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Abstract: In the field of regenerative medicine applied to neurodegenerative diseases, one of the most
important challenges is the obtainment of innovative scaffolds aimed at improving the development
of new frontiers in stem-cell therapy. In recent years, additive manufacturing techniques have gained
more and more relevance proving the great potential of the fabrication of precision 3-D scaffolds.
In this review, recent advances in additive manufacturing techniques are presented and discussed,
with an overview on stimulus-triggered approaches, such as 3-D Printing and laser-based techniques,
and deposition-based approaches. Innovative 3-D bioprinting techniques, which allow the production
of cell/molecule-laden scaffolds, are becoming a promising frontier in disease modelling and therapy.
In this context, the specific biomaterial, stiffness, precise geometrical patterns, and structural properties
are to be considered of great relevance for their subsequent translational applications. Moreover, this
work reports numerous recent advances in neural diseases modelling and specifically focuses on
pre-clinical and clinical translation for scaffolding technology in multiple neurodegenerative diseases.

Keywords: additive manufacturing; scaffold geometry; disease modeling; cell therapy; stem cells;
neurodegenerative diseases; 3-D structures; regenerative medicine
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1. Introduction to Scaffold Design 

The field of tissue engineering relies on the use of three-dimensional scaffolds as templates for 
tissue formation [1]. Scaffolds are typically defined as complex 3-D structures whose purpose is to 
provide a favorable environment for cells’ adhesion and growth, and to give structural support when 
implanted “in vivo” [2,3]. These structures are gaining more and more relevance in cell biology and 
tissue engineering as the development of new biomaterials and 3-D scaffolds exhibits a lot of potential 
in the production of functional 3-D structures with increased biomimetic features [3–5]. 

1.1. Scaffold Features  

The design of scaffold architecture must be tissue specific in terms of porosity (pore shape and 
size), morphology (interconnection and fibers’ orientation), and surface topography (shape and 
roughness) [6]. These features are essential to improve cell homing (adhesion, survival, migration, 
differentiation) and to facilitate the flow of culture medium (in vitro) or blood (in vivo) through the 
construct in order to ensure the supply of nutrients and oxygenation [2,6]. When implanted, the 
engineered scaffold must be biocompatible in order to avoid both immune reactions and 
inflammatory responses, as well as the toxicity of the products of degradation for biodegradable 
scaffolds. The scaffold should have equivalent mechanical properties to that of the native tissue, in 
terms of stiffness and structural stability, as these influence cells’ adhesion, proliferation, and 
differentiation. Moreover, the scaffold’s degradation kinetics has to be balanced with the new tissue 
formation [2]. These characteristics are of great importance to adequately support the regeneration 
process of the recipient tissue or organ [3]. 

1.2. Approaches to Tissue Engineering 

Tissue engineering is mainly based on two approaches: Top-down or bottom-up (Figure 1). The 
first one employs additive manufacturing (AM) techniques, which are advanced manufacturing 
processes based on the sequential addition of material, in order to produce 3-D scaffolds with the 
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1. Introduction to Scaffold Design

The field of tissue engineering relies on the use of three-dimensional scaffolds as templates for
tissue formation [1]. Scaffolds are typically defined as complex 3-D structures whose purpose is to
provide a favorable environment for cells’ adhesion and growth, and to give structural support when
implanted “in vivo” [2,3]. These structures are gaining more and more relevance in cell biology and
tissue engineering as the development of new biomaterials and 3-D scaffolds exhibits a lot of potential
in the production of functional 3-D structures with increased biomimetic features [3–5].

1.1. Scaffold Features

The design of scaffold architecture must be tissue specific in terms of porosity (pore shape and size),
morphology (interconnection and fibers’ orientation), and surface topography (shape and roughness) [6].
These features are essential to improve cell homing (adhesion, survival, migration, differentiation)
and to facilitate the flow of culture medium (in vitro) or blood (in vivo) through the construct in
order to ensure the supply of nutrients and oxygenation [2,6]. When implanted, the engineered
scaffold must be biocompatible in order to avoid both immune reactions and inflammatory responses,
as well as the toxicity of the products of degradation for biodegradable scaffolds. The scaffold should
have equivalent mechanical properties to that of the native tissue, in terms of stiffness and structural
stability, as these influence cells’ adhesion, proliferation, and differentiation. Moreover, the scaffold’s
degradation kinetics has to be balanced with the new tissue formation [2]. These characteristics are of
great importance to adequately support the regeneration process of the recipient tissue or organ [3].

1.2. Approaches to Tissue Engineering

Tissue engineering is mainly based on two approaches: Top-down or bottom-up (Figure 1).
The first one employs additive manufacturing (AM) techniques, which are advanced manufacturing
processes based on the sequential addition of material, in order to produce 3-D scaffolds with the
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appropriate architecture to guide the formation of the desired tissue. In this case, living cells are seeded
on or within the porous 3-D structures [3,7,8]. The main advantages of top-down strategies are the
possibility to use a wide range of processing materials and the production of porous scaffolds with
specific mechanical properties according to the applications of interest. On the other hand, the lack
of proper vascularization of the construct, the challenges in a homogeneous distribution of multiple
cell types, and the subsequent impossibility to achieve tissue specific cell densities represent some
serious limitations [3,6,9,10]. In bottom-up approaches, scaffolding materials, cells, and sometimes
also bioactive factors are assembled together, forming building units of several shapes and sizes [11].
Using different bottom-up processes, such as hydrogel encapsulation, self-assembled cell aggregation,
cell sheets, and 3-D bioprinting, it is possible to achieve constructs with more complex functions [3,12].
Recently, bottom-up approaches have gained more and more relevance because they allow for an
optimal control over the spatial arrangement of cells, obtaining an architecture that could strictly
mimic the organization of the native tissue [9,12]. However, these processing techniques are often
relatively slow, making the assembly of larger tissues challenging. In addition, bottom-up techniques
usually use materials with low mechanical properties (e.g., in the range of 0.2–1700 kPa for hydrogels
composed of various biomaterials [13]), suitable to reproduce extracellular matrix (ECM) features but
limiting the structural aspect of the construct [9]. Both tissue engineering approaches will benefit from
the development of innovative AM techniques, which could be helpful in the production of realistic
ECM-like scaffolds [3,12].
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Figure 1. Schematization of the approaches applied in additive manufacturing (AM) techniques. On the
left, the top-down approach is shown, which employs AM techniques to produce 3-D scaffolds with
the appropriate architecture to guide the formation of the desired tissue. In this case, living cells are
seeded on or within the porous 3-D structures. On the right, the bottom-up approach is described,
where scaffolding materials, cells, and sometimes also bioactive factors are assembled together, forming
building units of several shapes and sizes. Advantages (ADV) and disadvantages (DIS) of each
technique are also reported. Made in©BioRender—biorender.com.
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1.3. Classes of Biomaterials

Biomaterials used for scaffold fabrication are usually classified in synthetic polymers, natural
polymers, and ceramics [2]. Synthetic polymers are processed using a wide range of assembly approaches
as they are not present in nature. Thanks to their great processing flexibility and ease of manipulation, this
class of materials is widely used to produce structures with tailored architecture, appropriate mechanical
properties, and controlled degradation features according to application-specific requirements [14,15].
These features can be achieved by acting on the molecular weight distribution of the material and varying
the monomer composition of copolymers [16]. A reduced bioactivity, meaning a lack of interaction
between the tissue and the synthetic scaffold, derived from the inability to combine the material with
bioactive molecules because of low affinity, is the main limitation of the synthetic polymers [2,3]. Despite a
minimal immune response, polylactic acid (PLA), polyglycolic acid (PGA), and poly(lactic-co-glycolic
acid (PLGA) are among the few synthetic polymers Food and Drug Administration (FDA)-approved
for clinical applications [17–19]. In particular, PLGA, thanks to its adaptable design and the capacity to
provide bioactive signals to enhance cell–biomaterial interaction, is one of the most common synthetic
polymers in clinical use for bone and cartilage tissue regeneration [20]. Natural polymers are convenient
in tissue engineering for their excellent biocompatibility, and their ability to promote cell adhesion and
growth [2]. Biological materials, such as alginate, hyaluronic acid, and chitosan, are polysaccharide based
or a derivative from proteins, such as collagen, fibrin, and silk. This kind of polymers are widely available
in nature and their biodegradability, in addition to their bioactivity, closely mimics that of the ECM [21].

