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Rapid adaptation to invasive predators overwhelms
natural gradients of intraspecific variation

Andrea Melotto® 24 Raoul Manenti® "#* & Gentile Francesco Ficetola® '3

Invasive predators can exert strong selection on native populations. If selection is strong
enough, populations could lose the phenotypic variation caused by adaptation to hetero-
geneous environments. We compare frog tadpoles prior to and 14 years following invasion by
crayfish. Prior to the invasion, populations differed in their intrinsic developmental rate, with
tadpoles from cold areas reaching metamorphosis sooner than those from warm areas.
Following the invasion, tadpoles from invaded populations develop faster than those from
non-invaded populations. This ontogenetic shift overwhelmed the intraspecific variation
between populations in a few generations, to the point where invaded populations develop at
a similar rate regardless of climate. Rapid development can have costs, as fast-developing
froglets have a smaller body size and poorer jumping performance, but compensatory growth
counteracts some costs of development acceleration. Strong selection by invasive species
can disrupt local adaptations by dampening intraspecific phenotypic variation, with complex
consequences on lifetime fitness.
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nvasive alien species threaten biodiversity at the global

scale!=3. The decline of native species due to invasive organ-

isms is often attributed to a lack of common evolutionary
history, which can determine the absence of effective responses®>.
On the other hand, the abrupt selective pressure exerted by
invasives can promote the rapid expression of traits improving
fitness during interactions between native and alien species. Such
responses include phenotypic plasticity (e.g. developmental or
behavioural plasticity), and may lead to prompt adaptations in
native species®~11. Nevertheless, native species often inhabit het-
erogeneous environments, and populations exposed to diverging
selective pressures by natural gradients can show local adapta-
tions, which allow them to cope with different environmental
challenges!2. The new selective forces exerted by invasive species
are expected to interfere with the pressures imposed by the extant
environmental context!?, thus the effectiveness and long-term
consequences of evolutionary responses to invasive species
remain difficult to predict'#. Despite the growing literature on the
evolutionary consequences of biological invasions, few studies
have considered how selective pressures imposed by invasive
species interfere with pre-existing patterns of local adaptations
and environmental heterogeneity of native populations!>19. This
is likely a result of the complexity of disentangling multiple
selective forces. Long-term studies, comparing species responses
before and after the introduction of invasive species, can provide
key insights on how interactions between multiple selective forces
shape evolutionary trajectories.

Development time is a critical life history trait of ectotherms
that can show both plastic and canalized variation in response to
environmental pressures. For instance, ectothermic metabolism
slows down with cold temperatures and developmental rate is
typically reduced as a result. Therefore, populations living in cold
environments often evolve faster intrinsic development time,
which allows them to partially counteract the dampening effect of
low temperature (i.e. counter-gradient variation!”18). However,
predator presence often selects for a fast development time, which
can reduce the prey’s exposure to predators!®-21. As development
time can respond to multiple selective forces with complex pat-
terns, it is an excellent trait to evaluate the interplay between
natural selective gradients and the pressure by invasive species.

Complex life cycles, with larvae strongly different from adults,
are widespread across animals. In organisms with complex life
cycles, the analysis of life history traits is complicated by trade-
offs in trait-expression between stages, as responses to selective
pressures experienced early on can cause carry-over effects in
later stages?2. For instance, accelerated development in larvae can
reduce the time available to harvest trophic resources, thereby
limiting investment in morphological structures (e.g. body size,
muscles and fat reserves), with potential fitness consequences
after metamorphosis?223. On the other hand, compensatory
mechanisms are also possible, limiting the lifetime consequences
of plastic and adaptive responses24.

Populations of native amphibians exposed to divergent envir-
onmental gradients often show strong variation in developmental
rate. For instance, the Italian agile frog, Rana latastei, inhabits
both lowland and foothill sites, where tadpoles are exposed to
different climatic regimes (lower temperatures in the foothills;
Fig. 1b). When reared within the same temperature conditions,
individuals showed significant differences in intrinsic develop-
ment time across populations, with tadpoles from the colder
foothills reaching metamorphosis earlier, as expected under a
pattern of counter-gradient variation?>. Such adaptive variability
was recorded in 2003, immediately before the invasion by the
American red swamp crayfish (Procambarus clarkii). This gen-
eralist predator has been regarded as among the “100 worst” alien
species in the world?®27 and can impose dramatic predation

pressure on aquatic amphibians, especially on their larvae?8-30,
Nevertheless, amphibians can show both plastic and rapid evo-
lutionary responses to recent environmental changes that can
help them to withstand these novel challenges®31:32,

