iron deficiency = iron
supply is inadequate to meet the requirements for erythropoiesis). In the absence of ongoing
inflammatory processes, the biochemical features are low ferritin (<12 µg/L), Tf saturation
(<16%), and Hb (<115 g/L), but high sTfR (>1.75 mg/dL) and RBC protoporphyrin (>80 µg/dL).
During the ferrochelatase-dependent insertion of ferrous iron in the proto-porphyrin ring, zinc can
alternatively be incorporated to form zinc protoporphyrin, which is normally found in trace
amounts [61]. In the early stages of reduced erythropoiesis, erythrocyte zinc protoporphyrin
progressively rises, thereby providing to be a useful parameter for detecting uncomplicated
functional iron deficiency. Importantly, its measure represents the average iron availability for
erythropoiesis during the preceding 3–4 months since they are established during erythrocyte
maturation and remain unaltered for the mature RBC lifespan. This value can be measured
directly by hematofluorometer (porphyrins fluoresce in the red wavelengths when opportunely
excited) or after extraction of the zinc moiety using ethyl acetate and hydrochloric acid. In this
latter case, the zinc-free erythrocyte protoporphyrin is measured by conventional fluorometry.
Values > 150 µmol/mol heme are highly suggestive of iron deficiency [62]. Although RBCs
represent the largest functional compartment, their associated indices are not representative of the
individual’s martial status. Hb concentration is usually relevant for assessing the degree of severity
of iron deficiency, but its sensitivity is low because of the rather inconsistent variations between
healthy and iron-deficient individuals. In addition, the specificity of this test is poor. The packed
cell volume (hematocrit, Hct), although widely used in the past, does not provide any additional
information to Hb concentration. Altered RBC indices, meaning a reduction of mean corpuscular
volume (MCV), a reduction of mean corpuscular hemoglobin (MCH), and an increase of red blood
cell distribution width (RDW), are usually a feature of iron-deficient erythropoiesis, but they lack
specificity [36,48]. Conversely, modern analyzers can measure reticulocyte and hypochromic
cell parameters, such as the reticulocyte Hb and the proportion of hypochromic erythrocytes,
which may be useful for a proper assessment of anemia in chronic conditions characterized
by a generalized inflammatory state. For instance, the biochemical feature of functional iron
deficiency in chronic heart failure can show normal Hb values [63] and higher cut-off limits
for both Tf saturation (<20%) and ferritin (<300 µg/L) [64]. Heightened values of ferritin may
be also found in chronic kidney disease patients, where the concomitant proteinuria, low-iron
diet, and inflammation expose them to veiled iron-deficient conditions [65]. The proportion of
hypochromic erythrocytes with the reticulocyte Hb count could be used in these cases though,
also for predicting the responsiveness to iron therapy [66].

5. The Present of Iron Medicine

5.1. Iron Foods

The American National Heart, Lung, and Blood Institute (NHLBI) defines healthy eating changes as
first-line treatments for mild to moderate iron-deficiency anemia [67]. Male adults and postmenopausal
women should consume 10–11 mg/day of iron, with ranges adjusting according to physiological
(e.g., post-menarche women requires 20 mg/day of iron), dietary (e.g., highest bioavailability is for
high meat/fish diets), or environmental factors (e.g., the infected host requires increased iron needs).
For instance, iron requirements in conditions of lowest bioavailability can be set at 27.4 mg/day for
men and 58.8 mg/day for women [68]. Dietary intakes should guarantee the replenishment of daily
basal losses, estimated to be around 0.95–1.00 mg through enterocyte exfoliation, small bleeding events,
epithelial desquamation, sweat) [69]. Heme-iron from Hb and myoglobin is efficiently absorbed
(15–40% of intake) and accounts for 40% of total iron in animal foods whereas non-heme iron represents
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the totality of iron present in plant foods [70]. Despite the amount of iron in plants greatly surpassing
the content in animal sources (see Table 1), it is much lesser absorbed (1–15% of intake) [71]. Overall,
the most recognized animal source of iron is the liver from Bovidae, such as the calf, but also the one
from pigs, sheep, horses, and ducks. Other animal sources with great iron amounts are the kidney,
the brewer’s yeast, meats, yolk of chicken eggs, and fishes, such as herrings [72,73].

Table 1. Highest natural dietary sources of iron in decreasing order.

