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Abstract

We consider the hedging problem in an arbitrage-free incomplete financial market,
where there are two kinds of investors with different levels of information about the
future price evolution, described by two filtrations F and G = F ∨ σ(G) where G is a
given r.v. representing the additional information. We focus on two types of quadratic
approaches to hedge a given square-integrable contingent claim: local risk minimization
(LRM) and mean-variance hedging (MVH). By using initial enlargement of filtrations
techniques, we solve the hedging problem for both investors and compare their optimal
strategies under both approaches.

In particular, for LRM, we show that for a large class of additional non trivial r.v.s
G both investors will pursue the same locally risk minimizing portfolio strategy and the
cost process of the ordinary agent is just the projection on F of that of the insider. For
the MVH approach, we study also some general stochastic volatility model, including
Hull and White, Heston and Stein and Stein models. In this more specific setting and
for r.v.s G which are measurable with respect to the filtration generated by the volatility
process, we obtain an expression for the insider optimal strategy in terms of the ordinary
agent optimal strategy plus a process admitting a simple feedback-type representation.
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1 Introduction

In this paper we begin the study of an hedging problem for a future stochastic cash flow
X (delivered at some instant T < T , where T is a given finite horizon) in an arbitrage-free
and incomplete financial market characterized by the presence of two kinds of investors,
which have different levels of information on the future price evolution.

When the given financial market is complete, every contingent claim can be perfectly
replicated by a self-financing portfolio strategy based on the underlying assets, usually
modelled by an Rd-valued semimartingale S. In the incomplete case, this is no longer
possible for a general claim.

In the mathematical finance literature, there are two main quadratic approaches to
tackle this difficulty: local risk minimization (abbr. LRM) and mean-variance hedging
(abbr. MVH). Since one cannot ask simultaneously for the perfect replication of a given
general claim by a portfolio strategy and the self-financing property of this strategy, we
have to relax one of these two conditions. The LRM keeps then the replicability and relaxes
the self-financing condition, by requiring it only on average. On the other hand, the MVH
keeps the self-financing condition and relaxes the replicability, by requiring it approximately
in L2-sense.

To be a little more precise, Föllmer and Sondermann (1986) introduced the risk min-
imization approach, when the price process is a (local) martingale under P . The case of
a semimartingale price process is much more delicate and it induced Schweizer (1988) to
introduce the concept of LRM.

On the other hand, in the MVH approach, one looks for self-financing strategies which
minimize the residual risk between the contingent claim and the terminal portfolio value.
Again, existence and construction of an optimal strategy in the martingale case are stated
by means of the GKW-decomposition of the given claim we search to hedge. In the semi-
martingale case, we have two kinds of characterization of the optimal strategy obtained by
Gourieroux et al. (1998) (by means of a suitable change of numéraire) and by Rheinländer
and Schweizer (1997), who obtained a representation of it in a feedback form.

All these papers deal with financial market models in which all agents have the same
information flow. An important and natural development of this study is the introduction, in
a general semimartingale model, of an insider. While the ordinary agent chooses his trading
strategy according to the “public” information flow F = (Ft)t∈[0,T ], the insider possesses
from the beginning additional information about the outcome of some random variable G
and therefore has the large filtration G = (Gt)t∈[0,T ] with Gt = ∩ε>0(Ft+ε ∨ σ(G)) at his
disposal.

In the past few years, there has been an increasing interest in asymmetry of information,
and the enlargement of filtrations techniques, developed by the French School of Probability,
revealed a crucial mathematical tool to investigate this topic. The reader could look at the
paper by Brémaud and Yor (1978), the Lecture Notes by Jeulin (1980) and the series
of papers in the Séminaire de Calcul Stochastique (1982/83) of the University Paris VI
published in 1985, containing among others the important paper by Jacod (1985).

On the other hand, the mathematical finance literature focuses mainly on the problem
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of portfolio optimization of an insider. We refer here essentially to Karatzas and Pikovsky
(1996), Amendinger et al. (1998), Grorud and Pontier (1998), Imkeller et al. (2001) and
Imkeller (2002). We quote also two recent preprints by Biagini and Øksendal (2002, 2004),
which adopts a different approach based on forward integrals with respect to the brownian
motion and apply it to the mean-variance hedging for an insider also giving explicit solutions,
and an article by Baudoin and Nguyen-Ngoc (2002), who study a financial market where
the price process may jump and there is an insider possessing some weak anticipation on the
future evolution of a stock (i.e. he knows the law of some functional of the price process).

The present paper deals with the hedging problem of a given contingent claim X ∈ L2(P )
in a general semimartingale financial market with asymmetry of information. In particular,
we would compare the hedging strategies of the ordinary agent and the insider, when they
both adopt the LRM or the MVH approach.

The remainder of the paper is structured as follows. In Section 2 we collect the main
results about initial enlargement of filtrations from the papers by Jacod (1985),Amendinger
et al. (1998) and Amendinger (2000).

Section 3 deals with LRM for a claim X ∈ L2(P,FT ) with T < T given. We first review
the LRM approach, then we establish a relation between the MMMs of the ordinary agent
and the insider and we use it to compare the LRM-strategies for a large class of r.v.s G.
More precisely, we show that for such a G the two agents pursue the same optimal strategy
and the cost process of the ordinary agent is just the projection on his filtration F of that
of the insider.

In Section 4 we investigate the MVH approach with insider trading. After having
recalled the main features of this approach, in particular the Rheinländer-Schweizer feedback
representation of the optimal strategy ϑMV H,H for H ∈ {F,G}, we compare the MVH-
strategies in the martingale case, when the price process S is a (local) P -martingale under
both F and G, and we find that their optimal strategies are equal. Then, we give a
feedback representation of the difference process ξMV H = ϑMV H,G − ϑMV H,F in a quite
general stochastic volatility model (including Hull and White, Stein and Stein and Heston
models) for all r.v.s G that are measurable with respect to the filtration generated by the
volatility process.

2 Preliminaries on initial enlargement of filtrations

Let a probability space (Ω,F , P ) be given and equipped with a filtration F = (Ft)t∈[0,T ]

satisfying the usual conditions of completeness and right continuity, where T ∈ [0,∞] is a
fixed time horizon. We also assume that F0 is trivial.

Given an F-measurable random variable G taking values in a Polish space (U,U), we
denote by G = (Gt)t∈[0,T ] the filtration F initially enlarged by G and made right-continuous,
i.e.

Gt :=
⋂
ε>0

(Ft+ε ∨ σ(G)) t ∈ [0, T ].