Here we evaluate whether the selective pressure exerted by an
invasive predator can produce rapid adaptation in developmental
rate of the Italian agile frog, and assess how invasive species
altered the pattern of intra-specific variation in populations living
along an environmental gradient. By repeating common-garden
analyses of intrinsic development time before and after the
invasion (i.e. over 14 years), we assess how two distinct selective
forces (i.e. climatic heterogeneity and novel predators) influence
adaptive variation across space. We predict that selection favours
faster development of tadpoles after the crayfish invasion, and
that this novel pressure will decrease the ontogenetic variation
between populations from different climatic regimes. Our study
shows that the heavy selection by invasive predators causes the
loss of intraspecific variation among native populations, with the
novel selective force overwhelming the role of climate as a key
driver of development rate in frog populations. Changes in
development time caused by the invasive crayfish have profound
consequences on post-metamorphic traits and froglet perfor-
mance, even though compensating mechanisms alleviating these
effects are also present.

Results

Differences between populations before crayfish invasion. A
common-garden experiment was performed before the crayfish
invasion to measure the differences in development time between
frogs from diverging climatic regimes (three foothill and two
lowland populations; Fig. 1a). Prior to the invasion, tadpoles from
foothill populations showed faster intrinsic development times
than those originating from lowland populations (mixed models,
p <0.001; Table 1a) and under common environmental condi-
tions foothill tadpoles reached metamorphosis on average
4.1 days earlier (Fig. 2a). This likely occurred because spring
temperature was on average 1.4 °C colder in foothills, compared
with lowland sites (Fig. 1b). The fast intrinsic development time
in foothill populations was therefore interpreted as an evolu-
tionazrgr adaptation to the cold climate (counter-gradient varia-
tion)*>.

Crayfish invasion now drives developmental variation. In the
early 2000s, the invasive crayfish was first detected in southern
Lombardy and then it spread northward33. The local climate did
not show any evident change in temperature or precipitation
during 2000-2017 (both p>0.15), and the climatic differences
existing between foothills and lowlands remained consistent
(Supplementary Note 1; Supplementary Table 1). To assess how
the new selective pressure posed by the invasive crayfish may
have affected frogs, and how this can interact with the extant
selective forces, we repeated the analysis of larval development
time 14 years after the onset of the invasion. Among the nine
populations analysed in 2017, all the lowland populations and
half of the foothill populations had been invaded between 2004
and 2009, while the crayfish is still absent in the remaining
foothill populations (Fig. 1a). To test the possibility of predator-
induced phenotypic plasticity, in this post-invasion experiment,
tadpoles were also randomly assigned to two treatments: absence
vs. non-lethal presence of the invasive crayfish in the container
during rearing.

After the crayfish invasion, differences in intrinsic development
time between foothill and lowland populations were no longer
significant (p=0.879; Table 1b, Fig. 2b), while we did find
significant differences in development time in response to the
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Fig. 1 Climatic regime and invasion status in the study area. a Location of study populations. Squares represent frog populations analysed before the
crayfish invasion (2003), whereas circles indicate populations added for analyses performed after the crayfish invasion (2017). Invaded populations are
labelled by a crayfish and, for each of them, we report the year of first detection of the crayfish. Foothill populations are in dark green; lowland populations
are in pale yellow. The background map also shows average spring temperature, from warmer lowlands to colder foothills. b Boxplot representing

differences in spring temperature between the six foothill and the four lowland breeding sites (values of mean spring temperature, n =10 localities; two-
tailed student's t test: t; =3.97; P=0.005). Box limits represent the first and the third quartiles, the central line is the median, the whiskers represent the

extreme values. Source data are provided as a Source data file.

Table 1 Factors determining development time of agile
frogs, before (a) and after (b) crayfish invasion: results of
linear mixed models (two-sided F tests).

Fixed effects F df P

(a) 2003: before crayfish invasion

Climatic regime 17.52 1,16.3 <0.001
No. of siblings 1.48 1,284 0.234
(b) 2017: after crayfish invasion

Climatic regime 0.02 1,523 0.879
Invasion status 9.72 1, 51.6 0.003
Crayfish exposure 30.13 1,163.9 <0.001
No. of siblings 7.06 1,1455 0.009
Invasion status x crayfish 6.30 1,162.9 0.013
exposure

Climatic regime x crayfish ~ 12.32 1,161.4 <0.001
exposure

All models included the climatic regime (lowland vs. foothill) as a fixed factor. Experiments
performed in 2017 included two additional factors: invasion status (crayfish invasion in the
wetland of origin) and crayfish exposure (presence of crayfish in the container during rearing).
All models included the N of siblings in the container, to take into account potential effects of
tadpole density. Sample size was not identical among treatments; thus, degrees of freedom can
be not integer. Significant effects are in bold. In the 2003 experiment, n =180 tadpoles; in the