Natural polymers promote minimal inflammatory and immune responses [3]. However, whilst
being processed, the materials often lose their biological functions, making the fabrication of scaffolds
with homogeneous and repeatable structures challenging [2]. In addition, natural polymer-derived
scaffolds generally have poor mechanical properties, which limit their application in mechanical
load-bearing anatomical sites, such as in hard tissue regeneration. The combination of natural
biomaterials with synthetic ones to produce hybrid scaffolds of multiple phases is an attractive solution
to overcome all these limitations [3,22,23]. Ceramic materials can be classified as nearly inert (alumina
and zirconia), bioactive (based on bioactive glass), and resorbable (based on alpha and beta tricalcium
phosphate) [3]. Bioceramic scaffolds are commonly used in bone tissue regeneration thanks to their
biocompatibility and bioactivity, along with the possibility to achieve hierarchical structures at micro
and nano scales whilst mimicking the native tissue well [24]. They are characterized by high mechanical
stiffness and low elasticity. Their brittleness and tricky machining processability into specific shapes,
in addition to the mechanical properties previously underlined, limit their clinical applications [25].
Moreover, the degradation kinetics of ceramic scaffolds does not match the new bone formation [2,3].
The assembly of polymers and ceramic materials promotes greater flexibility to the final construct,
rendering it more similar to the native tissue, offering biological benefits as well as an improvement
of the mechanical properties [26]. To support and improve the regeneration of hard tissues and to
produce parts with highly complex geometries, metallic materials are commonly used. They can
be of relevance in the field of regenerative medicine and are mainly employed in the production of
medical implants [7]. Another innovative strategy relies on the use of decellularized ECM as a template
for tissue regeneration. The decellularization process relies on the enzymatic, chemical, or physical
removal of the entire cellular part, whilst maintaining the original ECM’s structural integrity and
tissue’s vasculature network, thus preserving the design features at the micro and nano scale [27].
For these reasons, ECM-based scaffolds provide an ideal environment for cell adhesion and growth,
similar to that of the native tissue [28]. On the other hand, the low availability of donors and the
accelerated degradation, which leads to the lack of a cell repopulation and tissue remodeling, are
limitations that need to be overcome before ECM-based scaffolds become applicable [3,29].

2. Fabrication Techniques

Additive manufacturing (AM) techniques are proving to have great potential in the fabrication of
precision biomaterials as they overcome the limits of traditional subtractive manufacturing techniques,
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typically based on material removal from a solid block to generate the final construct [6,7,30,31]. Indeed,
AM techniques are free-form processes as they rely on sequential addition of material to form the 3-D
structure. These advanced processing methods allow freedom of design, the production of scaffolds
with complex geometries, and they could provide patient-specific fabrications. These are at the basis of
personalized medicine, where the curing agent is developed to fit the immune compatibility and the
therapeutic need of the patient [7,31,32]. AM techniques could be classified as stimulus-triggered AM
and deposition-based AM, according to the introduction of a trigger or the direct deposition of the
material during the process. In stimulus-triggered AM, the biofunctionality of the final construct could
be influenced by the nature of the stimulus applied; for this reason, cells and bioactive molecules are
usually added post fabrication, making this a typically top-down approach. Despite the high processing
speeds and high spatial resolutions achieved, stimulus-triggered AM does not allow the production
of multi-material scaffolds. On the other hand, deposition-based AM enable the direct fabrication
of cell-laden constructs, and cell survival is ensured by properly controlling process parameters and
material design constraints [7]. These techniques were born as top-down approaches. Even if these
approaches are still utilized, new technologies, grouped as “3-D bioprinting techniques”, were also
developed and represent an exception, as they allow for the direct encapsulation of biological materials
and are thus bottom-up approaches. Deposition-based AM also presents with some disadvantages,
such as a loss in resolution and a relatively slow speed of processing [7,33,34]. A summary of these
techniques is illustrated in Figure 2 and a more comprehensive overview is reported in Table 1.
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into powder based (3-D printing and SLS/SLM) and resin based (SLA and 2PP). The top right exagon
reports the two main categories of deposition-based techniques: extrusion based (FDM) and droplet
based (MJP). The lower central hexagon refers to the different types of 3-D bioprinting: InkJet Bioprinting,
DIW, and LAB. Made in©BioRender—biorender.com.

Table 1. Summary of additive manufacturing techniques for scaffold fabrication.

Fabrication
Approach

Fabrication
Technique

Principle of
Operation Resolution Advantages Limitations

St
im

ul
us

-T
ri

gg
er

ed

3-D Printing
(particle
bonding)

Binder solution
ejection on

powder bed
~300 µm Mix of powder

Controlled architecture

Low spatial resolution
Post-fabrication

treatment
Pore size

SLS/SLM Locally powder bed
sintering/melting ~50 µm

No supporting structure
No organic solvent

Materials availability

High Temperature
Poor surface accuracy
Poor interconnection

control

SLA
Photopolymerization

of UV-curable
resin at surface

1 µm Low cost equipment
High processing speed

Polymerization effects
Post-curing treatment

2PP
Photopolymerization

of UV-curable
resin at laser focus

100 nm
Higher resolution

No controlled
environment

Polymerization effects

D
ep

os
it

io
n-

ba
se

d

FDM
Fused material

extrusion/solidification
upon cooling

~250 µm No toxic solvents
Materials availability

Low spatial resolution
High temperatures
Low dimensional

accuracy

MJP Droplets deposition
of UV-curable resin 50–1 µm High spatial resolution Expensive materials

Rheology control

3D
Bi

op
ri

nt
in

g

InkJet
Bioprinting

Bio-Ink droplets
deposition 300–50 µm Single cell encapsulation

Low spatial resolution
Low viscosity

upper limit

DIW Bio-Ink extrusion ~200 µm

High processing speed
High cellular densities

Larger structures
fabrication

Low spatial resolution
Apoptotic effect (for

mechanical-based
system)

LAB
Laser induced

Bio-Ink droplets
deposition

<20 µm Good spatial resolution
High bioactivity Rheology control

2.1. Stimulus-Triggered Approaches

Stimulus-triggered approaches rely on the introduction, during the fabrication process, of a trigger
to induce the material’s (liquid or powder) solidification and organization in a specific spatial location,
defined voxel, in order to form the desired 3-D structures [7]. These techniques can be classified in 3-D
printing based on particle bonding and laser-based AM based on the used trigger [7].

2.1.1. 3-D Printing Based on Particle Bonding

The 3-D printing technique based on particle bonding relies on the ejection of a binder solution on
the top of a powder bed, in accordance with a software 3-D model [35]. When the binder is printed,
a thin 2-D layer of material is solidified and the powder support moves down as a fresh layer of
powder is deposited. This process is sequentially repeated binding a layer to the next leading to a
“layer by layer” formation of complex 3-D structures that will later be subjected to a post fabrication
treatment in order to remove the embedded unprocessed powder [6–8,36]. This kind of 3-D printing
allows the production of porous scaffolds, characterized by channels and overhanging features, with
control over the pore architecture by operating on the region of bounding. There is also control over
the micro-porosity, which depends on the space between the granules of powder [36]. Moreover, it is
possible to use one-component powder or different powders blended together. On the other hand,
the spatial resolution achieved is ~300 µm and the pore size is limited by the size of the powder used.
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As with other powder-based techniques, 3-D printing based on particle bonding provides a rough
surface to the fabricated scaffold, a feature that may be relevant for cells–material interaction [6].

2.1.2. Laser-Based Techniques

Laser-based AM are direct laser writing (DLW) techniques, which employ focused light as a
stimulus to solidify the material in the specific voxel of the 3-D space [7]. These techniques are based
on the excitation of electrons in the atoms and molecules of the fabrication material, induced by photon
absorption, or on the photopolymerization phenomenon, which occurs when photons are absorbed
by a photo-initiator molecule in the material-forming free radicals [37]. In the first case, energy is
converted into heat and, at low energy, localized heating results in sintering or melting of the material,
maintaining intact bounds between molecules and avoiding material detachment [38,39]. In the second
case, radicalized molecules promote a series of polymerization reactions in the target material [40].
The most important parameter in DLW techniques is the laser wavelength, which, acting on the
laser–material interaction, defines the absorption and the scattering of laser radiation in the material.
Solid-state lasers, meaning that the active laser medium is solid, usually work from ultraviolet (UV) to
infrared (IR) wavelengths and can operate in a continuous wave or in pulsed mode [41]. These two
modes of operation differ for the output energy, which is, in the continuous case, constant over time,
compared to the pulsed one in which higher energies are involved, emitted over short time pulses [41].
Using continuous lasers, parameters to keep in consideration are the power as the total energy per unit
time; the irradiance as the power per unit area; the numerical aperture of the objective used, which
influences the final resolution of fabrication; and the duration of laser exposure defined as the time
during which the laser emits radiation [37]. In the case of pulsed lasers, important parameters are
also the pulse duration, the pulse energy, the repetition rate, the average and peak power, and the
fluence, defined as the amount of energy divided by the sample surface per unit area [37]. The use of a
laser beam provides focused spatial energy, allowing materials at the micro and sub-micro scale to be
processed, creating micro and nano patterns with self-supporting features. For this reason, the main
advantage of DLW techniques is the high spatial resolution achieved in addition to the possibility
of building complex 3-D architectures, which are of great importance in the field of personalized
medicine [41,42]. Moreover, it is possible to use different materials depending on the application and,
in some cases, incorporate biological components within the material, avoiding its deterioration [37].
The most investigated laser-based AM techniques are selective laser sintering/selective laser melting
(SLS/SLM), stereolithography (SLA), and two photon polymerization (2PP).