Furthermore, we set F0 := (Ft)t∈[0,T ) and G0 := (Gt)t∈[0,T ); note the difference between
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[0, T ] and [0, T ). For a given t ∈ [0, T ), we will frequently use also the notations Ft :=
(Fs)s∈[0,t] and Gt := (Gs)s∈[0,t].

Now, we make the following fundamental technical assumption:

P [G ∈ · |Ft](ω) ∼ P [G ∈ · ] (1)

for all t ∈ [0, T ) and P -a.e. ω ∈ Ω. In other words we are assuming that the regular
distributions of G given Ft, t ∈ [0, T ), are equivalent to the law of G for P -almost all
ω ∈ Ω. It is known that, under this assumption, also the enlarged filtration G satisfies the
usual conditions (Proposition 3.3 in Amendinger (2000)).

We now quote a result by Amendinger (2000), which is based on a previous lemma by
Jacod (1985), and which states that there exists “nice” version of the conditional density
process resulting from the previous assumption. By O(H0) (H0 ∈ {F0,G0}) we will denote
the optional σ-field corresponding to the filtration H0.

Lemma 1 Under assumption (1), there exists a strictly positive O(F0) ⊗ U-measurable
process (ω, t, x) 7→ px

t (ω), which is right-continuous with left-limits (RCLL) in t and such
that

1. for all x ∈ U , px is a (P,F0)-martingale, and

2. for all t ∈ [0, T ), the measure px
t P [G ∈ dx] on (U,U) is a version of the conditional

distributions P [G ∈ dx|Ft].

We now assume that on the stochastic basis (Ω,F ,F, P ) a continuous, F-adapted, Rd-valued
semimartingale S = (St)t∈[0,T ] is defined, which models the discounted price evolution of d
risky assets and with canonical decomposition S = S0 + M + A, where M ∈ H2

0,loc(F) and
A is an F-predictable process with locally square-integrable variation |A|.

For H ∈ {F,G}, we will denote by M2(H) (resp. Me
2(H)) the set of all (P,H)-

absolutely continuous (resp. equivalent) (local) martingale measures with square-integrable
Radon-Nikodym densities. More formally

M2(H) =
{
Q � P : dQ/dP ∈ L2(P ), S is a (Q,H)-local martingale

}
and

Me
2(H) = {Q ∈M2(H) : Q ∼ P} ,

where L2(P ) = L2(P,F). In order to stress the dependence from the underlying probability
measure, we will write sometimes Me

2(H, P ).
We make the following standing assumption:

Me
2(H) 6= ∅, (2)

for H ∈ {F,G}. By Girsanov’s theorem, the existence of an element Q ∈ Me
2(F) implies

that the predictable process A in the canonical decomposition of S must have the form:

At =
∫ t

0
λ′sd 〈M〉s , t ∈ [0, T ],
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for some predictable Rd-valued process λ. We denote

K̂t =
∫ t

0
λ′sd 〈M〉s λs, t ∈ [0, T ],

and call this the mean-variance tradeoff process of S under F (F-MVT process).
The following fundamental results by Amendinger (2000), Jacod (1985) and Amendinger

et al. (1998), respectively, will be very useful in the sequel of the paper.

Theorem 2 Let Q be in Me
2(F) and let Z denote its density process with respect to P .

Moreover, let pG = (px)|x=G. Then, under assumptions (1) and (2), the following assertions
hold for every t ∈ [0, T ]:

1. Z̃ := Z/pG is a (P,G0)-martingale, and

2. the [0, t]-martingale preserving probability measure (abbr. t-MPM) (under initial
enlargement)

Q̃t(A) :=
∫

A

Zt

pG
t

dP for A ∈ Gt (3)

has the following properties

(a) the σ-algebra Ft and σ(G) are independent under Q̃t,

(b) Q̃t = Q on (Ω,Ft), and Q̃t = P on (Ω, σ(G)), i.e. for all A ∈ Ft and B ∈ U ,

Q̃t[A ∩ {G ∈ B}] = Q[A]P [G ∈ B] = Q̃t[A]Q̃t[B]

3. for every p ∈ [1,∞], Hp
(loc)(Q,Ft) = Hp

(loc)(Q̃t,Ft) ⊆ Hp
(loc)(Q̃t,Gt).

Proof. See Amendinger (2000), Theorem 3.1 and Theorem 3.2, p. 104. �

Remark 3 Theorem 2 implies that, under assumption (2) for H = F, there exists an
equivalent local martingale measure for S also under the enlarged filtration G, whose Radon-
Nikodym derivative with respect to P is not necessarily in L2(P ). Assumption (2) is then
necessary also for H = G.

The next theorem (due to J. Jacod) claims that under the fundamental assumption (1), the
price process S is also a G0-semimartingale and it gives its canonical decomposition under
the enlarged filtration.

Theorem 4 For i = 1, ..., d, there exists a P(F0)-measurable function (ω, x, t) 7→ (µx
t (ω))i

such that 〈
px,M i

〉
=
∫

(µx)ipx
−d
〈
M i
〉
.

For every such function (µ·)i, we consider (µG)i = (µx)i
|x=G and we have

1.
∫ t
0 |(µ

G
s )i|d〈M i〉s < ∞ P − a.s. for all t ∈ [0, T ), and
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2. M i is a (P,G0)-semimartingale, and the continuous local (P,G0)-martingale in its
canonical decomposition is

M̃ i
t := M i

t −
∫ t

0

(
µG

s

)i
d
〈
M i
〉
s
, t ∈ [0, T ). (4)

Proof. See Théorème 2.1 of Jacod (1985). �

This theorem with the standing assumption (2) for H = G implies that the finite
variation process Ã in the canonical decomposition of S under G must satisfy

Ãt =
∫ t

0

(
λs + µG

s

)′
d
〈
M̃
〉

s
=
∫ t

0

(
λs + µG

s

)′
d 〈M〉s , t ∈ [0, T ],

and then the corresponding G-MVT process of S is given by

K̂G
t =

∫ t

0

(
λs + µG

s

)′
d 〈M〉s

(
λs + µG

s

)
, t ∈ [0, T ].

Finally, the theorem quoted below gives a stochastic exponential representation of the
conditional density pG and its inverse.