2017 experiment, n =169 tadpoles.

invasive crayfish. In 2017, intrinsic development time was
significantly faster in tadpoles from invaded populations
compared to those from uninvaded populations (p=0.003;
Fig. 2¢), suggesting that the novel predation pressure had become
a dominant driver of the length of larval stage. Furthermore,
development time was faster in tadpoles exposed to crayfish (p <
0.001; Fig. 2d), suggesting that tadpoles activate a plastic anti-
predatory response by shifting their developmental time. We also
found significant interactions between crayfish exposure and
invasion status (p =0.013), and between crayfish exposure and
climatic regime (p<0.001). Tadpoles exposed to crayfish

accelerated their development more if they originated from
lowland populations, and if they originated from populations
invaded by the crayfish (Fig. 2e). Finally, development time was
significantly faster in containers where few tadpoles survived until
metamorphosis (p =0.009), in agreement with known effects of
intraspecific competition3%. In the 2017 experiment, the total
development time was generally longer than in the 2003
experiment (e.g. Fig. 2a, b), possibly because tadpoles were
exposed to diel temperature fluctuations (ref. 3% see Supplemen-
tary Note 2). This is supported by the observation that total
development time in the 2017 experiment was comparable to the
development time generally observed in nature (refs. 23
Supplementary Note 2), although other potential causes of these
differences cannot be excluded.

Accelerated development affects post-metamorphic traits. To
assess potential carry-over effects of anti-predator strategies, we
evaluated whether fast larval development affects the variation of
multiple traits after metamorphosis (body length, tibiofibula
length, and maximum jumping distance). Faster larval develop-
ment led to froglets with a smaller body size (F;, 1913 =37.91;p <
0.001; Fig. 3a) and shorter hind limbs (F;, ¢¢¢ = 26.38; p <0.001;
Fig. 3b). Froglets with shorter development times also showed
reduced locomotor performance, as maximum jumping distance
increased in froglets that took longer to reach metamorphosis
(F1, 1055 =20.62; p <0.001; Fig. 3c). This occurred because frog-
lets with longer tibiofibula were able to perform longer
jumps (F; 993 =98.07; p <0.001), while after taking into account
the effect of tibiofibula length, the relationship between devel-
opment time and jumping performance was no longer significant
(Fl, 882 — 0.63; p = 0428)

Accounting for differences in development time, tadpoles
exposed to crayfish showed larger body sizes (p = 0.023), longer
legs (p=0.007), and better jumping performance (p=0.015)
(Table 2a-c; Fig. 3g-i). Similarly, tadpoles from invaded
populations showed larger body sizes (p=0.002), longer legs
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Fig. 2 Factors affecting development time (days from hatching) of Italian agile frog, Rana latastei, tadpoles. Conditional partial residual plots showing
the effect of a climatic regime before the crayfish invasion; b climatic regime after the crayfish invasion; ¢ invasion status of the population and d crayfish
exposure during rearing on development time (calculated as days from hatching to metamorphosis). Bold blue lines represent the average value obtained
using mixed models, while shaded areas are 95% confidence bands. e Boxplots showing the simultaneous effect of climatic regime, invasion status and
experimental crayfish exposure on development time of tadpoles. Orange boxes represent tadpoles exposed to the crayfish during rearing, while blue boxes
represent individuals not exposed. Images of ponds with crayfish represent invaded populations, while those with no crayfish represent the uninvaded ones.
All the lowland breeding sites are colonized by the invasive crayfish. The black line represents the mean value while the box limits are £2 standard errors. In
panel (a), n =180 tadpoles; in panels (b-e), n =169 tadpoles. Source data are provided as a Source data file.

(p<0.001), and performed longer jumps (p=0.042) when
compared to tadpoles from uninvaded populations (Table 2a-c;
Fig. 3d-f). Furthermore, larval density (i.e. the number of
individuals within a container) always negatively affected all of
the post-metamorphic traits (Table 2a-c) and tadpoles from
foothill populations showed larger body sizes (p =0.017). All the
effects of treatment and tadpole origin on post-metamorphic
traits, however, were non-significant if development time was not
taken into account (all p > 0.05; Table 2d-f).