Selective Laser Sintering and Selective Laser Melting

Selective laser sintering (SLS)/selective laser melting (SLM) are both powder-based DLW techniques
but differ in the process of 2-D pattern formation, which leads to powder sintering or melting [39].
These approaches rely on the use of continuous lasers, such as CO2 lasers involving high power and
long pulse lasers, as they are thermally activated techniques [43,44]. The laser beam is focused on a
thin layer of powder, which is locally heated by the electromagnetic radiation emitted by the laser, at a
temperature at which the granules of the powder sinter or melt together, forming solid 2-D patterns.
Moving the adjustable table on which the powder lies and adding fresh powder over the solid 2-D layer
previously formed allows the fabrication of 3-D structures; this process is repeated until the structures
are complete, leading to a layer-by-layer fabrication. At the end of the process, it is necessary to remove
the un-sintered or un-melted powder from the 3-D construct, manually or with brushing and powder
blasting, thus avoiding the use of organic solvents [37,41]. The main advantage of SLS/SLM processes
is the possibility to construct overhanging regions with no need for support structures thanks to the
unfused powder outside the sintered/melded one that, remaining within the fabricated volume, acts
and supports material. Using a focused laser SLS/SLM AM achieves a spatial resolution of ~50 µm
and the laser’s high energy allows the processing, not only of polymers, but also ceramics and metals,
which need to be in powdered form [45]. However, these techniques are characterized by temperatures
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higher than 37 ◦C, which limit the direct incorporation of biological materials during the SLS/SLM
processing. In addition, the mechanical properties of the final construct, its surface accuracy, and the
control of the porous interconnected architecture may be affected by the material properties and by the
parameters of the process [34]. Based on the same fabrication process of SLM, electron beam melting
(EBM) differs from the previous technique for the use of an electron beam as a power source instead of
a laser beam. In particular, EBM is preferable for the production of metallic constructs [34].

Stereolithography

Stereolithography (SLA) is a resin-based DLW technique based on the phenomenon of single photon
absorption [34]. This technique involves the use of a continuous wave laser at the ultraviolet wavelength
with relatively low energy to promote the polymerization of a photosensitive resin [37,42]. The UV light
interacts with photoinitiator molecules inside the resin and the presence of the chain precursor in the
same resin allows the release of free radicals, initiating the polymerization. Resins containing acrylate,
epoxy, urethane acrylate, or vinyl ether functional groups are typically used [46]. Following the
computer-aided designed geometry, the UV laser moves in 2-D over a reservoir containing the resin.
The polymerization occurs a few µm below the surface, in the regions of the laser–resin interaction.
The fabrication of the final 3-D construct happens layer by layer, relying on the down motion of the
polymerized structure within the resin vat, after the selective polymerization of a given layer, which
will be recoated with unpolymerized resin [7,32]. The displacement is equal to the thickness of the
last polymerized layer, and the depth of penetration of the UV light allows the adhesion between
layers. After fabrication, the final construct has to be placed in a developing solution to remove the
unpolymerized resin, but some monomers of liquid resin can still be trapped within the structure,
inducing toxicity. To overcome this issue, a post curing step is necessary, which consists in exposing
the 3-D construct to high-intensity UV light for up to 2 h in order to polymerize the whole material,
reducing its toxicity and increasing its hardness [37,42]. In the past years, SLA was the most used
laser-based AM technique thanks to the low cost of the equipment and the relatively high processing
speed due to the use of a continuous laser at low energies [34,37]. The spatial resolution achieved by
SLA processes was limited by the diameter of the laser beam (~250 µm), but recent improvements in
most commercial systems enable the production of scaffolds with a resolution greater than 50 µm (up
to 1 µm), and with well-interconnected and regular pores [37,41]. Moreover, SLA techniques avoid
the use of high processing temperatures, allowing the incorporation of biological material within
the structures during the fabrication process. In this case, the effect of laser energy, the toxicity of
the photoinitiators, and the DNA damage induced by UV light have to be evaluated and could be
a concern. To overcome these problems, visible light-based SLA are currently being investigated.
SLA techniques show some limitations regarding the material selection due to the high thermal
coefficient of expansion of SLA-compatible resin and the possibility of distortion and shrinkage of
SLA-processed materials [33,37].

Two Photon Polymerization

Two photon polymerization (2PP) is a resin-based technique of DLW that, in a similar way to SLA,
promotes the curing of a photosensitive resin, inducing chemical reactions between chain precursor
and photoinitiator molecules, thanks to the excitation of the latter [47]. Differently from SLA, which is
based on a single photon absorption, 2PP techniques rely on the near simultaneous absorption of two
photons to excite photoinitiator molecules; this electronic excitation corresponds, in terms of energy,
to the excitation achieved by a single photon, which possesses a much higher energy [48]. 2PP uses
focused near-infrared (NIR) femtosecond laser pulses (with a wavelength of ~800 µm) to induce the
photopolymerization that occurs in regions where the energy exceeds the photoinitiator excitation
threshold. The two photon absorption phenomenon shows a non-linear laser–material interaction due
to a material response proportional to the square of the photon intensity; in this way, the reaction is
greatly enhanced at the focal point, allowing feature sizes below the diffraction limit of the applied light.
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Thanks to that, 2PP can achieve a sub-100-nm spatial resolution, much higher than that of the other DLW
techniques [42,49,50]. In addition to the use of a femtosecond laser, a 2PP system relies on the use of
a high numerical aperture microscope objective in order to focus the laser beam and scale the feature
sizes on Galvano mirrors that guide a translational platform to scan the beam in the X and Y directions,
and on a piezoelectric system in order to shift the plane of resin or the objective holder in the Z direction.
2PP-compatible resin has to be UV curable and the advantage is that many materials, commonly used in
2PP, are transparent to NIR-wavelength light, making materials processed in 2PP widely available and
inexpensive [37]. Moreover, the process can be set up in a conventional environment that does not require
specialized equipment or cleanroom facilities [51]. The main advantage of 2PP technology remains the
higher resolution achieved, down to the subcellular-length scale, with the possibility to fabricate a 3-D
structure with a large range of features sizes, allowing, at the same time, minimization in processing time
and costs. However, the restrictions due to the objective’s working distance could limit the 2PP processes
in terms of scalability compared to single photon absorption techniques (e.g., SLA) [42].

Two more DLW techniques exist in addition to the laser-based approaches previously described,
but they fall outside the aim of this review as they are destructive techniques, and not AM approaches.
Both involve the use of the laser ablation phenomenon and they are the laser machining technique
based on the removal of a small amount of material from the bulk, and the matrix-assisted pulsed-laser
evaporation (MAPLE) technique in which the material is transferred from a coated ribbon to a
substrate [37].

2.2. Deposition-Based Approaches

Deposition-based approaches rely on the local and direct deposition of the material [7]. The solidification
of the final 3-D construct occurs during or immediately after the material’s deposition. These approaches
can be classified in extrusion-based (e.g., fuse deposition modelling) and droplet-based techniques (multijet
printing) on the base of the principle of operation [7,52].

2.2.1. Extrusion-Based Techniques: Fuse Deposition Modelling

Extrusion-based techniques allow the building of a 3-D construct, which relies on the extrusion of
the processing material in a continuous flow. The advantage in using this kind of approach is that the
processes involved are mechanically simple and inexpensive [34]. The most common and accessible
extrusion-based technique is fuse deposition modelling (FDM) due to the low costs of production and
the easy principle of fabrication [53]. FDM could process any material, which can be in a filament form,
and is based on the heating of thermoplastic polymers over their temperature of melting; the extrusion
head moves in the Z direction, extruding the processing material as filament in a layer-by-layer
fabrication thanks to its computer-controlled locations of deposition and its solidification upon
cooling [7]. Despite the wide range of FDM-compatible thermoplastic polymers, the need to apply high
temperatures to melt the polymers’ filaments is an impediment to the direct encapsulation of biological
materials during the process [7,32]. Even so, the change in the material’s properties leads to a need to
recalibrate all the setting parameters. The spatial resolution achieved is ~250 µm, which limits the
dimensional accuracy of the FDM-fabricated parts. However, this reduced resolution is compensated
by the relatively high processing speed and by the lack of a need for toxic solvents as the binding
between each layer occurs through thermal heating [32,41]. To overcome the restrictions in the input
material properties, precision extruding deposition (PED) techniques could be taken into consideration.
Differently from the FDM process, the PED system does not require filament preparation and the
processing material is provided to the system in a powder form, subsequently liquified, and finally
extruded though a nozzle. Moreover, in order to have the possibility to fabricate high-density metallic
and ceramic parts, useful, for example, for the manufacturing of porous scaffolds for bone tissue
regeneration, multiphase jet solidification (MJS) is an alternative to the FDM technique [34].
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2.2.2. Droplet-Based Techniques: Multijet Printing

Droplet-based techniques allow the production of the final structure relying on the deposition
of liquid material in droplet form instead of continuous flow as in extrusion-based ones [35,54].
Material solidification occurs after its deposition and could take place via cooling (crystallization),
chemical changes (cross-linking), or solvent evaporation [35]. The most common droplet-based
approach is multijet printing (MJP), which is based on the use of several heads placed on a jetting head,
which, moving in the X and Y direction, deposits tiny droplets of UV-curable resin, promoting material
layer formation on the build tray. Along the jetting head there are some UV bulbs that, after each
layer is built, harden the deposited material and, shifting down the tray in the Z direction, allow the
deposition of the next layer [55]. Control of the rheology, meaning the control of the viscoelastic flow
behavior of the printing materials, is a crucial aspect of jetting techniques; the behavior of droplets
and the liquid jet is affected by the physical properties of the chosen material, resulting in a restriction
on jet-compatible materials, raising their cost. For these reasons, MJP is more suitable for large-scale
production [34,35]. On the other hand, MJP has the great advantage of achieving a spatial resolution
comparable to that of laser-based systems [34].