Theorem 5 1. There exists a local (P,G0)-martingale Ñ null at 0, which is (P,G0)-
orthogonal to M̃ (i.e. 〈M̃ i, Ñ〉 = 0 for i = 1, ..., d) and such that

1
pG

t

= E
(
−
∫ (

µG
)′

dM̃ + Ñ

)
t

, t ∈ [0, T ). (5)

2. Given x ∈ U , there exists a local F0-martingale Nx null at 0 which is orthogonal to
S and such that

px
t = E

(∫
µxdS + Nx

)
t

, t ∈ [0, T ). (6)

Proof. See Proposition 2.9, p. 270, of Amendinger et al. (1998). �

Remark 6 In the sequel, without further mention, all equalities between strategies or inte-
grands will hold a.e. d〈M〉dP .

3 The LRM approach

3.1 Preliminaries and terminology

We collect in this subsection the main definitions and results of the LRM approach and
to do this, we will essentially follow the two survey papers by Pham (2000) and Schweizer
(2001). All the objects we will introduce in this section refer to the initially non-trivial
filtration H ∈ {F,G}.
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A portfolio strategy is a pair ϕ = (V, ϑ) where V is a real-valued adapted process such
that VT ∈ L2(P ) and ϑ belongs to Θ = ΘH, which denotes the set of all H-predictable,
Rd-valued, S-integrable processes ϑ such that

∫ T
0 ϑtdSt ∈ L2(P ) and

∫
ϑdS is a (Q,H)-

martingale for all Q ∈Me
2(H), which is closed in L2(P ).

We now associate to each portfolio strategy ϕ = (V, ϑ) a process, which will be very
useful in the sequel in describing the main features of the LMR approach: the cost process
C(ϕ).

The cost process of a portfolio strategy ϕ = (V, ϑ) is defined by

Ct(ϕ) = Vt −
∫ t

0
ϑudSu, t ∈ [0, T ].

A portfolio strategy ϕ is called self-financing if its cost process C(ϕ) is constant P a.s.. It
is called mean self-financing if C(ϕ) is a martingale under P .

Fix now a square-integrable, FT -measurable contingent claim X. We say that a portfolio
strategy ϕ = (V, ϑ) is X-admissible if VT = X, P a.s.. Therefore, an X-admissible portfolio
strategy ϕ is called locally risk minimizing (abbr. LRM-strategy) if the corresponding cost
process C(ϕ) belongs to H2(P,H) and is orthogonal to S under (P,H). There exists a
LRM-strategy if and only if X admits a decomposition:

X = X0 +
∫ T

0
ϑX

t dSt + LX
T , P a.s., (7)

where X0 is H0-measurable, ϑX ∈ Θ and LX ∈ H2(P,H) is orthogonal to S. Such a de-
composition is called Föllmer-Schweizer decomposition of X under (P,H), and the portfolio
strategy ϕLRM = (V LRM , ϑLRM ) with ϑLRM = ϑX and

V LRM
t = X0 +

∫ t

0
ϑX

s dSs + LX
t , P a.s., t ∈ [0, T ].

is a LRM-strategy for X.
There exists also a very useful characterization of the LRM-strategy by means of the

Galtchouk-Kunita-Watanabe decomposition (abbr. GKW-decomposition) of X under a
suitable equivalent martingale measure, namely the minimal martingale measure (abbr.
MMM) introduced by Föllmer and Schweizer (1991). We recall now some basic facts about
this measure and its very deep relation with the LRM approach.

We denote by Zmin,H, for H ∈ {F,G}, the minimal martingale density under H, i.e.
for the ordinary agent

Zmin,F
t = E

(
−
∫

λdM

)
t

, t ∈ [0, T ),

and for the insider

Zmin,G
t = E

(
−
∫ (

λ + µG
)
dM̃

)
t

, t ∈ [0, T ).
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Since our goal is comparing the LRM-strategies, we have to assume that, given a contingent
claim X ∈ L2(FT ) for some T < T , there exists a LRM-strategy (to hedge X) for the
ordinary agent as well as for the insider. We make then the following

Assumption 7 Zmin,H is a uniformly integrable H0-martingale satisfying R2(P ) for H0 ∈
{F0,G0}, i.e. for all t ∈ [0, T ) there exists a constant C > 0 such that

E

(Zmin,H
t

Zmin,H
s

)2
∣∣∣∣∣∣Hs

 ≤ C, s ∈ [0, t].

Since Delbaen et al (1997) we know that this assumption is equivalent to assuming the
existence of a Föllmer-Schweizer decomposition (and so of a unique LRM-strategy) for
every X ∈ L2(P,Ft), for any t ∈ [0, T ), under both F and G.

Moreover, under Assumption 7, we can define on Ht, for all t ∈ [0, T ), a P -equivalent
H-martingale measure Pmin,H for S, given by

dPmin,H

dP

∣∣∣∣
Ht

= Zmin,H
t ,

which is called minimal martingale measure for S under H (abbr. H-MMM).
We now quote without proof (for whom we refer to Föllmer and Schweizer (1991),

Theorem 3.14, p. 403) the following fundamental result relating the MMM and the LRM-
strategy:

Theorem 8 (We drop here, for simplicity, the dependence on H) Let X be a contingent
claim in L2(P,FT ) for some T ∈ [0, T ). The LRM-strategy ϕLRM , hence also the corre-
sponding Föllmer-Schweizer decomposition (7), is uniquely determined. It can be computed
in terms of the MMM Pmin: if (V min,X

t )t∈[0,T ] denotes a right-continuous version of the
Pmin-martingale (E[X|Ht])t∈[0,T ] with GKW-decomposition

V min,X
t = V min,X

0 +
∫ t

0
ϑmin,X

s dSs + Lmin,X
t , t ∈ [0, T ],

then the portfolio strategy ϕmin,X = (V min,X , ϑmin,X) is the LRM-strategy for X and its
cost process is given by C(ϕLRM ) = Emin[X|H0] + Lmin,X .

3.2 Comparing the LRM-strategies

In this subsection, we want to compare the LRM-strategies of the two differently informed
agents. We start with a simple but very useful lemma establishing a relation between the
respective MMMs. We recall that if Q is any P -absolutely continuous martingale measure
for S and Z its density process under F, then Q̃ and Z̃ denote respectively the corresponding
MPM and its density process (under G).
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Lemma 9 The minimal martingale densities Zmin,H for H ∈ {F,G} satisfy the following
relation:

E(Ñ)Zmin,G = Z̃min,F, (8)

where Ñ is the local (P,G0)-martingale, null at 0 and (P,G0)-orthogonal to S appearing in
Theorem 5.