Finally, we used structural equation models to evaluate the
overall consequences of the invasive crayfish (considering both
local adaptations and plasticity) on post-metamorphic traits, and
how these shifts are mediated by developmental acceleration
(Fig. 4). Both the crayfish invasion at breeding sites and exposure
to crayfish during development determined a short larval
development time. This, in turn, negatively affected both body
and tibiofibula length of froglets which resulted in poorer
jumping performance (Fig. 4). These effects, however, came with
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Fig. 3 Factors affecting post-metamorphic traits of froglets. Plots are conditional partial residual plots showing the influence on froglet body length,
tibiofibula length and maximum jumping distance of development time (a-c), invasion status of the population (d-f) and crayfish exposure during rearing
(g-i). Bold blue lines represent the average value obtained using mixed models, while shaded areas represent 95% confidence bands. n =110 froglets.

Source data are provided as a Source data file.

positive relationships between post-metamorphic traits and both
crayfish exposure and invasion status, which partly compensated
the costs of the shorter development induced by the crayfish
(Fig. 4; see also Supplementary Table 2).

Discussion
Alien species can exert severe selective pressure within invaded
ecosystems, generating eco-evolutionary interactions and foster-
ing both plasticity and rapid evolution in native species!437. The
novel predation pressure imposed by the invasive crayfish in this
study was strong enough to disrupt the pre-existing local adap-
tation in frogs to the regional climatic regime in a period of just
8-14 years (3-6 generations), by causing a faster development in
tadpoles from invaded populations. This developmental accel-
eration may have long-term associated costs, as the shorter larval
duration resulted in poorer conditions at metamorphosis, even
though compensatory growth could limit these impacts.
Temperature strongly affects amphibian ontogeny®! and spatial
variation in climate can determine adaptive shifts at both the
species- and population-level®!217. Before the crayfish invasion,
Italian agile frog populations showed significant divergence for
intrinsic development time (Fig. 2a) across an existing tempera-
ture gradient (colder climate in foothills; Fig. 1b). Such a pattern
suggests that climate was a major selective force and counter-

gradient selection caused clear local adaptations, with foothill
populations showing faster development to counteract environ-
mental constraints. Starting from 2004, however, the invasive
crayfish spread across the study area33, successfully colonizing
breeding sites and representing an unprecedented selective pres-
sure for these frogs. The invasion was particularly intense in
lowlands38, where nearly all the breeding sites are now colonized
by crayfish. As a result of the crayfish invasion, differences in
development time between foothill and lowland populations were
no longer evident. Instead, we observed a faster development time
in tadpoles originating from crayfish invaded sites, which, on
average, metamorphosed 10 days before tadpoles from uninvaded
sites. Amphibians show an exceptional variety of larval anti-
predatory strategies, and their expression can strongly depend on
the context they experience?3-*43%. Rapid development can allow
tadpoles to metamorphose earlier and thus reduce exposure to
predators, a strategy particularly common when predation pres-
sure is high!%2040. Although our data do not allow us to directly
determine whether invaded populations now develop faster than
prior to the crayfish invasion, the shorter intrinsic development
time of invaded populations compared with the uninvaded ones
suggests that they underwent a rapid evolutionary response dri-
ven by the predation pressure imposed by the crayfish. This
pattern is in agreement with recent evidence of rapid evolutionary
changes in native species after biotic invasions”-310:41:42, even
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Table 2 Effect of treatment, invasion status, climatic regime and number of siblings on post-metamorphic traits of Italian agile
frogs: results of linear mixed models (two-sided F tests without multiple test corrections) including development time as fixed
factor in the model (a-c) and results excluding development time from the model (d-f).
Post-metamorphic trait Fixed effects F df P R2,, R2,
Analyses including development time as covariate
(a) Body size Climatic regime 5.189 1, 99.5 0.017
Invasion status 9.79 1, 103.0 0.002
Crayfish exposure 7.42 1,9.2 0.023 0.35 0.35
No. of siblings 7.44 1,102.9 0.007
Development time 50.38 1, 100.5 <0.001
(b) Tibiofibula length Climatic regime 1.77 1,100.6 0.187 0.33 0.33
Invasion status 12. 71 1,104.2 <0.001
Crayfish exposure 12.06 1,94 0.007
No. of siblings 10.29 1,104.4 0.002
Development time 47.84 1, 101.6 <0.001
(c) Max jumping distance Climatic regime 1.39 1, 101.5 0.242
Invasion status 4.22 1,107.7 0.042
Crayfish exposure 10.20 1,72 0.015 0.27 0.30
No. of siblings 121 1,106.8 <0.001
Development time 35.034 1,102.4 <0.001
Analyses not including development time as covariate
(d) Body size Climatic regime 2.94 1, 104.0 0.089
Invasion status 0.77 1, 104.0 0.382
Crayfish exposure 0.12 1, 104.0 0.730 0.03 0.03
No. of siblings on 1,104.0 0.740
(e) Tibiofibula length Climatic regime 0.66 1, 105.0 0.417
Invasion status 1.55 1, 105.0 0.216
Crayfish exposure 0.90 1, 105.0 0.344 0.02 0.02
No. of siblings 0.65 1,105.0 0.420
(f) Max jumping distance Climatic regime 0.71 1,101.3 0.402
Invasion status 0.08 1, 108.0 0.782
Crayfish exposure 2.07 1,58 0.202 0.04 0.06
No. of siblings 1.82 1,108.0 0.180
For all tests we report both marginal and conditional determination coefficients (R2, and R2, respectively’4). Significant effects are in bold. n =110 tadpoles.