2.3. 3-D Bioprinting Techniques

Recently, some deposition-based AM technologies have been developed for the fabrication of
cell-laden biomaterials grounded on the direct encapsulation of biological materials, such as living
cells and active molecules into formed 3-D constructs [7,56]. This kind of application has encouraged
the evolution of the so-called bioprinting techniques.

Three-dimensional bioprinting techniques are based on the direct encapsulation of biological material
during the fabrication process, giving rise to cell-laden biomaterials [33]. The most suitable materials used
in bioprinting approaches are hydrogels, thanks to their ability to mimic the ECM and to provide a proper
environment for cells, facilitating their migration, proliferation, and differentiation [7,56,57]. The use of
hydrogels to carry cells and/or bioactive molecules defines them as “bio-inks” (hydrogels combined with
biological materials) and involves the need to fulfil specific requirements regarding their rheology, in terms
of viscoelastic properties, such as viscosity, and post-curing behavior, according to the proper bioprinting
technique, to fabricate functional 3-D constructs [56,58]. When the final construct has been printed,
processed, and the cells are alive within, it must achieve appropriate mechanical, physical, and biological
properties. The main limitation of hydrogel-based AM technologies is the low mechanical properties,
leading to difficulties in the fabrication of larger stiff structures [7,59,60]. The three most common 3-D
bioprinting techniques are inkjet bioprinting, direct ink writing, and laser-assisted bioprinting, which
differ for the deposition technique.

2.3.1. Inkjet Bioprinting

Inkjet bioprinting is a non-contact technique in which droplets of bio-ink are dispensed through
a small orifice and precisely positioned on a substrate or a collective platform according to digital
instructions [33,53]. Inkjet bioprinters differ for the physical mechanism of dispensing, which can be
thermal, piezoelectric, or pneumatic microvalve based. The thermal mechanism relies on heating of the
printhead generating the pulse that promotes the ejection of small vaporized bubbles. The localized
heating in a thermal printer lasts for a very short time, but it can still cause a stressful condition for the
deposited cells [56,61]. In the piezoelectric printer, a piezoelectric actuator generates an acoustic wave,
which mechanically breaks the bio-ink into small droplets, forcing their ejection from the nozzle due
to a transient pressure [56]. The pneumatic microvalve-based printer regulates the bio-ink ejection
through a constant pneumatic pressure [21]. Inkjet bioprinting techniques are able to achieve a spatial
resolution between 300 and 50 µm, and moreover, the quality of the printing may be affected by cellular
aggregation within the hydrogel, which can induce changes in droplet formation and trajectory [62].
Moreover, one of the main restrictions of these techniques is the low upper limit of viscosity for the
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ink involved, hindering the processing of high viscous material and the building up of 3-D constructs
and overhanging structures [56,63,64]. For this reason, inkjet bioprinting is mainly used for small
scaffold production, with the capability to print a single cell per droplet [21,33]. The use of printheads
with multiple nozzles has been investigated in order to increase the processing speed and allow the
production of larger-scale constructs [65]. However, the small droplet size and the limitations in the
viscoelastic properties of the materials involved, such as the low mechanical properties of the bio-ink,
make the application of this technology challenging for larger-sized productions. On the other hand,
inkjet bioprinting’s flexibility to print multiple bio-inks makes possible the production of complex
multiphase tissues [21,33].

2.3.2. Direct Ink Writing

Direct ink writing (DIW) is an extrusion approach, which implicates filament printing instead of
droplets. It is based on the bio-ink extrusion through a printhead driven by piston, screw, or pneumatic
pressure mechanisms in order to build up 3-D structures [8,33,66]. Piston-driven and screw-driven
extrusion mechanisms are mechanical-based systems, which can induce cell apoptotic effects due to the
pressure drops generated at the nozzle [67]. Pneumatic-based extrusion mechanisms are more suitable
for work with highly viscous inks, as they are the only ones able to maintain a filamentous structure after
deposition. Even so, mechanical-based systems promote more direct control over the ink flow and more
spatial control on the ink ejection [67]. The high speed of fabrication and the ability to print at very high
cellular densities within the inks are the main advantages of DIW techniques. DIW also allows control
over the deposition and distribution of cells within the inks, and an excellent structural integrity due to
a continuous deposition of the bio-ink [8,68]. For all these reasons, the application of DIW technology
for scaffold fabrication is of great relevance, despite a spatial resolution of ~200 µm, which is lower
compered to inkjet and laser-assisted bioprinting [21,33]. One of the most common extrusion techniques
able to produce polymeric non-woven fibers is electrospinning, which, allowing the possibility to
incorporate biological compounds within processing materials, is able to fabricate cell-laden structures,
with hydrogel based becoming a DIW technique [7]. Direct writing electrospinning (DWE) relies on the
application of a high electric field to create an electrically charged jet of polymer, which is ejected from
the nozzle of the Taylor cone and travels toward the collecting plate [67]. DWE enables the fabrication
of 3-D structures, single-fiber or multi-fiber, with a well-controlled geometry [69]. Despite this, there is
a need to carefully consider the rheology of the extruded material and the desired features of the final
scaffold, as the main limitation of this technique is the difficulty to set the process parameters [7,67].

2.3.3. Laser-Assisted Bioprinting

Laser-assisted bioprinting (LAB) is a droplet-based and scaffold-free technique based on the
use of a laser as the energy source to deposit biomaterials on a substrate [33,70]. LAB consists in
a pulsating laser, a donor slide coated with the target biomaterial to support it, and a natural or
synthetic receiver slide to collect and support the printed material. The donor slide is also coated
with a thin gold/titanium layer, which, via laser induction, promotes a vaporization effect on the
biological materials, propelling it onto the receiver slide in droplet form. To maintain cellular viability,
the receiver slide is covered by a biopolymer or cell culture medium [71,72]. The precursor biomaterial
used is hydrogel and the nozzle-free approach enables the use, not only of mid-range-viscosity bio-ink,
but also of high-viscosity ones [66]. Moreover, the main advantage of LAB approaches is the possibility
to achieve high resolutions greater than 20 µm, maintaining a high activity for encapsulated cells,
and the ability to control the features of the ink droplets and their delivery properties [33,71]. Even so,
the resolution and the final mechanical integrity of the construct may be affected by the hydrogels’
viscoelastic properties and the layer thickness of the precursor biomaterial, by the energy of the laser
pulse, and by the organization of the desirable structure [33,71,73].



Cells 2020, 9, 1636 12 of 35

Future developments in 3-D bioprinting techniques require the combination of different approaches
in order to provide the accuracy in cell placement and resolution of inkjet bioprinting and LAB, and the
processing speed and greater mechanical integrity of DIW.

3. Geometries

3.1. Specific Geometry in Scaffold Design

Depending on the different manufacturing techniques, scaffolds can present different degrees of
stiffness and different geometries [74]. In particular, scaffolds must be designed to reproduce the stiffness
of the native tissue to regenerate and transplant, and they must present a resolution suitable at the cellular
scale [75]. The nano or micro-topography and the specific geometry of different biomaterials induce, at the
single cell level, different cytoskeletal tensional states, given by the intracellular actomyosin contractility
and by the reaction forces exerted by the surrounding substrate [76]. Indeed, different external stimuli and
different geometries can influence specific cellular responses. It is thus necessary to fabricate a scaffold,
which mimics the tissue’s physiological environment. The traction forces exerted by the cell depend on
the specific scaffolding substrate and produce a different response inside the cell nucleus, resulting in an
altered gene expression [77]. Indeed, the study of mechanotransduction allows the understanding of how
cells respond to external stimuli [78,79].

Several studies have been conducted to investigate the influence of scaffold design parameters on
the cell’s mechanical and biological responses [74,80–85]. Depending on the specific tissue regeneration,
the biomaterial features and geometries of the scaffold were optimized, suggesting sophisticated
micro-architectures for unit cell scaffolds [86]. Not only the Young’s modulus of the biomaterials, which
represents the index of their stiffness, must be considered to design the scaffold but also the porosity,
and the pore size and shape are fundamental parameters to optimize the scaffold performance [87,88].