Proof. By developing the stochastic exponential, we find immediately that

Zmin,G = E
(
−
∫ (

λ + µG
)
dM̃

)
= E

(
−
∫

λdM

)
E
(
−
∫

µGdM̃

)
= Zmin,FE

(
−
∫

µGdM̃

)
.

If we multiply both sides of the above equality by E(Ñ) and apply Yor’s formula on stochastic
exponentials, we have

E(Ñ)Zmin,G = Zmin,FE
(
−
∫

µGdM̃ + Ñ +
[∫

µGdM̃, Ñ

])
.

Since M̃ is continuous and orthogonal to Ñ , we have[∫
µGdM̃, Ñ

]
=
〈∫

µGdM̃, Ñ

〉
= 0

Then the representation of 1/pG provided by Theorem 5 implies

E(Ñ)Zmin,G = Zmin,F 1
pG

= Z̃min,F

and the proof is now complete. �

Remark 10 The previous lemma states in particular that if the orthogonal part Ñ in the
stochastic exponential representation (5) of the conditional density pG vanishes, then the
MMM of the insider is just the MPM corresponding to the MMM of the ordinary agent.

We now compare the LRM-strategies of both agents when the additional r.v. G is
such that Ñ = 0. The next proposition shows that in this case they will adopt the same
behaviour and their cost processes satisfy a simple projection relation.

Proposition 11 Assume Ñ = 0 and let X be a contingent claim in L2(P,FT ) for some
T < T . Then:

1. ϑLRM,F
t = ϑLRM,G

t for all t ∈ [0, T ];
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2. Lmin,F
T + (Emin,F[X]− Emin,G[X|G0]) = Lmin,G

T .

In particular, Ct(ϕLRM,F) = E[Ct(ϕLRM,G)|Ft] for all t ∈ [0, T ].

Proof. Associate firstly to X the (Pmin,G,G)-martingale Xmin,G
t := Emin,G[X|Gt], t ≤ T ,

and consider its GKW-decomposition under (Pmin,G,G):

Xmin,G
t = Emin,G[X|G0] +

∫ t

0
ϑmin,G

u dSu + Lmin,G
t , t ∈ [0, T ], (9)

where ϑmin,G ∈ L1(S, Pmin,G) and Lmin,G is a (Pmin,G,G)-martingale, orthogonal to S.
On the other hand consider the (Pmin,F,F)-martingale Xmin,F

t := Emin,F[X|Ft], t ≤ T . Its
GKW-decomposition under (Pmin,F,F) is given by

Xmin,F
t = Emin,F[X] +

∫ t

0
ϑmin,F

u dSu + Lmin,F
t , t ∈ [0, T ], (10)

where ϑmin,F ∈ L1(S, Pmin,F) and Lmin,F is a (Pmin,F,F)-martingale, orthogonal to S.

Observe now that ϑmin,F ∈ L1(S, Pmin,G) and moreover, since Pmin,G = P̃min,F, item 3 of
Theorem 2 implies that Lmin,F is also a (Pmin,G,G)-martingale orthogonal to S and so is
Lmin,F + (Emin,F[X] − Emin,G[X|G0]). Finally, since the two processes we are considering
have the same terminal value X, the uniqueness property of the LRM-strategies implies the
first two items of the proposition. The claimed relation between the cost processes is now
quite clear. Indeed, since Lmin,H is a local (P,H)-martingale for H ∈ {F,G} (see Ansel and
Stricker (1992) or Schweizer (1995)), the usual localization procedure allows us to assume,
without loss of generality, that it is a true (P,H)-martingale and then, for all t ∈ [0, T ],

Ct(ϕLRM,F) = Emin,F[X] + Lmin,F
t =

= E
[
Emin,F[X] + Lmin,F

T |Ft

]
=

= E
[
Emin,G[X|G0] + Lmin,G

T |Ft

]
=

= E
[
Emin,G[X|G0] + Lmin,G

T |Ft

]
=

= E
[
Ct(ϕLRM,G)|Ft

]
.

The proof is now complete. �

Remark 12 The conclusion of Proposition 11 is not so surprising. Indeed, under the MPM
corresponding to the insider MMM the additional r.v. G is independent to the claim X,
which is assumed to be FT -measurable. Then, in this case the additional knowledge of the
insider does not produce any effect on his behaviour.

Even if it is clearly hard to check the assumption Ñ ≡ 0 on G in a general incomplete
market, it is nonetheless not difficult to exhibit several examples of such r.v.s. Indeed,
it suffices to consider the stochastic volatility model described in Subsection 4.3 with G
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equaling the terminal value of the first driving brownian motion W 1
T or G = 1{W 1

T ∈(a,b)}
with a, b ∈ R∪{−∞,∞}, or G = αW 1

T +(1−α)ε where the random variable ε is independent
of FT and normally distributed with mean 0 and variance σ2 > 0, and α is a real number in
(0, 1). To verify this the reader could easily adapt the computations contained in the paper
by Amendinger et al. (1998) to the incomplete market setting provided by our stochastic
volatility model.

4 The MVH approach

4.1 Preliminaries and terminology

Given a contingent claim X ∈ L2(P ) and an initial investment h ∈ L2(H0), we are interested
in the following two quadratic optimization problems:

min
ϑH∈ΘH

E
[
X − h−

∫ T

0
ϑH

t dSt

]2

(11)

for H ∈ {F,G} and where the H-admissible strategies set ΘH is as in the previous section.
The financial interpretation is the usual one: two investors search to replicate (approxi-

mately, in the L2-sense) a given future cash-flow X by trading dynamically in the underlying
S.

The ordinary investor uses only the information contained in the filtration F, e.g. if F
is the natural filtration of S, he observes only the market prices of the underlying assets.
On the other hand, the informed agent or insider, has an additional information which is
described by the random variable G, so that the filtration, on which he bases his decisions,
is given by G.

From a mathematical viewpoint, this corresponds to project the random variable X
onto the following subset of L2(P )

G(h, ΘH) :=
{

h +
∫ T

0
ϑH

t dSt : θH ∈ ΘH

}
,

that is named set of investment H-opportunities. Since G(h, ΘH) is closed in L2(P ) then
problem (11) is meaningful and it admits a unique solution that we will denote by ϑMV H,H,
for H ∈ {F,G}.

We are interested also in the following minimization problem:

JH(X) := min
h∈L2(H0)

JH(h, X) (12)

where

JH(h, X) := min
ϑH∈ΘH

E
[
X − h−

∫ T

0
ϑH

t dSt

]2

h ∈ L2(H0),

is the associated risk function of the investor with information H.