though we cannot fully exclude a role for epigenetic or maternal
effects (but see Supplementary Note 3 and Supplementary
Table 3).

Beyond the strong differences between invaded and uninvaded
populations, we observed a plastic shift in tadpoles reared in the
presence of the invasive crayfish, as these tadpoles exhibited a
faster development. During rearing, exposed tadpoles perceived
crayfish presence through both visual and chemical cues, which
represent key signals allowing predator detection and modulation
of anti-predator responses in aquatic species®3-46. The faster
development of exposed individuals indicates that tadpoles were
able to recognize crayfish cues as a predatory threat, and thus
trigger a plastic ontogenetic shift in response to perceived pre-
dation risk. Prey are generally able to identify their native
predators?7:48, but the recognition of non-native predators can be
more challenging®®>0. Responses to invaders can occur as a reac-
tion to unknown cues, as a response to generic risk cues (e.g. to
moving predators), or if they produce signals (e.g. visual and
chemical cues) shared with similar or related native predators®!->,
For instance, the response of the Italian agile frog to the invasive
crayfish could arise because American red swamp crayfish
releases cues similar to those of native European crayfish (Aus-
tropotamobius pallipes), which is a common predator of amphi-
bian larvae and often occurs in syntopy with these frogs®’.

Tadpoles from invaded populations, independently of being
exposed to the crayfish or not, showed faster development com-
parable to the plastic response observed in those from uninvaded
populations that were exposed to crayfish. These findings align
with the hypothesis of a canalization of development time in

invaded populations, and corroborates the idea that adaptation in
development time may arise through the rapid fixation of geno-
types exhibiting adaptive plasticity3>8. Conversely, the plastic
response was generally weak in invaded, foothill populations.
Before the invasion, foothill populations already showed a fast
development (Fig. 2a), and it is possible that invaded populations
in this region were already close to the physiological limit of the
species, beyond which further development acceleration was not
possible>:60,

Accelerating development can be an effective escape strategy
from predators, but life-history theory predicts carry-over
effects, with possible trade-offs between the benefits afforded
in one trait and the consequences on other traits affecting fit-
ness®1-93. In organisms with complex life cycles, the decoupling
between different life-history stages is generally incomplete and
this can exacerbate the influence of early-development con-
straints on traits at later stages®26%, Yet, selection can favour
compensatory mechanisms that partially counterbalance the
negative impacts on subsequent stages. Compensatory growth
during development is well-documented in amphibians and it
allows them to optimize their growth trajectory under variable
conditions24%°-67  In our study, anti-predatory responses to
crayfish resulted in an acceleration of development and a short
duration of the larval stage, which is generally associated with
disadvantageous post-metamorphic traits, such as smaller body
size and poorer locomotor performance (Fig. 3a—c). This can
occur because of the reduced time devoted to the acquisition of
trophic resources in fast-developing tadpoles®®. However, we did
not detect negative consequences of the developmental
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circles indicate dependent variables. Significance of relationships is indicated with arrows, and was calculated from SEM using two-sided z statistics.
Positive relationships are in green, while negative relationships are in red. The number of individuals per container was included as a covariate, to take into
account the effects of density. See Supplementary Table 2 for coefficients and exact significance values of the paths.

acceleration induced by the crayfish on froglet performance.
When accounting for development time, tadpoles from invaded
populations and those exposed to the crayfish showed improved
post-metamorphic performance (Figs. 3d-i, 4) that allowed
compensation to the acceleration in development. In other
words, although these froglets metamorphosed earlier than those
not exposed to the crayfish, they showed comparable perfor-
mance (Table 2d-f). Amphibian development is influenced by
the complex interplay between genetic and environmental dri-
vers, and compensatory growth can limit the impact of sub-
optimal conditions on larvae, for instance through differential
resource allocation or behavioural plasticity?3-246, Mechanisms
mitigating the costs of developmental plasticity, like compen-
satory growth, can be particularly favoured in species facing
environmental variability or exposed to novel selective pres-
sures®, In our study, compensatory growth seems to counteract
the costs of developmental acceleration, thus limiting potential
negative impacts on post-metamorphic fitness. Nevertheless,
predicting the lifetime outcome of carry-over effects is complex,
and impacts on traits not considered here (e.g. physiological
traits) are possible?%, therefore additional data are needed to
evaluate the overall impacts across life-history stages.