3.2. Techniques Employed for the Fabrication of Rigid Scaffolds

SLM, SLA, 3-D bioprinting, and fuse deposition modelling, described in the previous paragraphs,
are the most common techniques used for the fabrication of rigid scaffolds [89,90]. In particular,
scaffolds with a high Young’s modulus are used for bone regeneration, in order to simulate the rigidity
of the bone in vivo [91]. Indeed, these techniques have a specific and controlled geometry that allows
for a higher resolution. In the field of bone regeneration, many researchers focused their attention on
the geometries of the scaffolds’ pores. Specifically, important matrix parameters are the pores’ size
and shape, and their interconnectivity [92,93]. With the support of algorithms and computer-based
models, it was possible to identify the optimal range of pore dimension between 500 and 1000 µm and
specific tetrahedral and octahedral geometries fabricated with the SLM technique [94]. In addition,
Stoppato et al. demonstrated that, even if a specific geometry is required, a random distribution of
the pores seemed to be more suitable for a bone tissue regeneration application, with osteoblasts
producing a collagen architecture similar to the natural matrix [95]. Moreover, the pores’ distribution
and interconnectivity strongly influence the cells’ ability to proliferate and differentiate [96].

3.3. Techniques Employed for the Fabrication of Soft Scaffolds

As previously described, most of the scaffolds with a higher stiffness are compatible with
bone regeneration but of great interest are also the scaffolds for the regeneration of soft tissues.
The two most common applications of soft scaffolds are muscle and nerve regeneration, where the
architecture and the spatial organization of the entire scaffold are necessary. Different fabrication
techniques, such as bioprinting and in particular inkjet printing, are suitable for soft materials and
specifically for the regeneration of soft tissue [97,98]. In particular, in muscle tissue where there is
a strong structure–function relationship, the ability to control the geometry for tissue implantation
is essential [99]. The necessary parameters to consider are represented by surface roughness, pores,
grooves, walls, and pillars, which can be used to guide cell behavior in terms of adhesion, alignment,
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and motility [100]. Indeed, the contact guidance for cell directionality and the advanced manufacturing
microfabrication permit polymeric micro-structured substrates to be obtained that influence myoblast
and myotube formations [100]. Furthermore, tridimensional scaffolds with a micropatterned array can
mimic the aligned architecture of the natural skeletal muscle tissue, enhancing tissue regeneration [101].

In addition to polymer scaffolds, naturally derived hydrogels have several properties that
guarantee the functionality of the muscle tissues. For smooth muscle cell differentiation, it is also
possible to consider micropatterned biomaterial-based hydrogel platforms, where mesenchymal stem
cells can be induced to differentiate, following precise patterns [102]. Moreover, other studies involved
different approaches that utilize photolithographic patterning of hydrogels, enabling a relatively fast
layer-by-layer assembly of cells with a controllable geometry and size [103,104].

The same fabrication techniques used for soft scaffolds and hydrogels can be relevant for the
fabrication of structures aimed at enhancing the features of the neural tissue. In this case, the structure
of neural scaffolds is extremely important for the efficacy and has significantly advanced in recent
years [105]. To this end, innovative scaffolds, such as multichannel scaffolds and grooved substrates,
have been developed in order to enhance the directionality of growing neuronal processes [106,107].
In this case, the dimension of the guidelines is precise and governs the elongation of the cells with an
anisotropic tension state [108].

3.4. Structure to Function: Importance of Geometry in Enhancing Cellular Features

The concept that rigid scaffolds are necessary for rigid tissue regeneration and soft scaffolds for soft
tissues can be partially overcame when trying to enhance specific cellular features. This is extremely
relevant for stem cells’ proliferation and stemness maintenance where the precise and controlled
geometry of the scaffold is necessary [109]. The difference in this case is the clinical translation, more
focused on the amelioration of stem cells features as therapeutic agents rather than whole tissue
re-implantation. To this end, an innovative study inspired by the natural stem cell niche has led to the
development of a new stem cell culture system named “Nichoid”. This engineered scaffold is fabricated
by 2PP and it is composed of a three-dimensional succession of grids and columns able to create perfectly
defined pores at the micrometric scale, ensuring the optical accessibility. Cells expanded inside the
Nichoid are subjected to isotropic mechanical stimuli driven by the cytoskeleton [110–113]. Typically,
if the traction forces have a similar magnitude at varying orientations (i.e., isotropic cytoskeletal
tension), the cellular nucleus tends to maintain a roundish morphology [114]. For this reason, when
cells are grown inside the Nichoid they tend to maintain a round nucleus, similarly to the stem cells’
physiological morphology [77].

Conversely, in some cases, anisotropic stimuli are required for a specific commitment differentiation.
Indeed, the benefit of scaffold anisotropy was evident with human-induced pluripotent stem
cell-derived cardiomyocytes, where parallel-aligned polymer scaffolds can provide contact guidance
to cells to reorganize cellular orientation and differentiation [115]. Moreover, Zhang and colleagues
applied biomechanical and biochemical stimuli to mesenchymal stem cells seeded into a biomimetic
scaffold to induce the differentiation of fibrochondrocytes, resulting in physiological anisotropy in the
engineered meniscus [116].

3.5. Development of Optimal Scaffolds for the Neural Tissue: A Role for Geometry and Stiffness

The brain is one of the most complex organs to cure and mimic, and in this sense advances in
scaffolds development could be of great relevance in order to enhance specific neural features. Indeed,
nano-structured scaffolds are a promising strategy to promote axon regeneration, needed for the
therapy of neurodegenerative diseases [117]. Moreover, the scaffold’s fibers ensure the directionality
of neurite outgrowth and the alignment of neural cells, as observed by cellular elongation and
neurite differentiation when these are used [118]. Indeed, Friecke, in 2011, developed different
nanostructured patterns by microcontact printing using laminin/poly-l-lysine (PLL). These 3-D
structures were investigated for their impact on neurite growth and axon guidance in embryonic
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rat cortical neurons [119]. Using the same technique and the same materials, another interesting
study developed by Jang et al. analyzed 10 different types of micro polygons, ultimately observing
that the geometry of the scaffold strongly influences the development of a cultured neuron [120].
In 2017, Kim et al. investigated a different technique, termed electrospinning, in order to develop
a 3-D connected artificial neuronal network within a nanofiber-microbead-based porous scaffold.
This inspiring scaffold allowed substantial neurite outgrowth in a vertical direction [121].

Another feature that needs to be enhanced for neural tissue mimicking and therapy is neural
differentiation. Not only the geometry of the scaffold but also its stiffness modulation could influence
this process. Indeed, physiologically, neuronal growth and neural network activity are strongly
influenced by the mechanical properties of the surrounding ECM [122]. Controlling the scaffold’s
features in order to resemble the ECM is crucial for enhanced neural differentiation. One research
work reports that, specifically, neuronal differentiation was favored in the softest surfaces with a
Young Modulus of 1 kPa, whilst oligodendrocyte differentiation was enhanced in stiffer scaffolds
(>7 kPa), and lastly astrocyte differentiation was only observed on <1 and 3.5 kPa surfaces [123].
Indeed, Her et al. showed that mesenchymal stem cells can differentiate into the neuronal lineage in a
substrate that present a Young modulus of 1 kPa, while they transformed into glial cells when this
parameter is 10 kPa [124]. Moreover, a recent work has shown that the physicochemical properties of
the alginate/collagen blend could resemble the ECM microenvironment, influencing neuronal-specific
gene expression [125]. In particular, it was shown that oligodendrocyte differentiation and maturation
in vitro is enhanced by substrates within the reported range of stiffness of the brain [126]. Finally,
Saha et al. developed a synthetic interpenetrating polymer network, which creates a highly mechanically
and chemically stimulating environment for multipotent neural stem cells to control their proliferation
and differentiation [127].

4. Scaffolds for Neural Diseases’ Modeling

The brain is difficult to access, susceptible to damage, and complex, making it one of the hardest
organs to be studied. This poor understanding of the brain leads to a lack of effective treatments
for several neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD),
and amyotrophic lateral sclerosis (ALS), but also for acute or traumatic Central Nervous System injuries,
such as acute ischemic stroke (AIS) and spinal cord injury (SCI). New methods for a realistic culture of
neural cells are needed, and in particular in vitro 3-D cultures represent a promising tool to reconstruct
the complex structure and function of the human brain [128]. Traditional monolayer cell cultures cannot
mimic tissue architecture, mechanical and biochemical cues, and cell–cell communication. On the
contrary, 3-D cell culture systems aim to mimic the living tissue, providing a more physiologically
relevant environment [129]. Many natural or synthetic materials can be used to engineer the neural
tissue in a 3-D in vitro model, but also functionalization with specific peptides can improve the adhesion,
proliferation, and differentiation of neural cells [130,131]. Specifically, two innovative approaches that
can be used for neural diseases’ modeling are decellularized scaffolds and hydrogel-based biomaterials.