11



The solution hMV H to this problem is named approximation price of X (see Schweizer
(1996)).

Assume now that P ∈ Me
2(H). In this case ΘH = L2(S, P,H) (see Remark 5.3 in

Pham (2000)). We recall that every contingent claim X ∈ L2(P ) admits a unique GKW-
decomposition

X = E[X|H0] +
∫ T

0
ϑH,X

t dSt + LH,X
T

whereH0 is the initial σ-field of H and LH,X
T is the terminal value of the uniformly integrable

(P,H)-martingale (LH,X
t )t∈[0,T ], which is orthogonal to S under (P,H) and whose initial

value is zero.

Proposition 13 Assume that P ∈Me
2(H).

1. There exists a unique solution ϑMV H,H to problem (11), for all h ∈ L2(H0), given by
the process ϑH,X in the decomposition (4.1), and

JH(h, X) = E [E[X|H0]− h]2 + E
[
LH,X
T

]2
, (13)

2. the approximation price for the agent is given by hMV H = E[X|H0], and

JH(X) = E
[
LH,X
T

]2
.

Proof. Use the same argument as in Pham (2000), Proposition 5.1. �

If P is not an H-martingale measure, Rheinländer and Schweizer (1997) and Gourieroux
et al. (1998) (see also Pham (2000)) have nonetheless obtained two characterizations of the
solution of problem (11), under the assumption H0 trivial. But it is very easy to check that
all those results still hold even without this assumption. We now recall some basic facts of
the first approach.

We know since Delbaen and Schachermayer (1996) that, being the price process S con-
tinuous, the variance optimal martingale measure (abbr. VOMM) can be defined as the
unique martingale probability measure PH,opt solution to the problem

min
Q∈M2(H)

E
[
dQ

dP

]2

, (14)

and that this measure is in fact equivalent to P . Moreover, the process

ZH,opt
t := EH,opt

[
dPH,opt

dP

∣∣∣∣Ht

]
, t ∈ [0, T ]

can be written as

ZH,opt
t = Zopt

0 +
∫ t

0
ζH,opt
s dSs, t ∈ [0, T ] (15)

12



for some constant Zopt
0 (independent from the underlying filtration) and some process

ζH,opt ∈ ΘH. The following theorem contains the characterization of the optimal mean-
variance strategy for a given contingent claim X ∈ L2(P ) in a feedback form.

Theorem 14 Let X ∈ L2(P ) be a contingent claim and let h ∈ L2(H0) be an initial
investment. The GKW-decomposition of X under (PH,opt,H) with respect to S is

X = EH,opt[X|H0] +
∫ T

0
ϑH,opt

s dSs + LH,opt
T = V H,opt

T (16)

with

V H,opt
t = EH,opt[X|Ht] = EH,opt[X|H0] +

∫ t

0
ϑH,opt

s dSs + LH,opt
t , t ∈ [0, T ].

Then, the mean-variance optimal strategy for X is given by

ϑMV H,H
t = ϑH,opt

t − ζH,opt
t

ZH,opt
t

(
V H,opt

t− − h−
∫ t

0
ϑMV H,H

s dSs

)
(17)

= ϑH,opt
t − ζH,opt

t

(
V H,opt

0 − h

ZH,opt
0

+
∫ t−

0

1

ZH,opt
s

dLH,opt
s

)
, (18)

for all t ∈ [0, T ]. Moreover the approximation price for X is given by hMV H = EH,opt[X|H0].

For the proof of this result and many remarks, the reader may look at the survey article
by Schweizer (2001).

4.2 Comparing the optimal MVH-strategies

4.2.1 The martingale case under both F and G

Firstly we assume that the price process S is a P -martingale with respect to both F and
G. Given an instant T ∈ [0, T ) and a contingent claim X ∈ L2(P,FT ) we compare the
integrands in the GKW-decompositions of the claim with respect to the two filtrations.
Those integrands can be viewed as the mean-variance optimal strategies of the two investors
when the true probability of the market is already a martingale measure for both filtrations.

Remark 15 The following results are very important from a mathematical viewpoint, since
they will allow us to compare the optimal strategies in the more financially meaningful case
when S is a continuous semimartingale under P with different canonical decompositions
with respect to F and G (see the next subsection).

For a given T ∈ [0, T ), we will denote by ϑMV H,H(X) the optimal strategy for an H-
investor to hedge the claim X. Moreover, we fix two initial investments for the agents,
c ∈ R for the ordinary one and g ∈ L2(G0) = L2(G) for the informed one. It is important
to point out that in this case the information drift µG vanishes.

13



The next technical result states a relation between the insider optimal hedging strategies
ϑMV H,G(X) under P and the integrand ϑ̃X/Z̃T ,G in the GKW-decomposition of the claim
X/Z̃T under the corresponding MPM P̃ .

Lemma 16 Assume that P ∈Me
2(G) and let X ∈ L2(P,FT ) for a given T ∈ [0, T ). Then

ϑMV H,G(X) = Z̃−ϑ̃X/Z̃T ,G

and

JG(g,X) = E[E[X|G0]− g]2 + E
[∫ T

0
Z̃t−dLG,X̃

t +
∫ T

0
V G

t−dNt

]2

,

where V G
t := E[X|Gt], ϑ̃X/Z̃T ,G is the integrand with respect to S in the GKW-decomposition

of X/Z̃T under (P̃ ,G), LG,X̃ is a (P,G)-martingale strongly orthogonal to S, and N as in
Theorem 5.

Proof. We start by considering the (P,G)-martingale V G
t := E[X|Gt], t ∈ [0, T ]. Since

Ṽ G := V G/Z̃ is a local (P̃ ,GT )-martingale, we can write the following GKW-decomposition

Ṽ G
t = V G

0 +
∫ t

0
ϑ̃G,X̃

u dSu + L̃G,X̃
t , t ∈ [0, T ], (19)

where ϑ̃G,X̃ ∈ Lloc(S, P̃ ,GT ) and L̃G,X̃ is a (P̃ ,GT )-martingale orthogonal to S.
Integration by parts formula gives

dV G
t = d

(
Ṽ GZ̃

)
t
= Z̃t−dṼ G

t + Ṽ G
t−dZ̃t +

[
Z̃, Ṽ G

]
t
.