Invasive predators have been one of the major determinants of
extinctions in modern times!:%%. When native populations persist,
the selective force exerted by invasives can swiftly promote the
evolution of life-history traits limiting exposure to predation”42,
Our study shows that invasive predators can pose selective
pressures stronger than environmental gradients, driving rapid
adaptive shifts in native species and obscuring pre-existing var-
iation among populations exposed to divergent ecological pres-
sures. Such adaptive responses can have complex impacts on
multiple life-history stages, and could even produce suboptimal
phenotypes in some habitats or under particular selective
pressures!®4l, Forecasting the impacts of invasive species is
notoriously difficult, and is further complicated by the multi-
faceted adaptive responses of native species. Integrating the
complexity of these responses is essential to evaluate how invasive
species affect population dynamics, and to assess their long-term
consequences.

Methods

Focal species and study area. The study area is in Lombardy (north-western
Italy, ~45.5N, 9.2 E), and includes the drainages of the Ticino (West) and Adda
(East) rivers (Fig. la). This region is characterized by a rich hydrographic network
and includes both agricultural and urban areas, mainly in the southern lowlands,
and hilly relieves scattered with woodlands in the north. We focused on the Italian
agile frog, which is endemic to the lowlands of northern Italy and adjacent areas. It
is listed by the JTUCN as vulnerable due to ongoing population declines caused by
multiple factors, including habitat loss, fragmentation and invasive species’?. Ita-
lian agile frogs breed in ponds and ditches within forest areas, and has a very
narrow altitudinal range (from the sea level to ~400 m in the foothills of the
Alps3©). Egg-clutches are laid in March, and metamorphosis generally occurs in
late spring-early summer (June-July). Temperature is the main driver of devel-
opment rate in amphibians®!-7! and previous studies have shown that lowland and
foothill populations are exposed to different climatic regimes and show local
adaptation to the extant climatic gradient?>. We considered tadpoles originating
from multiple foothill and lowland populations, and covering the whole altitudinal
range of the species within the study area. To compare climatic regimes between
foothill and lowland habitats, we calculated the mean spring temperature
(March-June) for all the collection sites (see Fig. 1b) from the CHELSA climatic
data set at a resolution of 30 arc-s (roughly 900 x 650 m within the study area;
ref. 72). Mean spring temperature is only one of many climatic parameters.
Nevertheless, a principal component analysis (PCA) performed on five climatic
variables (mean temperature during March-June, mean annual temperature,
annual seasonality of temperature, summed annual precipitation, and seasonality
of precipitation) returned one single component explaining 95% of variation, that
was positively related to all the temperature variables (in all pairwise correlations,
r>0.97) and negatively related to all the precipitation variables (in all the corre-
lations, r < —0.95). Moreover, we used data from local meteorological stations to
test whether environmental conditions remained consistent during the 2003-2017
period (Supplementary Note 1 and Supplementary Table 1).

The American red-clawed crayfish is native to north-eastern Mexico and south-
central USA and was first detected in Lombardy in the early 2000’s33. Since then
the crayfish has successfully colonized a large number of wetlands, particularly in
the south of the study area. Natural and human-mediated dispersal caused a
northward spread of the crayfish, which has colonized many Italian agile frog
breeding sites since 2004 (Fig. 1a). Even though the invasive crayfish is now
widespread in the study area, its distribution remains scattered, as artificial and
natural barriers prevented colonization of some isolated freshwater systems3873. In
the foothills the pattern of invasion is patchy, and uninvaded wetlands are
intermixed with invaded areas’374. The crayfish represents a major threat for the
freshwater communities of invaded ecosystems3*7>, and in the study region is

causing the decline of several amphibian species?3.

Tadpole rearing before the crayfish invasion. In 2003, we reared tadpoles under
common conditions to assess differences in development time between lowland
and foothill populations. This experiment was performed just before the invasive
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crayfish colonized the study area. In early March, we collected egg-clutch fragments
from five populations (three from foothill: AL CU, MZ; two from lowlands: TC,
7ZB; Fig. 1a). We sampled five clutches for each population and, after hatching, 10
tadpoles from each clutch were randomly selected and placed in containers filled
with 1.51 of aged tap water (total: 250 tadpoles reared). Tadpoles were maintained
under common laboratory conditions (12-h light-dark cycles at constant tem-
perature of 20 °C) and fed ad libitum with lettuce and rabbit pellets. Development
time was calculated as the number of days between hatching and metamorphosis
(Gosner’s stage 45; fully-developed forelimbs and almost complete reabsorption of
the tail’®). Tadpole survival until metamorphosis was similar between lowland and
foothill populations (y?; = 0.084; P=0.771). The results of the 2003 experiment
have been published in a previous paper?>, but we here re-analyse these data with
updated statistical tools for a better comparison with the 2017 experiment.