4.1. Decellularized Scaffolds

An interesting approach to create highly biocompatible bio-inks is decellularization, which
consists in removing the cellular content from animal and human-derived tissues. This method
allows the production of tissue-specific ECM scaffolds that can more accurately recapitulate the native
matrix [132]. These bio-inks have an enormous potential for in vitro modeling of neurodegenerative
diseases phenotypes and for evaluating the tissues’ responses to new potential drugs [132]. A potential
issue is represented by the complexity of the brain tissue, such as the diverse conditions in terms of
the growth factor content. To overcome this, Reginensi and colleagues evaluated for the first time
decellularized bio-inks from different sections of the brain (i.e., cortex, cerebellum, and remaining
areas) using both mechanical and chemical decellularization protocols [133]. Intriguingly, they found
that the chemical method (mixture of different enzymes) promotes greater differentiation, probably
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because it allowed the conservation of the biochemical components of the cerebral ECM. Moreover,
the authors show differences in neuronal maturation depending on the region of the brain used to
produce the scaffolds [133]. One of the main advantages of decellularized scaffolds is the possibility to
chemically modify them to obtain better features. To this end, Beachley and colleagues developed a
decellularized brain tissue scaffold crosslinked with glycosaminoglycans, to facilitate ECM hydrogel
formation without a disruptive enzymatic digestion process [134]. Moreover, they proved that using
the ECM from different tissues at various concentrations allowed the gelation kinetics and mechanical
properties to be easily tuned to offer the possibility of numerous in vivo and in vitro applications with
different property requirements [134]. Decellularized scaffolds can also help the differentiation of glial
cells. Cho and colleagues utilized decellularized human brain tissue and found an enhancement of the
differentiation of induced Pluripotent Stem Cells (iPSCs) myelin-expressing oligodendrocytes, which
improved the electrophysiological properties of induced neural cells [135]. Decellularized scaffolds
could also offer new opportunities for therapeutic applications in regenerative medicine. For example,
Lin and colleagues used brain-derived decellularized scaffold added with basic fibroblast growth
factor (bFGF), which is studied as a potential agent for PD. They found that the presence of bFGF not
only enhanced the viability of PD model cells but also improved the behavioral recovery and positive
expressions of neurotrophic proteins in PD rats [136]. The therapeutic potential of decellularized
bio-inks was also evaluated by Tukmachev and colleagues, who assessed the effects of both porcine
spinal cord and porcine urinary bladder decellularized injectable hydrogels in an in vivo model of acute
SCI. They found that both types of hydrogels integrated into the lesion, stimulating neovascularization
and axonal ingrowth into the lesion. On the other hand, they found a rapid degradation of the
hydrogel [137]. In conclusion, decellularized scaffolds represent an interesting innovative technique
for the generation of a new neurodegenerative model and for the development of new therapeutic
approaches, but further studies must be conducted in order to resolve the actual issues.

4.2. Hydrogel-Based Biomaterials

One of the most relevant groups of biomaterials that can be chosen are hydrogels because of
their high biocompatibility, their chemical features, and their similarity to the ECM [138]. One of the
first attempts to generate a layered brain-like structure is represented by the work of Lozano and
colleagues [139]. The group combined mouse primary cortical neurons with a bio-ink composed of
gellan gum functionalized with the arginine-glycine-aspartic acid (RDG) peptide. They demonstrated
that the bio-ink strongly supported the neural proliferation and cell–cell communication [139].
The ability to form discrete multiple layers opened the opportunity to reproduce accurate 3-D human
brain models [139]. Indeed, another important parameter to evaluate the best approach in modeling
neurodegenerative diseases is the specific cell type. For preliminary studies, such as the biocompatibility
of the hydrogel, immortalized cell lines are used, such as rat pheochromocytoma cell lines (PC12) [140]
and the human neuroblastoma cell line (SH-SY5Y) [141]. Such models can help investigate the
effects on the maturation/differentiation of composite hydrogels or other biomaterials. For example,
some studies were conducted on conductive hydrogels [142–144], nanofibrous scaffolds [145–147],
and self-assembling peptide scaffolds [148,149]. Although such cell lines are important for preliminary
investigations, to obtain a realistic in vitro model, it is essential to use stem cell-derived mature neurons.
In the last years, the possibility to reprogram somatic cells into iPSCs allowed patient-derived neural
cells to be obtained, opening new possibilities in the field of tissue engineering. The use of iPSCs with
hydrogels can offer some advantages. For example, Zhang and colleagues found that a hyaluronic
acid-based hydrogel accelerates the maturation of iPSCs into neural progenitor cells, because of the
similarity with the brain tissue [150]. Although iPSCs were 3-D bioprinted and then differentiated
into the hydrogel, some evidence suggests that is better to directly bioprint iPSC-derived neural
stem cells (NSCs) [151]. This specific fabrication technique was used, and many phenotypic aspects
were investigated, such as the analysis of neurite extension and neural maturation on polyethylene
glycol [152] or 3-D gelatin methacrylate [153] hydrogels. Moreover, iPSC-derived mature neurons
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were bioprinted and cultivated on hydrogel scaffolds, and many read-outs were evaluated, such as the
expression of integrins, the formation of a complex network, and the expression of synaptophysin along
the neurites [125]. iPSCs can also be differentiated into glial cells, which proved to play a pivotal role in
the pathogenesis of neurological disorders. For example, in 2020, Nazari and colleagues differentiated
iPSCs into oligodendrocytes in a fibrin-based hydrogel, demonstrating a better proliferation in the 3-D
culture system with respect to monolayer culture [154]. In particular, the results reported demonstrated
that fibrin hydrogels provide a metabolically active microenvironment for cells, mimicking specific
features of native tissue.

All these studies provide a strong evidence that hydrogel-based scaffolds can mimic in a very
realistic way the neural ECM, opening new perspectives for the study of neurological disorders and
for the development of new therapeutic approaches.

5. The Role of Scaffolds in Developing Regenerative Therapies for Neurodegenerative Diseases

Amongst all the organs, the human brain possibly represents the biggest challenge in terms of
the modelling and development of therapeutic strategies. Its structural complexity and the inability
to retrieve samples without highly invasive, and often unfeasible, approaches represent the major
limitation in the study of physiological and pathological brain activity. The brain’s inability to
regenerate also implies that damages are often irreversible, and, so far, no cure for neurodegeneration
has been found. For this reason, there is an unmet need for new strategies aiming at modeling and
curing neurodegenerative diseases. The use of scaffolds becomes of great relevance in this field,
as they can be used to mimic the brain’s morphology and function, to improve cellular growth for
transplantation means, to improve drug delivery, and even to be directly transplanted at the lesion site.

As mentioned above, the main unmet clinical need in neurodegenerative diseases is the lack
of successful replacement therapy for damaged brain tissue. Although it is worth looking at recent
advances made in specific diseases, some common patterns can be highlighted. Indeed, in all cases, it is
possible to discriminate between the transplantation of empty scaffolds, of scaffolds carrying specific
therapeutic agents, of cell-loaded scaffolds, or scaffolds combining cells and molecules. The use of
scaffolds allowed significant advances in disease modeling, as explained in the previous paragraph,
and when focusing on diseases therapy, most research is currently focused on pre-clinical studies.
Indeed, although there is a great potentiality for scaffolds’ use, it is of course firstly necessary to
evaluate the safety and efficacy of each scaffold in pre-clinical models [155–166]. Indeed, a lack of
toxicity and an improvement in diseases’ hallmarks are necessary aims that need to be fulfilled before
moving on to clinical practice. Indeed, the implant of scaffolds in humans is currently limited, with
one of the few examples being represented by in the Neuro-Spinal Scaffold (InVivo Therapeutics Corp.)
for the treatment of SCI [167,168]. All these aspects are reported in Figure 3.

Similarly to disease modeling, the most promising and commonly used material in the treatment
of these diseases is hydrogel for its increased bioavailability and characteristics, which mimic those of
the ECM well. The most commonly used approach is the delivery in situ of pharmaceutical agents
already known for their therapeutic potential in the specific disease. The use of scaffolds in this
case improves the therapeutic efficacy as the contained agents are “protected” by the hydrogel and
thus present a decreased degradation rate [156,169]. In a similar manner, cell-loaded scaffolds can
bridge stem cell therapy with tissue engineering, improving the delivery of stem cells to the lesioned
site [159–162]. Even if most of the first developed agents contained one therapeutic agent, combinatory
approaches now aim to deliver both drugs and cells, or even different drugs contained in the same
scaffold but released at different times after scaffold delivery [170]. This is a great advancement as
often just one therapeutic agent is not enough to re-create the physiological situation that was present
before the lesion began. In some cases, it is also possible to have a controlled release of the therapeutic
agent, allowing its constant and prolonged delivery. Even so, more recent works are investigating
the potentiality of different materials and structures, such as it is the case for electrospun polymers in
PD [171,172].
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of the ECM well. The most commonly used approach is the delivery in situ of pharmaceutical agents 
already known for their therapeutic potential in the specific disease. The use of scaffolds in this case 
improves the therapeutic efficacy as the contained agents are “protected” by the hydrogel and thus 
present a decreased degradation rate [156,169]. In a similar manner, cell-loaded scaffolds can bridge 
stem cell therapy with tissue engineering, improving the delivery of stem cells to the lesioned site 
[159–162]. Even if most of the first developed agents contained one therapeutic agent, combinatory 
approaches now aim to deliver both drugs and cells, or even different drugs contained in the same 
scaffold but released at different times after scaffold delivery [170]. This is a great advancement as 
often just one therapeutic agent is not enough to re-create the physiological situation that was present 
before the lesion began. In some cases, it is also possible to have a controlled release of the therapeutic 
agent, allowing its constant and prolonged delivery. Even so, more recent works are investigating 

Figure 3. Use of additive manufacturing techniques in neurodegenerative diseases. Scaffolds can
be either printed or bio printed, and embedded with molecules, cells, or even a combination of the
two to increase their therapeutic efficiency. Recent advances in production technologies have shown
a relevance for these techniques in disease modeling and preclinical models of neurodegenerative
diseases. Current efforts are focusing on the development of safe and efficient strategies for human
clinical translation. Made in©BioRender—biorender.com.