By using the decomposition (19) and since, by Theorem 5, Z̃ satisfies dZ̃t = Z̃t−dNt (in
this easy case the process µ of Theorem 5 is null), where N is a local (P,GT )-martingale
orthogonal to S, we also have

dV G
t = Z̃t−ϑ̃G,X̃

t dSt + Z̃t−dL̃G,X̃
t + Ṽ G

t−Z̃t−dNt + Z̃t−d
[
N, L̃G,X̃

]
t
.

Now, we use Girsanov’s Theorem to write

L̃G,X̃ = LG,X̃ + AG,X̃

where LG,X̃ := L̃G,X̃ − 1

Z̃−
〈L̃G,X̃ , Z̃〉 is a local (P,GT )-martingale, orthogonal to S and

AG,X̃ = 1

Z̃−
〈L̃G,X̃ , Z̃〉.

But since V G is a (P,GT )-martingale, we must have Z̃td(AG,X̃ + [N, L̃G,X̃ ])t = 0 and
so

dV G
t = Z̃t−ϑ̃G,X̃

t dSt + Z̃t−dLG,X̃
t + Ṽ G

t−Z̃t−dNt.

This concludes the proof of the lemma. �

Finally, the next proposition gives a complete answer to the comparison problem in the
martingale case.
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Proposition 17 Assume that P ∈Me
2(G).

1. If X ∈ L2(P,Ft), then

ϑMV H,G
t = ϑMV H,F

t , t ∈ [0, T ].

2. The risk functions of both agents satisfy

JF(X)− JG(X) = E [E[X]− E[X|G0]]
2 .

Proof.

1. To the random variable X ∈ L2(FT ) we associate the (P,FT )-martingale Vt := V F
t :=

E[X|Ft], for which the GKW-decomposition holds:

Vt = V0 +
∫ t

0
ϑF,X

u dSu + LF,X
t t ∈ [0, T ] (20)

where ϑF,X ∈ ΘF and LF,X is a (P,FT )-martingale, strongly orthogonal to S for
(P,FT ). Moreover, Yt := Vtp

G
t is a (P̃ ,GT )-local martingale and its GKW-decomposition

under (P̃ ,GT ) is given by

Yt = Y0 +
∫ t

0
ϑ̃G,Y

u dSu + L̃G,Y
t t ∈ [0, T ]. (21)

By (6) the process pG
t satisfies

pG
t = 1 +

∫ t

0
pG

u−dNG
u

and by the integration by parts formula applied to Yt, we obtain

Yt = Vtp
G
t = Y0 +

∫ t

0
pG

u−ϑX,F
u dSu +

∫ t

0
pG

u−dLX,F
u

+
∫ t

0
Vu−pG

u−dNG
u +

[
V, pG

]
t
.

Since Y is a (P̃ ,GT )-local martingale, the finite variation part in the above decom-
position vanishes and then

Yt = Vtp
G
t = Y0 +

∫ t

0
pG

u−ϑX,F
u dSu +

∫ t

0
pG

u−dLX,F
u

+
∫ t

0
Vu−pG

u−dNG
u . (22)

If we compare this orthogonal decomposition with (21), we obtain that

ϑ̃Y,G
t = pG

t−ϑX,F
t .
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We finally apply Lemma (16) and we have

ϑMV H,G
t (X) = Z̃t−ϑ̃

X/Z̃T ,G
t

= Z̃t−ϑ̃YT ,G
t

= Z̃t−pG
t−ϑX,F

t

= ϑX,F
t .

2. From the GKW-decompositions of X under F and G, one can deduce

LF,X
T = X − E[X]−

∫ T

0
ϑF,X

t dSt

= (E[X|G0]− E[X]) + X − E[X]−
∫ T

0
ϑG,X

t dSt

+
∫ T

0

(
ϑG,X

t − ϑF,X
t

)
dSt

= (E[X|G0]− E[X]) +
∫ T

0

(
ϑG,X

t − ϑF,X
t

)
dSt + LG,X

T .

By item 1 of this proposition, we have

E
[
LF,X

T

]2
= E[E[X|G0]− E[X]]2 + E

[
LG,X

T

]2
,

that is
JF(X) = JG(X) + E[E[X|G0]− E[X]]2.

The proof is now complete. �

Remark 18 If both investors are allowed to minimize only over all pairs (c, ϑ) ∈ R×ΘH

(H ∈ {F,G}), then the risk functions are equal, i.e. JF(X) = JG(X). Indeed, by (13) and
since

LH,X
T = X − E[X|H0]−

∫ T

0
ϑH,X

t dSt,

we have

JF(c,X) = E [E[X]− c]2 + E [E[X|G0]−X]2 + E
[∫ T

0

(
ϑG,X

t − ϑF,X
t

)2
d〈S〉t

]
= JG(c′, X) + E [E[X]− c]2 + E [E[X|G0]−X]2 − E

[
E[X|G0]− c′

]2
= JG(c′, X) + E[X − c]2 − E[X − c′]2,

where c and c′ are two given initial real investment for, respectively, the ordinary and the
informed agent. By setting c = c′ = E[X], which is in this case the approximation price for
both investors, we have the claimed equality JF(X) = JG(X).
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4.2.2 The semimartingale case

For the general case, that is S is a continuous (P,F)-semimartingale, the Rheinländer-
Schweizer feedback representation (17) of the optimal MVH-strategies suggests to compare

• the “optimal strategies” ϑopt,F := ϑX,P opt,F
and ϑopt,G := ϑX,P opt,G

of the ordinary
agent and the insider under their own VOMMs P opt,F and P opt,G, and

• the ratios ζopt,F/Zopt,F and ζopt,G/Zopt,G in the Rheinländer-Schweizer feedback rep-
resentation (17).

We focus on the first question. Let X be a square-integrable contingent claim with maturity
T < T , i.e. X ∈ L2(P,FT ). Observe now that (St)t∈[0,T ] is a local martingale wrt the
following three probability-filtration pairs

1. (P opt,F,F);

2. (P opt,G,G);

3. (P opt,G,F).

We would like to compare the GKW-decomposition of X under the first two pairs. We
can simplify the problem thanks to the following remark: by Proposition 16 the integrands
in the decompositions of X under the last two pairs are equal, since obviously the price
process S is a local P opt,G-martingale under both filtrations. As a consequence, we have
just to compare the decompositions under the extreme pairs of the list, which is a simpler
task, since it is just a probability change, the filtration being the same.