Tadpole rearing after the crayfish invasion. To assess the response of frogs to
the selective pressure posed by the alien crayfish, we repeated the analysis of larval
development 14 years after the onset of the invasion. In spring 2017, we collected
54 egg-clutch fragments from nine populations (4-12 clutches per population). We
sampled the same populations analysed in 2003 (except for ZB, where the species
suffered a local extinction) plus five additional populations (three from foothills:
AS, GA, MT; two from lowland: A4, T3; see Fig. 1a) in order to increase sample
size. Three of the foothill and all the lowland populations were invaded between
2004 and 2009, while the invasive crayfish remains absent in the other foothill
populations (Fig. 1a). Sample size was similar across populations with different
climatic regime or invasion status (Supplementary Table 4). Clutch fragments were
housed in individual containers at outdoor temperature until hatching.

The 2017 rearing experiment was slightly different from the 2003 one, as it was
designed to detect both differences in development time between populations
(considering potential effects of both climatic regime and invasion status), and plastic
responses to the exposure to the invasive crayfish. At Gosner’s stage 25, we randomly
selected six tadpoles from each clutch (total: 324 tadpoles) and photographed them to
measure starting size (tadpole total length: from the tip of the snout to the tail tip).
Tadpoles of each clutch were divided into two groups of three tadpoles (hereafter
triads). Triads were randomly assigned to one of two rearing treatments: absence vs.
non-lethal presence of the crayfish. Tadpoles were reared in 0.81 containers filled with
aged tap water and clustered in six 70 x 48 cm tanks (hereafter blocks; 18 triads per
block). In the crayfish treatment, tadpoles were reared in presence of one adult
crayfish, which was separated from the rearing container with a plastic net. Therefore,
tadpoles were constantly exposed to non-lethal visual and chemical cues released by
the crayfish. Tadpoles in the control treatment were maintained under identical
conditions, except for the absence of crayfish. Tadpoles were reared outdoors and the
tanks were shaded to mimic natural conditions. Tadpoles were exposed to natural diel
temperature fluctuations, but the average temperature experienced by larvae during
development was very similar to the 2003 conditions (19.8 + 0.5 °C; Supplementary
Note 2). During rearing, half of the water in the experimental tanks was changed
weekly and both tadpoles and crayfish were fed ad libitum with rabbit pellets and fish
food. When reaching Gosner’s stage 42 (emergence of the first forelimb), we
transferred tadpoles in small individual containers with 5 mm of water and moved
them to the laboratory, where they completed metamorphosis. Each container was
provided with a plastic staircase offering froglets the possibility to move out of water.
Tadpole development time was calculated as time from hatching to Gosner’s stage
457, as in the 2003 experiment. In 2017, the experiment lasted from the 14 March
(first hatch) to the 14 August (last tadpole attained metamorphosis). Tadpole
mortality was unrelated to climatic regime of origin (generalized linear mixed model:
le = 1.291; p = 0.256), crayfish presence in the breeding sites (y*; = 0.218; p = 0.641)
or rearing conditions (y2, = 0.275; p = 0.600).

Post-metamorphic traits. To assess carry-over effects on post-metamorphic traits,
we measured morphology and jumping performance on 110 newly-metamorphosed
froglets reared during the 2017 experiment (Gosner’s stage 45, almost complete tail
resorption’®). Among these froglets, 66% were from foothill populations, 67% came
from populations invaded by the crayfish and 60% were exposed to the crayfish
during rearing. We considered two morphological traits that are known to affect
survival and locomotory performance of froglets, body length and tibiofibula
length®%77. We photographed froglets on graph paper and measured morphological
parameters from photos using Image]”®. Five froglets were excluded from mea-
surements due to low quality of the pictures. To evaluate post-metamorphic loco-
motor capacity, jumping performance of each newly-metamorphosed froglet, was
assessed during one jump session. Jump sessions were conducted in laboratory at
room temperature, and froglets were tested immediately after taking them out from
the containers where they completed metamorphosis. During the jump session, we
placed each froglet on plastic graph paper and stimulated jump by gently pushing its
back with a wooden wand. Each session consisted in three consecutive jumping trials
per individual during which the distance covered with each single jump was mea-
sured with a ruler®. Two froglets were excluded from jumping trials due to a hind-
limb malformation, which hampered their normal locomotion. The repeatability of
individual jumping performance across the three trials was high (repeatability tested
using the rptR package’®: R =0.62, 95% CI = 0.51-0.71, p < 0.001). As a measure of
jumping performance we considered the maximum distance, since in frogs,

maximum jumping ability is more strongly related to feeding and escape ability than
average jumping length80-82,

