
Dynamic Cloudlet Assignment Problem: a
Column Generation Approach

Alberto Ceselli1, Marco Fiore2, Marco Premoli1, and Stefano Secci3

1Department of Computer Science, Università Degli Studi di Milano, Crema, Italy
2CNR-IEIIT, Torino, Italy

3UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France, e-mail: stefano.secci@upmc.fr

Major interest in network optimization is currently given to the integration of
clusters of virtualization servers, also referred to as ‘cloudlets’, into mobile access
networks for improved performance and reliability. Mobile access points (APs)
are assigned (i.e., route their packets) to one or more cloudlets, with a cost in
terms of latency for the users they provide connections to. Assignment of APs to
cloudlet can be changed over time, with a cloudlet synchronization cost. We tackle
the problem of the optimal assignment of APs to cloudlets over time, proposing
dedicated mathematical models and column generation algorithms.

1 Model

Given a set of mobile access point sites (APs in the remainder), a set of virtualization server
facility sites (cloudlets in the remainder) and the network connecting them, we aim at finding
the best schedule for the assignment of APs to cloudlets over a planning time horizon so that
the full AP demand is satisfied, no cloudlet capacity is exceeded and the management cost is
minimum. Let A be a set of APs locations, K be a set of cloudlets and T be a set of time-slots
in which the planning time horizon is split. For each i ∈ A and t ∈ T , let dti be the mobile
traffic demand of AP i in time-slot t. For each k ∈ K, let Ck be the amount of demand
that cloudlet k can handle in each time-slot and let U ∈ [0, 1] represent the maximum allowed
cloudlet utilization ratio. The assignment of an AP to a cloudlet implies a cost for the users
connected to the AP in terms of communication latency, which is computed as the product
of the demand traffic and the physical distance mi,k between AP i ∈ A and cloudlet k ∈ K
in the network. Assignments can change over time, and each change implies a switching cost
for the network, which is computed as the product of the demand traffic to be re-routed in
the time-slot and the distance lk′,k′′ between the pair of cloudlets k′, k′′ ∈ K in the network.
There is a trade-off between users’ and network costs: to minimize the former an AP has to be
assigned to its nearest cloudlet, while to minimize the latter an assignment to a distant cloudlet
might be preferable, as long as it is not changing over time; let α and β be two non-negative
parameters used to weight the relative importance of users and network costs.

We introduce two sets of variables: (i) variables xti,k model AP-cloudlet assignment, taking

value 1 if AP i ∈ A is assigned to cloudlet k ∈ K in time-slot t ∈ T ; and (ii) variables yti,j,k

39

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/333584162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

model the change of assignment in consecutive time-slots, taking value 1 if AP i ∈ A is assigned
to cloudlet j ∈ K at time (t− 1) ∈ T and to cloudlet k ∈ K at time t ∈ T .

We formulate our Dynamic Cloudlet Assignment Problem (DCAP) as follows:

min α
∑

t∈T

∑

i∈A

∑

k∈K
dtimikx

t
ik + β

∑

t∈T

∑

i∈A

∑

(j,k)∈
K×K

dtiljky
t
ijk (1)

s.t.
∑

i∈A
dtix

t
ik ≤ UCk ∀t ∈ T, ∀k ∈ K (2)

∑

k∈K
xtik = 1 ∀i ∈ A,∀t ∈ T (3)

xtik =
∑

j∈K
ytijk ∀i ∈ A,∀t ∈ T \ {1},∀k ∈ K (4)

xtik =
∑

j∈K
yt+1
ikj ∀i ∈ A, ∀t ∈ T \ {|T |},∀k ∈ K (5)

y ∈ {0, 1},x ∈ {0, 1} (6)

Objective function (1) minimizes the trade-off between users’ and network costs. Constraints
(2) impose that for each cloudlet the total demand assigned in each time-slot does not exceed
a fraction U of its capacity; constraints (3) impose that the demand of each AP is completely
assigned; constraints (4) and (5) link x and y variables. In the literature, both single or multi
source assignment models are popular: in the former an AP is assigned to a single cloudlet in
each time slot, in the latter the demand of an AP can be split and served by several cloudlets in
the same time slot. We consider both possibilities: the single source conditions are enforced by
keeping constraints (6), while in the multi source variant constraints on x variables are relaxed
to x ∈ [0, 1]. We also remark that in the single source model, due to constraints (4) and (5),
y variables automatically take integer values when integrality conditions on x are enforced.