Dietary Source Average Contents of Iron, mg/100g Step
(Daily Needs for Adults: 10–11 mg)

Animal foods
Veal and other mammal liver, raw 20

Yolk of chicken eggs, raw 5
Fishes, raw 5

Meats (veal, beef), raw 4
Milk (cow), whole 0.2

Plant foods
Common oregano, dried 18

Bitter cocoa, powder 14.3
Arabica coffee, powder 12

Dried pulses (lentils, beans), dried 9
Wheat bran, soy flour, dried 8

Walnuts, almonds, pistachios, dried 7
Edible mushrooms, raw 1–2

Red wine 0.9–1.1

Dietary supplements or enriched sources have been excluded from the list. Average amounts of commonly consumed
foods have been reported from FooDB v.1.0 (http://foodb.ca/), Dr. Duke’s Phytochemical and Ethnobotanical
Databases v.1.9.12.6-Beta (https://phytochem.nal.usda.gov/), and the Italian food databases BDA v.2015 (http:
//bda-ieo.it/) and [72]. For the same weight, spices, herbs, and vegetables contain large amounts of iron compared to
animal foods. However, these plants contain inorganic iron, which is poorly absorbed, and are consumed in very
small quantities mainly as flavor boosters.

5.2. Dietary Patterns

Many absorption influencers other than the nature of the metal itself influence the bioavailability of
iron on a daily base. In Western diets, the bioavailability of iron is 14–18% because of the highest intakes
of meats, fishes, and sources of L-ascorbic acids. For instance, highest contents of L-ascorbic acid can be
found in some fruits, such as red raspberry (198 mg/100 g), kiwi (141 mg/100 g), lemon (129 mg/100 g),
and orange (50 mg/100 g), but also in many other sources like peppers (584 mg/100 g), cabbages
(348 mg/100 g), onion or garlic (183 mg/100 g) and veal and other mammal liver (31 mg/100 g) [72].
Of note, vitamin C content in plants fluctuates according to the subspecies, variety, cultivar, ecotype,
chemotype, soil, nourishment, geographical location, environmental impact, season of growth and
harvest, climate, agricultural practices [74]. Plant-based diets have an iron absorption around
5–12% [75], mainly because of the prevalence of its ferric form. The higher the vegetable intakes the
greater the extent of potential interferences of proteins involved in iron homeostasis. Conversely,
the higher the variability of food quality the higher the probability that the requirements of important
co-factors for hematopoiesis are met, such as those of vitamin B9 and B12. The daily needs of 330 µg
of folates equivalents (folates = 1:1, folic acid = 1:1.7), the 5 µg of cobalamin, but also the 650 µg of
vitamin A equivalents [76] (retinols = 1:1, pro-vitamin A carotenoids = 1:6 of β-carotene and 1:12 of
other carotenoids) should be advised [77]. The highest contents of cobalamin (150–20 µg/100 g) are
found in beef and horse liver, clam, mussel, crab, and octopus. Highest contents (500–3000 µg/100 g)
of folate are found in beef liver, wheat sprouts, dried beans, brewer’s yeast, egg yolk, soy, peanut,
oregano, nettle, asparagus. Highest contents (18,000–500 µg/100 g) of retinol are found in cod liver
oil, liver, eel, butter, chicken egg, pecorino cheese, caviar. Highest contents (36,000–3000 µg/100 g)
of pro-vitamin A carotenoids are found in paprika, parsley, carrots, basil, sweet potatoes, cabbage,
red pepper, yellow pumpkin, mango, radicchio [72].

http://foodb.ca/
https://phytochem.nal.usda.gov/
http://bda-ieo.it/
http://bda-ieo.it/
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5.3. Fortified Foods

A specific compound can be added to a food matrix through manual means during food processing
(i.e., fortification) or earlier during plant growth (i.e., biofortification). Concerning food fortification,
the metal was first added during food processing to increase the population intake, but technical and
sensory problems occurred, such as rancidity and color changes of the final product. Foods with
long shelf lives are therefore fortified with the more stable carbonyl or electrolytic iron powders
other than the more soluble ferrous sulphate [78]. These microspheres of pure iron are also known
to have high bioavailability [79]. Partial resolutions were obtained when either a micronized form
of ferric pyrophosphate or the encapsulated ferrous fumarate have been used to fortify iodized
table salt [80], thus keeping it away from uncontrolled redox reactions, or after investigating more
stable and effective formula (e.g., iron-casein complex) to be incorporated in foods [81]. Concerning
biofortification, advances in crop sustainment valorized the plant’s need for iron to obtain iron-enriched
foods, mainly through innovative agronomic practices and even modern genetic adjustments [82].
In fact, plants have basic and adaptation mechanisms to incorporate the metal at the root-soil interface
(see Section 2) to avoid iron-deficiency symptoms, such as stunted root growth and interveinal chlorosis
of young leaves. Biofortification techniques focus on promoting iron incorporation to allow the
obtainment of iron-fortified foods [83], but they also aim at obtaining the greatest bioavailability [84].
Despite being a promising agriculture-based approach, there is still limited evidence regarding the
clinical efficacy of these biofortified foods to improve nutritional status [85].