In order to simplify the notations, we drop the dependence from the filtration and we
set Q := P opt,G and R := P opt,F|FT

. The GKW-decomposition of X under Q and R are

X = EQ[X] +
∫ T

0
ϑX,Q

s dSs + LX,Q
T (23)

= ER[X] +
∫ T

0
ϑX,R

s dSs + LX,R
T , (24)

where LX,Q (resp. LX,R) is a local Q-martingale (resp. R-martingale), orthogonal to S.
Our goal is to express ϑX,Q in terms of ϑX,R and some other quantities related to the

probability change. The following density processes will be very important in the sequel:

• Zt := ER[dQ/dR|Ft];

• Ut := Z−1
t = EQ[dR/dQ|Ft].

An application of the Bayes’rule and the integration by parts formula yields

V Q
t := EQ[X|Ft] = UtER[ZT X|Ft] = UtY

R
t

= V Q
0 +

∫ t

0
Y R

s−dUs +
∫ t

0
Us−dY R

s + [Y R, U ]t.
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Observe that Ut = EQ[dR/dQ|Ft] is a Q-martingale, whose GKW-decomposition is given
by

dUt = ξtdSt + dΛt, (25)

where Λ is a Q-martingale, orthogonal to S.
On the other hand, GKW applied to Y R gives dY R

t = ϑY,R
t dSt + LY,R

t , with LY,R

an R-martingale, orthogonal to S. An application of Girsanov’s Theorem to LY,R yields
LY,R = MY,Q + AY,Q, where MY,Q is a Q-martingale, orthogonal to S, and AY,Q a finite
variation process. So, we have

dY R
t = ϑY,R

t dSt + dMY,Q
t + dAY,Q

t . (26)

Applying (25) and (26) and observing that, since V Q is a Q-martingale, its finite varia-
tion part must vanish, gives

dV Q
t = (Y R

t−ξt + Ut−ϑY,R
t )dSt + Y R

t−dΛt + dMY,Q
t . (27)

Since Λ + MY,Q is a local Q-martingale orthogonal to S, we must have

ϑX,Q
t = Y R

t−ξt + Ut−ϑY,R
t . (28)

Now, we will focus on ϑY,R. Define Kt := ZtV
R
t and apply the integration by parts

formula
dKt = Zt−dV R

t + V R
t−dZt + d[Z, V R]t. (29)

By Girsanov’s Theorem, we can write Zt = MZ
t + AZ

t , where MZ is a Q-martingale and
AZ a finite variation process. Furthermore, the GKW-decomposition of MZ is given by
dMZ

t = ηtdSt + dNZ
t , with NZ Q-martingale, orthogonal to S. By applying the just

previous decompositions and observing that, since K is a Q-martingale, its finite variation
part vanishes, we have

dKt = (Zt−ϑX,R
t + V R

t−ηt)dSt + Zt−dLX,R
t + V R

t−dNZ
t . (30)

Since KT = YT , the uniqueness of the GKW-decomposition yields

ϑY,R
t = Zt−ϑX,R

t + V R
t−ηt (31)

Combining (28) and (31) gives

ϑX,Q
t = Y R

t−ξt + Ut−(Zt−ϑX,R
t + V R

t−ηt) (32)

= (Y R
t−ξt + Ut−V R

t−ηt) + ϑX,R
t (33)

= (Zt−V Q
t−ξt + Ut−V R

t−ηt) + ϑX,R
t . (34)

Now we can come back to our original setting and summarize our result in the following
proposition:
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Proposition 19 The following equality holds for every t ∈ [0, T ],

ϑopt,G
t = ϑopt,F

t + (Zt−V opt,G
t− ξt + Ut−V opt,F

t− ηt), (35)

where Zt = Eopt,F[dP opt,G/dP opt,F|Ft], Ut = Z−1
t = Eopt,G[dP opt,F/dP opt,G|Ft], ξ (resp. η)

is the integrand in the GKW-decomposition of U (resp. of Z) under P opt,G (resp. P opt,F).

Comparing now the VOMM ratios in our general framework is a quite difficult problem.
We are able to give an answer by considering some particular insider’s information in some
particular incomplete model. In fact, in the next section, we will see that in a given
stochastic volatility model (including Hull and White, Heston and Stein and Stein models)
if the additional r.v. G is measurable with respect to the filtration generated by the volatility
process, then the two VOMM ratios coincide. This result will allow us to obtain a feedback
representation for the difference process between the two optimal strategies ϑMV H,F and
ϑMV H,G.

4.3 Stochastic volatility models

We consider the following stochastic volatility model for a discounted price process S:

dSt = σ(t, St, Yt)St[λ(t, St, Yt)dt + dW 1
t ] (36)

where W 1 is a brownian motion and Y is assumed to satisfy the following SDE

dYt = α(t, St, Yt)dt + γ(t, St, Yt)dW 2
t (37)

with W 2 another brownian motion independent from the first one. The coefficients are as-
sumed to satisfy the usual hypotheses ensuring the existence of a unique strong solution and
of an equivalent local martingale measure with square integrable Radon-Nikodym density.
Furthermore, we assume that the underlying filtration F = (Ft) is that generated by the
two driving brownian motions, i.e. Ft = σ(W 1

s ,W 2
s : s 6 t) for all t ∈ [0, T ], and that λ

does not depend on the process S, that is λ(t, St, Yt) = λ(t, Yt). We point out that this
assumption is satisfied by the Hull and White, Heston and Stein and Stein models (e.g. see
Hobson (1998b)).

We will denote by F1 = (F1
t ) (resp. F2 = (F2

t )) the filtration generated by W 1 (resp.
W 2).

We assume that the additional random variable G is F2
T -measurable, e.g. G = W 2

T ,
G = 1(W 2

T ∈[a,b]) with a < b < ∞ or G = YT when Y and W 2 generate the same filtration
(for example, in the Hull and White model).

In this case, the VOMM is the same for the ordinary and the informed agent. Indeed,
by Biagini et al. (2000) (Theorem 1.16), we have for H ∈ {F,G},

dPH,opt

dP
=

E
(
−
∫ ·
0 βH

t dSt

)
T

E
[
E
(
−
∫ ·
0 βH

t dSt

)
T

] (38)
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with βH
t = λ(t,Yt)−hH

t
σ(t,St,Yt)St

. So, we focus on the process hH. Now, by assumption the process λ

does not depend on S and then, again by Biagini et al. (2002) (Section 2), hF = 0.
Moreover, being G F2

T -measurable and since W 1 and W 2 are independent, the dynamics
of S does not change if we pass from F to G. Indeed, since in this case assumption (1) is
equivalent to assume P (G ∈ · |F2

t ) ∼ P (G ∈ · ) for all t ∈ [0, T ), it is easy to see that the
conditional density process (pG

s )s∈[0,T ) can be chosen F0
2-optional, where F0

2 := (F2
t )t∈[0,T ).