5.1. Alzheimer’s Disease

Alzheimer’s disease (AD) is the main cause of dementia worldwide, characterized by a decline in
cognitive functions and subsequent memory loss [173,174]. The two cellular hallmarks of the disease are
the presence of extracellular amyloid plaques and intracellular neurofibrillary tangles (characterized by tau
hyperphosphorylation) [175]. Even so, very little is known about the causes that lead to AD onset, and to
this day, there is no curative therapy for the disease [174,175]. There is thus a need to evolve from current
pharmacological strategies, which, for now, are only a symptomatic remedy [174,176]. A therapeutic
advancement that is gaining more and more relevance this day is the use of scaffolds, advantageous for both
drug delivery and for promoting stem cell delivery and survival in the hostile AD microenvironment [176].
In this context, hydrogels are of key importance for the delivery of therapeutic agents, in order to increase
their bioavailability [156]. Examples include biodegradable microspheres loaded with huperzine A
(a natural acetylcholinesterase inhibitor) [177], microemulsion loaded with tacrine [178,179], microspheres
optimized to deliver Nerve Growth Factor (NGF) [180], poly(lactic-co-glycolic acid) (PLGA) nanoparticles
loaded with estradiol or tempol [181,182], and hiolated chitosan hydrogels loaded with donepezil [183].
Innovative developments combine more therapeutic aspects, such as a novel peptide-based hydrogel,
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which contains a peptide that stabilizes the microtubules, associated to a neuroprotective action, and able
to promote neurite outgrowth of neuron cells [184]. This hydrogel is also able to encapsulate curcumin
and release it slowly, and although this hydrogel has not been tested yet in vivo, it could represent a
promising therapeutic strategy [184]. Recently, a combinatory approach has also been tested, combining
liposomes with hydrogels and delivering an active pharmaceutical ingredient, in order to improve
bioavailability [185].

Furthermore, scaffolds can be combined with stem cell therapies to improve functional outcomes
in AD [176]. An example of this is the scaffold made of RADARADARADARADA (RADA16) peptide
combined with part of the laminin sequence, which when transplanted with NSCs in a rat model of AD
protected cells against apoptosis and promoted neuronal differentiation, resulting in an improvement
of behavioral outcomes [155].

5.2. Parkinson’s Disease

Parkinson’s disease (PD) is the second most common neurodegenerative disorder, characterized by
the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) [186] and the presence
of alpha synuclein, which aggregates in toxic components termed Lewy bodies [187]. The first line
of therapy for the treatment of PD is dopaminergic agonists (such as L-3,4-dihydroxyphenylalanine,
L-DOPA, combined with other tested drugs), which only provide a symptomatic remedy and allow
treatment for at least 5 years [188]. Other pharmacological agents and even stem cell therapy are
being considered for the treatment of PD, but a disease-modifying therapeutic agent has not yet been
developed [189]. A number of works have investigated the potentiality of hydrogels in the delivery of
therapeutic agents (both pharmacological and biologicals) in in vivo models of PD [156–158]. Indeed,
the delivery of pharmacological agents, which have been proved effective in the attenuation of PD’s
symptoms, can be potentiated with hydrogels [156,169]. These scaffolds “protect” the delivered
neurotrophic agents (e.g., Glial cell-derived neurotrophic factor GDNF, NGF) and promote a controlled
and localized release, as it is possible to determine their decay. Examples include the development of
systems aimed at improving the delivery of the therapeutic agent: A hydrogel-based system aimed
at improving transdermal dopamine delivery [157] and a biodegradable polymer matrix releasing
dopamine in the striatum of a hemi-parkinsonian animal model [190]. Systems have been developed for
the administration of neurotrophic factors, already partially studied as treatment of the diseases, such
as GDNF-loaded microspheres stereotaxically implanted in brain of PD-affected animals [158,191,192].
Hydrogels have also been used for the delivery of less canonical therapeutic agents, such as Tat-fused
protein Heat Shock Protein 70 (Hsp70) [193], activin-B [194], or even the secretome of mesenchymal
stem cells [195]. In comparison to canonical drug delivery, cell therapy is also a promising approach for
PD therapy [196,197]. Indeed, another bioengineering application is the use of an innovative strategy
to improve the efficiency of hydrogel in cellular transplantation and delivery through the addition of
neurotrophic factors (such as BDNF), adhesion molecules, or a combined system of hydrogels and
nanoparticles [198–204]. Hydrogels can also be used to ameliorate the differentiation of iPSCs to a
dopaminergic phenotype, which could prove useful in drug screening and disease modelling [205].

Aside from hydrogels, very few studies investigated the potentiality of scaffolds in the therapy of
neurodegenerative diseases. Carlson and colleagues developed three-dimensional microtopographic
scaffolds using tunable electrospun microfibrous polymeric substrates that appear to promote
in situ stem cell neuronal reprogramming, neural network establishment, and support neuronal
engraftment into the brain. The authors aimed to develop a mini-neurocircuitry composed of excitatory
dopaminergic neurons, which could have a profound impact in the amelioration of PD symptoms [171].
Another novel 3-D nanofiber scaffold has been developed using electrospun PAN, a pure carbon-based
polymer, and Jeffamine® polymer-infused PAN. Both scaffolds are capable of promoting survival
and proliferation of SH-SY5Y and U-87MG cells, and when these were incubated with PD-mimicking
agents, cell survival inside the scaffold was increased with respect to 2-D culture conditions [172].



Cells 2020, 9, 1636 19 of 35

5.3. Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is the most prevalent motor neuron disease, characterized by
the progressive loss of upper and lower motor neurons [206]. Life expectancy is 2-5 years after the first
diagnosis, with death being caused in the majority of cases by muscle atrophy and paralysis, which
becomes life threatening when respiratory muscles are involved [207]. Other than the canonical neuronal
dysfunctions observed in neurodegenerative diseases (e.g., oxidative stress, protein aggregation, loss
of synaptic activity), a strong contributor for the development of ALS pathogenesis is represented by
astrocytes, which in the disease lack the ability to support neurons [208–210]. For this reason, and for
the complex multi-cellular system present in ALS, 2-D cultures are not sufficient to recapitulate the
disease course. Even so, a very limited number of 3-D scaffold-based therapies have been developed,
and future studies should focus on their development in order to gain more in-depth insight in disease
pathogenesis [210,211].

Gingras and colleagues developed a 3-D tissue engineered model to study motor neuronal axonal
migration and myelination. In this model, mouse spinal cord motor neurons were seeded on a collagen
sponge populated with Schwann cells and fibroblasts. The model permitted study of the fundamental
characteristics of motor neurons, such as neurite outgrowth and spontaneous myelination. Even if
performed in healthy cells, the model could prove to be relatable and applicable for the study of
the pathogenesis of motor neuron diseases [212]. The possibility of combining healthy and diseased
cells (such as the ones that can be obtained from ALS patients) allows the identification of the effects
of neuronal or astrocyte toxicity in ALS and to create more representative disease models [211].
Another aspect of ALS pathology that needs to be investigated is the muscles’ role in the disease.
A very interesting 3-D model was represented by primary muscle cultures obtained from human
control subjects and ALS patients, embedded in a collagen gel. The model also allowed the study of gel
contraction and the aim was to study in vitro the effect of muscle stretching on mRNA expression in
diseased muscles cells [213,214]. The gold standard model that recapitulates all of the disease aspects
observed in ALS would have to be a whole spinal cord organoid obtained from ALS patient-derived
iPSCs [215]. Although this has not yet been developed, recent advances allowed the development of
3-D-engineered spinal cord models [216,217]. In particular, Bowser and Moore developed a combined
microphysiological system, where spinal cord spheroids are fabricated using magnetic nanoparticles
and then positioned in a 3-D hydrogel construct using magnetic bioprinting [217]. So far, no studies
are present that have investigated scaffolds for the treatment of ALS. Even so, devices, such as the
“syringe-injectable nano-scale electronic scaffolds”, which can be used to monitor neural activity,
stimulate tissues, and promote neuronal regeneration, could be of great relevance in the treatment
of the disease [218]. Lastly, one work developed a technique for intrathecal transplantation of glial
progenitor cell-loaded hydrogels through Magnetic Resonance Imaging (MRI)-guided delivery in a
naturally occurring ALS-like disease in dogs. The procedure was found to be safe and the embedded
cells were successfully placed [219].