5.4. Hands-On Approaches

Anemic conditions are prevalent in rural populations, where nutrition can be scarce or limited to
certain categories of food sources (i.e., lack of food security). In these conditions, multifaceted options
are applied to avoid dire consequences in poor individuals. Anemia in early life can be counteracted
through delayed cord clamping [86] and the use of a small, lightweight fish-shaped iron ingot to be
placed in cooking pots, which was shown to leach the metal into food providing an enriched iron
source [87]. In these areas, lead—a well-known negative effector on iron absorption—is used not only to
make cooking pots, but it is also present at high levels in ground soils [88], with contaminations arising
from tube well water procurement. Other interventions may act at neutralizing the negative effectors
that worsen the iron status, being infective agents, inflammatory statuses, or lead contamination.
In helminth or malaria endemic zones, the infection with hookworm or Plasmodium is known to
be associated with gastrointestinal bleedings [89] and low-grade inflammation [90], respectively.
The handling of helminth infections and the integration of anti-malaria treatment are associated with
greater iron homeostasis [86] and should be advised before increasing oral iron intake in order to
avoid counterproductive effects (e.g., the feeding of the infective agent at the expense of the host) [91].
The replacement of lead cooking pot should be also targeted. Treating foods with enzymes that degrade
other absorption disruptors, such as phytic acid [92], or overcooking plant foods are other pragmatic
options that help increase iron bioavailability, but collateral depletions of sensitive nutrients can occur.

5.5. Dietary Supplements

People living in poverty may not have access to high-iron foods and pragmatic hands-on
approaches are not always implementable in rural areas. Micronutrient powders (i.e., sachets
containing dry micronutrient powder to be added to food) may nevertheless improve the martial
status of vulnerable individuals, especially infants and young children, as part of the home fortification
interventions for low-to-middle income countries supported by UNICEF and CDC [93]. In developed
counties, diverse oral iron formulas are also available to sustain older patients before and after
orthopedic surgery when hemorrhagic conditions arise. The bioavailability, efficacy, and safety
of the iron formula often depend upon the user’s health. Even though micronutrients powders
(i.e., coated ferrous fumarate) proved to be effective for reducing anemia rates [94,95], their use
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should be carefully tailored because of the uncertain safety of increasing oral iron in infants with
immature gut [96] or in areas with endemic infective agents [97]. Of note, comparable bioavailability
to ferrous fumarate has been observed for ferrous sulphate [98], the latter still remaining among
the most used. Concerning other fragile individuals, a multipart formula may be used, such as
a sucrosomial matrix of ferric pyrophosphate for older adults undergoing orthopedic surgery [99]
or a polysaccharide-iron complex of ferric polymaltose for pregnant women with iron-deficiency
anemia [100]. These pharmaceuticals may be preferred because the metal is prevented to get in
contact with enterocytes, thus possibly reducing local inflammation [101]. The other ingredients
of the formula should be promptly mixed to obtain synergic effects, such as the case of iron plus
L-ascorbic acid, but perhaps more satisfying results may be obtained if coupled also with vitamin B12,
B9, and vitamin A. Nevertheless, the massive accessibility of dietary supplements expose patients to
side effects or misuses, also because of their ease of administration and relatively low costs [102,103].
Even health professionals often lack of intelligent interventions as oral treatments are non-adapted to
age, sex, timing either within the same day or through alternative days, or lifestyle behaviors, such as
inhabitation altitude or smoking habits.