The equality

d

〈
pG,

∫
σ(u, Su, Yu)SudW 1

u

〉
t

= σ(t, St, Yt)Std
〈
pG,W 1

〉
t
= 0, t ∈ [0, T ),

implies, thanks to Theorem 4, µG ≡ 0.
So, always by Biagini et al. (2002) (Section 2), hG = 0. This implies βF = βG and then

PF,opt = PG,opt =: P opt.

Proposition 20 Let G be F2
T -measurable, X ∈ L2(P,FT ) with T < T , c ∈ R and g ∈

L2(G0) two given initial investments for, respectively, the ordinary agent and the insider.
Then

ϑMV H,G
t = ϑMV H,F

t + ξMV H
t , t ∈ [0, T ], (39)

where the process ξMV H has the following backward representation:

ξMV H
t = ρopt

t

(
V opt,G

t− − V opt,F
t− +

∫ t

0
ξMV H
u dSu

)
(40)

= ζF,opt
t

V G,opt
0 − g −

(
V F,opt

0 − c
)

ZF,opt
0

+
∫ t−

0

1

ZF,opt
u

dV G,opt
u

 , (41)

for all t ∈ [0, T ], where V opt,H
t := Eopt[X|Ht] for H ∈ {F,G} and ρopt

t := ζopt,F
t /Zopt,F

t =
ζopt,G
t /Zopt,G

t , t ∈ [0, T ].

Proof. Since P opt,F = P opt,G = P opt, it is easy to remark that by isometry ζopt,F
t = ζopt,G

t

and so ζopt,F
t /Zopt,F

t = ζopt,G
t /Zopt,G

t =: ρopt
t for t 6 T . Indeed, since by localization we

can assume that S is a true martingale under P opt, it suffices to note that Zopt,F
T = Zopt,G

T

implies
∫ T
0 ζopt,F

s dSs =
∫ T
0 ζopt,G

s dSs and so, by isometry, we have

Eopt

[∫ T

0

(
ζopt,F
s − ζopt,G

s

)2
d 〈S〉s

]
= 0.

Furthermore, by Proposition 17, the optimal strategies of the two agents under the VOMM
are equal, i.e. ϑF,opt = ϑG,opt, and so by comparing the feedback representations (17) of
the two optimal hedging strategies ϑMV H,F and ϑMV H,G, we have the representation (40)
of the difference process ξMV H .
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For the representation (41), we have to compare the characterizations provided by (18)
for H ∈ {F,G}. By doing this, we obtain for all t 6 T

ξMV H
t = ζF,opt

t

V G,opt
0 − g −

(
V G,opt

0 − c
)

ZF,opt
0

+
∫ t−

0

1

ZF,opt
u

(
dLG,opt

u − dLF,opt
u

) . (42)

It remains to study the last stochastic differential appearing in (42). From the GKW-
decomposition of X under (PF,opt,F) and (PG,opt,G) and by Proposition ?? we deduce
that

LF,opt
T = LG,opt

T +
(
Eopt[X|G0]− Eopt[X]

)
.

Thus, for every t 6 T ,

LG,opt
t = E

[
LF,opt

T |Gu

]
−
(
Eopt[X|G0]− Eopt[X]

)
.

On the other hand we have that, for every t 6 T ,

E
[
LF,opt

T |Gt

]
= Eopt

[
X − Eopt[X]−

∫ T

0
ϑF,opt

t dSt|Gt

]
= V G,opt

t − Eopt[X]−
∫ t

0
ϑF,opt

u dSu,

since, being ϑF,opt ∈ ΘF ⊆ ΘG,
∫

ϑF,optdS is a (Q,G)-martingale for all Q ∈ Me
2(G) and

so even for P opt. Thus, for all t 6 T ,

E
[
LF,opt

T |Gt

]
= V G,opt

t −
(
X − LF,opt

t

)
,

and so
LG,opt

t =
(
V G,opt

t −X
)

+
(
Eopt[X]− V G,opt

0

)
+ LF,opt

t ,

which implies dLG,opt
t = dLF,opt

T + dV G,opt
t , t 6 T . We now combine this equality with

formula (42) and obtain the representation (41). �

Remark 21 The two characterizations of the difference optimal process ξMV H provided
by the previous proposition imply that, in this particular setting, if the ordinary agent can
observe the dynamics of the insider approximation price of the claim X just before t, he
could fill his informational gap and reconstruct the optimal hedging strategy of the insider
at t, for t 6 T .
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5 Conclusions

This paper represents a first attempt to analyze the sensitiveness of the hedging strategies
with respect to a change of the information flow. We have studied this problem for the
locally risk minimization and the mean-variance hedging separately. We have shown in
particular that if both agents use the first approach and the additional information of the
insider satisfies a certain property, namely the orthogonal part in the stochastic exponential
representation of its conditional density process vanishes, their hedging strategies coincide
and the cost processes of the ordinary investor is just the projection on his filtration F of
the insider cost process.

On the other hand, the asymmetry of information in the MVH approach is much more
delicate to investigate. Motivated by the feedback characterization of the optimal strategies
yielded by Rheinländer and Schweizer (1997), we have shown that the integrands in the
GKW-decomposition of a claim X under the respective VOMMs of the two agents are
equal. Finally, we have obtained a feedback representation for the difference between the
hedging strategies in a rather general stochastic volatility model where the additional r.v.
G is measurable with respect to the filtration generated by the volatility process.

The problem of comparing the hedging strategies of the two investors in the semimartin-
gale case and for all r.v. G satisfying assumption (1) remains open in the LRM as well as
in the MVH approach.

Moreover, a natural development of this study would be to investigate the hedging
problem in a financial market with an insider possessing either a weak anticipation on the
future evolution of the stock price (Baudoin (2003) and Baudoin and Nguyen-Ngoc (2002))
or an additional dynamical information (as in Corcuera et al. (2002)).
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Decomposition. Stochastic Analysis and Application, 13, 573-599.

[32] Schweizer, M. (1996): Approximation Pricing and the Variance-Optimal Martingale
Measure. Ann. Probab. 64, 206-236.

[33] M. Schweizer (2001): A Guided Tour through Quadratic Hedging Approaches. In:
Jouini, E., Cvitanic, J., Musiela, M. (eds.), Option Pricing, Interest Rates and Risk
Management, 538-574. Cambridge University Press.

24