Statistical analyses. For both the 2003 and the 2017 experiments, we used linear
mixed models to assess the factors affecting development time of tadpoles. In all
models, development time was square root transformed to improve normality. For
the 2003 data, we used climatic regime (foothill/lowland) as a fixed factor, and both
population of origin and clutch identity as random factors. Furthermore, devel-
opment time is known to be strongly affected by intraspecific competition4, and
some tadpoles died during development. Therefore, we also included the number of
tadpoles surviving until metamorphosis per container as a covariate.

We used the same models to analyse development time after crayfish invasion
(in 2017). Beside climatic regime, these models included two additional fixed
factors: invasion status (invaded/not invaded populations), and crayfish exposure
during rearing (absence/presence of crayfish); rearing block was an additional
random factor. Preliminary analyses including years since invasion rather than
invasion status yielded identical results and slightly lower values of fit. Climatic
regime was included as a fixed factor (foothill/lowland), but results are identical if
we used the first component of a PCA performed on five climatic parameters
(Supplementary Table 5). We also tested possible two-way interactions between
invasion status, crayfish exposure and climatic regime. In 2017 all lowland
populations were invaded, thus it was impossible testing the interaction between
invasion status and climatic regime.

Tadpole development can be also affected by non-genetic maternal effects; egg
provisioning is a major maternal effect in amphibians®3. To confirm that our
results are not biased by differences in egg provisioning, we repeated analyses by
including tadpole starting size (a proxy of egg provisioning) as additional covariate
into models. Starting size did not show a significant effect on development time
either in 2003%° or in 2017 (see Supplementary Note 3 and Supplementary
Table 3), supporting the robustness of our conclusions.

Mixed models were also used to test the effect of development time, crayfish
exposure, invasion status and climatic regime on post-metamorphic traits of
froglets from the 2017 experiment, and to evaluate relationships between tibiofibula
length and jumping performance. We performed two separate analyses, one
including and one excluding development time as a covariate. Preliminary tests did
not detect significant interactions between independent variables. In all these
models post-metamorphic trait values were log-transformed and we considered
population of origin, clutch identity and rearing block as random factors.

Finally, we performed a structural equation modelling (SEM) to elucidate the
complex relationships between fixed factors, development time, post-metamorphic
morphological traits and jumping performance of the 2017 experiment. SEM is a
statistical method based on multiple regressions, which allows testing of hypotheses
regarding multiple causal relationships among predictors, and estimating their role
in explaining the observed variation of the dependent variable®%. We included as
fixed factors the invasion status and crayfish exposure; the number of living siblings
at Gosner’s stage 45 was an additional covariate representing larval density during
development. We did not consider climatic regime, as its effects on tadpole
development were marginal (Table 1b). In SEM analyses, just one clustering
parameter can be included. We therefore built three separate SEMs using block,
population of origin and clutch identity as clustering parameters. In the main
results we present the SEM including block as clustering parameter, as this was the
analysis showing the most conservative results. Results were highly consistent when
using site of origin or clutch identity as clustering parameters (see Supplementary
Table 2). We performed analyses in R environment (version 3.4.1), using ImerTest,
Ime4 and MuMIn packages for linear mixed models and lavaan package for SEM
analysis®+8°. In all mixed models, sample size was not homogeneous among
groups, thus the degrees of freedom were approximated and can be non-integers®.
Furthermore, we used visreg package®¢ to generate conditional regression plots.

Ethical statement. All the experiments were performed under the authorization of
Italian Ministry for Environment (DPN/17391 and Prot. N. 3383/T-A31). After
metamorphosis, all the froglets were released in their site of origin. Before releasing
tadpoles, we treated them with Virkon S to clear the potential presence of
pathogens and avoid risk of disease spreading®”:85.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All the experimental data are available in the fisgshare repository with the identifier
[https://doi.org/10.6084/m9.figshare.12452600.v2]. All meteoclimatic data used are
available on the websites of the regional network of the Regional Environmental Agency
(www.arpalombardia.it) and of the CHELSA high-resolution climate data set (http://
chelsa-climate.org/). Source data are provided with this paper.
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