5.6. Parenteral Routes: Transfusions and Injections

Detailed indications regarding first blood transfusions date back to the 17th century, when blood
was meant to flow from the artery of a youth into the artery of an aged man. Indirect records reported
that even red wine was injected into the veins of hunting dogs to boost their performances [104]. Today,
both autologous and allogeneic blood transfusions are considered a valuable iron source, but the
latter certainly expose institutions to high costs. The prolonged deposit repletion time and impaired
absorption render oral supplements vain for patients who require a rapid iron replacement, such as
those suffering from heart or kidney disease [63,105]. Injections of iron-carbohydrate complexes
can be the ideal approach, delivering the metal directly into the bloodstream to guarantee the fast
replenishment of deposits. The carbohydrate shell helps to isolate the metal from blood components
until the complex enters the macrophages of the spleen, the liver, and the bone marrow to be either
stored or used. A single dose of intravenous iron may be sufficient to optimize the martial status in
fragile individuals, such as older adults who are scheduled for elective orthopedic surgery, whereas oral
supplements may require daily administrations for weeks [99]. Diverse intravenous iron formulas
are available, with differences in unit size, nature of the carbohydrate shell (e.g., dextran, sucrose,
gluconate, maltose, sorbitol), surface charge, iron form (Fe2+ or Fe3+) and content [106]. The dose
of iron to be administered through parenteral routes can be calculated based on body weight and
Hb levels [107], whereas the personalization of oral therapy is often missing, probably due to the
perception that the vein infusion is riskier. Indeed, most of the current evidence on safety issues comes
from poorly-designed small-scale trials with short follow-ups, possibly concealing long term risks of
iron overload or tissue damage, especially for patients undergoing injections with concomitant high
ferritin [108]. Despite this widespread mistrust, most of the formulations are safe and supported by a
positive benefit-risk ratio when using tailored dosing and monitoring [109,110], and appears to be more
indicated than oral preparations also in conditions of gastrointestinal inflammation or when compliance
to oral therapy is dubious. Nevertheless, the diversities in the costs for production, transport, storage,
handling (e.g., dilution, contamination risk, in-use stability), and health care assistance render the
intravenous preparations not usually considered the first choice of treatment [106,111].

6. Conclusions

Iron is a transition metal that had accompanied the evolution of the Homo genus throughout
its entire evolutionary course. It was first a protagonist in ancient mythology in the form of Mars
and “Her Desher”, then in folk medicine in the form of anti-weakness medication, and today it
is associated with innumerable health and disease conditions. Iron knowledge has progressively
increased and its importance for human health has now very different connotations than in the past.
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In Figure 1, we have summarized all concepts related to iron dietary sources, to a subject’s martial
status, and to anatomical sites that are relevant for the metal homeostasis. Today, anemia conditions
affect approximately a third of the world’s population, with great repercussions from before human
fertilization [112], through childhood [113], and aging [114]. Natural heavy and acid rains progressively
contribute to washing away precious minerals from the soil whose acid-buffering capacity is increasingly
disturbed. Both single [115,116] and multimodal [117] nutritional interventions have been investigated
in community-based or clinical settings to protect fragile individuals from various vitamin or mineral
deficits, but iron insufficiency still seems to persist as quite a perplexing and underdiagnosed issue
even in developed countries [118]. Even after the diagnosis, either the lack of treatment tailoring or
the poor compliance of the patient prevent this condition to be cured [119]. Wellness features like
obesity, regular blood donations, or even ethical choices, which lead to consuming strict plant-based
diets or contrariwise the most desirable white (low-iron) meat obtained from milk-fed anemic veal
calves, are just some of the causes attributable to iron deficiency syndromes. The older the body
the more it is exposed to malabsorption syndromes, intestinal bleeding, urinary iron loss, cancer,
and polypharmacotherapies [120]. Pragmatic solutions that aim at optimizing the martial status at
the population level would be required in the near future, with high-iron foods, oral supplements,
or intravenous infusions certainly requiring multimodal and tailored interventions to local conditions
and populations of interest.
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Figure 1. Schematics of the biological pathways of iron with details about major molecules and
anatomical sites involved. Dietary iron is absorbed by duodenal enterocytes, circulates in plasma
bound to transferrin, and is mainly used to form hemoglobin in newly synthesized red blood cells.
Most of body iron is recycled by rep pulp macrophages that engulf senescent erythrocytes and degrade
heme to restore circulating transferrin saturation. Iron deposits are mainly at the level of intestines
and liver, whereas bone marrow and spleen represent the initial and ultimate step of iron metabolism,
respectively. Hb = hemoglobin; Tf = transferrin; SLC11 = proton-coupled metal ion transporter; HCP =

heme carrier protein; SLC40 = basolateral transporter ferroportin; EPO = erythropoietin.
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