5.4. Acute Ischemic Stroke

Acute ischemic stroke (AIS) is caused by a transient or permanent reduction in cerebral blood
flow, generally caused by the occlusion of a cerebral artery, an embolus, or local thrombosis [220].
The consequences of AIS are hypoxia, an increase in radical oxygen species, and an excessive
inflammatory response, which can lead to long-term consequences [220,221]. AIS leads to a loss of
brain tissue, which is not regenerated, even if neurogenesis partially occurs, and this is due to the
lack of structural support and the fact that the tissue undergoing injury creates a boundary to avoid
damage expansion into the healthy tissue [222]. It is for this reason that bio-scaffolds could prove
useful for the therapy of this disease, providing structural support [222,223]. The first evidence that
supported the potentiality of scaffold use in AIS was determined after the transplantation of NSCs on
polymeric scaffolds, with promising results [159–162]. Hydrogels improved the interaction between
NSCs and the host tissue, through neuronal differentiation, re-formation of cortical tissue, increased
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connectivity, reduced inflammation, and reduced scarring [159]. Similar results were obtained when
NSCs were transplanted with polymerized allylamine (ppAAm)-treated PLGA scaffolds [224] and
xenogenic extracellular matrix bio-scaffolds [225]. Other types of cells, such as iPSCs [152,226] and
bone marrow mesenchymal stem cells, can be transplanted together with other kinds of scaffolds (e.g.,
gel-like scaffold from plasma) [227]. Limitations with these approaches included the non-homogeneity
of the scaffold and the need for vascularization [222,224,225]. Another scaffolding approach used
for the treatment of AIS is 3-D bioprinting [228]. In the case of AIS, biomaterials can favor cellular
integration and reduce the immune response [228–230].

Additionally, in this case, hydrogels can be used for the delivery of pharmacological agents, which
proved beneficial for stroke, such as erythropoietin (EPO), a cytokine found to promote neurogenesis
after AIS [223,231,232]; or vascular endothelial growth factor (VEGF), capable of inducing structural
protection after AIS [233,234]; and brain-derived neurotrophic factor (BDNF) [235]. Hydrogels have also
been developed for sustained delivery of cyclosporine A, stimulating neurogenesis in the damaged tissue
of rodent brains [236,237]. Combinatory approaches can also be used, such as the co-administration
of EPO and epidermal growth factor (EGF) [238,239] or of VEGF and angiopoietin-1 [240]. In the
case of AIS, hydrogels have also been combined with proteins, proving efficient in the treatment of
the disease [223]. Specifically, they have been linked to genipin [241] and fibrin [242–245]. There is a
need to develop a strategy to correctly implant hydrogels, and also in this case, as reported for ALS,
an MRI-guided approach could be adopted [225,246]. It is very interesting to report that in the case of
AIS, bio-scaffolds could also serve as a preventive tool, especially in cases where atherosclerotic plaques
are already present and represent a strong risk factor for AIS insurgence [228]. Although no trials
have yet been done, the combination of computational fluid dynamics based on patients’ imaging and
scaffolds with a patient-specific 3-D geometry could allow first the testing and then the implantation of
devices able to correct the arterial flow [228].

5.5. Spinal Cord Injury

SCI is a devastating disease caused by high-energy trauma, which leads to severe neurological
dysfunctions [247,248]. Patients suffer from partial or complete limb paralysis, associated with sensory
dysfunction, urinary incontinence, or gastrointestinal dysfunctions [247,248]. To this day, there is
no curative therapy, and treatments are aimed at reducing secondary degeneration with high-dose
corticosteroids, surgical stabilization, and decompression [249,250]. It is especially during surgical
stabilization that scaffolds could prove to be efficient, maybe improving current lines of therapy.
The concept of a solid matrix providing support in SCI has already been tested [251,252] and it
is worth focusing on both the potentiality of scaffolds alone and that of scaffolds combined with
therapeutic agents (stem cells, drugs, growth factors, etc.). In the initial approach, synthetic scaffolds
(e.g., physical chitosan microhydrogels) were used to bridge the extremities of damaged spinal cords to
promote regeneration and connectivity [253–255]. More recently, they were implemented with drugs,
growth factors, and even stem cells in order to obtain a controlled release of drugs, stimulation of
endogenous regeneration, and local secretion of neurotrophic factors and stem cell delivery [163–166].
Scaffolds that can be used for SCI were illustrated in depth by Zhang and colleagues and include:
Biodegradable synthetic polymer scaffolds (PCL, PLA, PLGA, PEG), non-biodegradable synthetic
polymer scaffolds (PHEMA, PHPMA, PAN/PVC, conductive polymers), and natural polymer scaffolds
(collagen, chitosan, alginate, fibrin) [256]. An interesting and promising technology is represented by
graphene oxide (GO) 3-D nano-structured scaffolds, able to stimulate neuronal differentiation thanks to
unique electro-physico-chemical properties [257–260]. To this end, a key player in providing structural
support could also be the physiological tissue, such as adipose tissue, which has proved promising in
the treatment of the disease [261,262]. Studies showed that the beneficial effects were given not only by
the structural support but also by the fact that mesenchymal stem cells present inside the adipose tissue
promoted regeneration and recovery of function, and reduced the inflammatory response [261,262].
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Amongst the neuroprotective factors incorporated in hydrogels, promising results have been
obtained with the delivery of neurotrophin-3 [263–265], nerve growth factor [266], BDNF [267],
and neuregulin [268]. One of the most innovative research works in this field required a complex
combinatorial system of growth factors and bio-scaffolds. It was based on a two-step protocol, with
different factors being modulated before and after the lesion, in order to allow for axonal re-growth.
The protocol began with a time-dependent administration of adeno-associated viral vectors to reactivate
neuroregeneration (through downregulation of phosphatase and tensin homologue; upregulation
of osteopontin, insulin-like growth factor 1, and ciliary-derived neurotrophic factor). After SCI
was induced, the protocol required the injection of biomaterials (made of diblock copolypeptide
hydrogels) delivering fibroblast growth factor 2, EGF, glial cell-derived neurotrophic factor (GDNF),
and integrin-blocking antibody [170]. Other than compounds, bio-scaffolds can also in this case be used
to deliver stem cells, most frequently human mesenchymal stem cells, widely used in the treatment
of the disease [269–271], but scaffolds complexed with NPCs have also been developed [166,272,273].
It is worth mentioning that in the case of SCI, biomaterials (in particular the Neuro-Spinal Scaffold -
InVivo Therapeutics Corp.) have also been used in clinical practice [167,168]. The trial has completed
recruitment and is currently in the follow-up phase (NCT02138110), but the case of a patient who
underwent surgery has been published, with improvements in neurological function and no procedural
complications [168].

The results of the recent advances reported above are summarized in Table 2. These include
scaffolds fabricated with additive manufacturing techniques along with innovative discoveries aimed
at improving hydrogel scaffolds, especially relevant in neurodegenerative diseases’ therapy.

Table 2. Summary of therapeutic agents delivered with scaffolds to treat neurodegenerative diseases.

Disease Molecules Delivery Cells Delivery Combined Delivery

Alzheimer
Disease

Huperzine A, Tacrine, Nerve
Growth Factor, Estradiol,

Tempol, Donezepil [177–183]
Neural Stem Cells [155] Curcumin + Neuroprotective peptide,

Liposomes + hydrogels [184,185]

Parkinson’s
Disease

Dopamine, Glial
Cell-Derived Neurotrophic

Factor Hsp70, Activin-B,
Mesenchymal Stem Cells’
secretome [190–193,195]

fetal Neural Stem Cells,
human Embryonic Stem

Cells, Mesenchymal
Stem Cells, induced

Pluripotent Stem Cells
[200–203,205]

Dopaminergic neurons + Glial
Cell-Derived Neurotrophic Factor,

Neural Cells + Brain-derived
neurotrophic factor,

Hydrogels + Nanoparticles
[157,199,204]

Amyotrophic
Lateral Sclerosis N/A Glial Progenitor cells

[219] N/A

Acute
Ischemic Stroke

Erythropoietin, Vascular
endothelial growth factor,

Brain-derived neurotrophic
factor, Cyclosporine A,

Genipin, Fibrin
[231,233–237,241–245]

Neural Stem Cells,
Neural Precursor Stem

Cells, induced
Pluripotent Stem Cells,

Bone Marrow
Mesenchymal Cells

[159–162,224–227,229]

Erythropoietin + Epidermal Growth
Factor, Vascular endothelial growth

factor + Angiopoietin [238–240]

Spinal Cord
Injury

Neurotrophin-3, Nerve
Growth Factor,

Brain-derived neurotrophic
factor, Neuregulin [263–268]

Human Mesenchymal
Stem Cells, Neural

Precursor Stem Cells
[166,269–273]

Viral vectors + basic fibroblast growth
factor+ Epidermal Growth
Factor + Glial Cell-Derived

Neurotrophic Factor + integrin-blocking
antibody [170]

6. Conclusions

The characteristics of pathogenesis and lack of regenerative therapeutic approaches in
neurodegenerative diseases implicates the need to develop new innovative therapeutic strategies.
Additive manufacturing techniques have gained more and more relevance, proving the great potential
of the fabrication of precision scaffolds, which could enhance therapeutic efficiency and even provide
patient-specific 3-D scaffolds. This, together with the specific fabrication of scaffolds with precise
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geometry and structure, could prove of great importance in the field of regenerative medicine and
neurodegenerative disease therapy.
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