2 Algorithm

In order to tackle data instances with large set of time-slots and large scale networks, we
devised a column generation approach with a rounding strategy to restore integrality. Our
Dantzig-Wolfe decomposition on model (1) – (6) yields to the following master problem:

min
∑

i∈A

∑

p∈Ωi

(
α
∑

t∈T

∑

(j,k)∈
K×K

dtiljkỹ
t,p
ijk + β

∑

t∈T

∑

k∈K
dtimikx̃

t,p
i,k

)
zp (7)

s.t. −
∑

i∈A

∑

p∈Ωi

dtix̃
t,p
ik z

p ≥ −UCk ∀t ∈ T, ∀k ∈ K (8)

∑

p∈Ωi

zp = 1 ∀i ∈ A (9)

zp ≥ 0 (10)

where for each AP i ∈ A, Ωi is the set of feasible assignment paths, that model the sequence
of cloudlets to which the AP is assigned in the complete sequence of time-slots. For each path

40

p ∈ Ωi, let variable zp take value 1 if path p is chosen to assign the related AP to the sequence
of cloudlets. A path p ∈ Ωi is encoded via binary parameters x̃t,pik and ỹt,pijk, which behave as the
corresponding variables x and y. Objective function (7) aims in minimizing the management
cost related to the chosen paths; (8) impose the maximum cloudlet utilization in a time-slot;
(9) impose that for each AP a combination of assignment paths are chosen and hence that its
demand is fulfilled in every time-slot.

Since formulation (7) – (9) contains a combinatorial number of variables, we optimize it with
column generation techniques. Let λt,k be the non-negative dual variables of constraints (8)
and ηi be the free dual variables of constraints (9). The pricing problem is a shortest path for
each AP. The corresponding formulation, given a fixed AP î ∈ A, is the following:

min − ηî + α
∑

t∈T

∑

(j,k)∈
K×K

dt
î
ljky

t
îjk

+
∑

t∈T

∑

k∈K

(
βdt

î
mik + dt

î
λt,k
)
xt
î,k

(11)

s.t.
∑

k∈K
xt
îk

= 1 ∀t ∈ T (12)

xt
îk

=
∑

j∈K
yt
îjk

∀t ∈ T \ {1}, ∀k ∈ K (13)

xt
îk

=
∑

j∈K
yt+1
îkj

∀t ∈ T \ {T}, ∀k ∈ K (14)

x ≥ 0,y ≥ 0 (15)

This shortest path problem involves a directed layered graph G(N,A), with |T | layers, one
for each time-slot. Each layer has one node for each cloudlet and one arc for each pair of nodes
in consecutive layers. Each node (t, k) ∈ T ×K has an associated cost given by dti(βmik +λt,k),
while each arc connecting nodes (t, j) and (t+1, k) has an associated weight given by αdt+1

i lj,k.
This shortest path problem can be exactly solved with computational complexity O(TK2) by
means of dynamic programming.
Restoring Integrality In order to restore integrality, a rounding algorithm is executed

at every CG iteration. Given the fractional solution S̃ of the CG master problem and the
fractional variables values z̃, we can compute the values of the corresponding x̃ variables. For
each time-slot t ∈ T and for each AP sorted by descending highest fractional value of x̃tik,
the assignment is made with the cloudlet with enough residual capacity corresponding with
the highest x̃. After each assignment the residual capacity of the chosen cloudlet is updated.
Unfortunately, the rounding problem is a generalized assignment, which is APX-Hard: no
a-priori guarantee on reaching feasibility is given by our algorithm, even if experimentally it
proved to be successful in almost all CG iterations.
Greedy Initial Solution A simple greedy heuristic is used to initialize the master problem.

It works as follows: for each time slot, APs are sorted by descending demand in the time slot
and each AP is associated to a cloudlet chosen according to these rules: (i) take the cloudlet
to which the AP was associated in the previous time-slot if the demand of the AP does not
exceed its residual capacity and if it is not the first time-slot; (ii) find the nearest cloudlet for
which the AP demand does not exceed the residual capacity, otherwise. A solution is provided
in O(TA log(A)K). Still no guarantees neither on quality nor on feasibility of the solution are
given.

41

3 Computational Results

We implemented our algorithms in C++, using CPLEX 12.6 to solve the master LP subprob-
lems, running tests on an Intel i7 4GHz workstation equipped with 32 GB of RAM. We created
two datasets. The first one aims at reproducing realistic scenarii. We used a synthetic set of
1400 APs, whose coordinates are randomly drawn from two normal distributions, in order to
model a metropolitan circular area with an higher density of APs in the city center. Ten clus-
ters of APs were created with a standard k-means algorithm: their centers represent cloudlet
locations and distances mik and ljk were computed as euclidean distances accordingly. Plan-
ning time horizon was set to a single day. We experimented on four time discretizations: two
hours, one hour, thirty minutes and fifteen minutes, corresponding to 12, 24, 48 and 96 time-
slots, respectively. We drew mobile traffic demands for the fifteen-minute time-slots so that:
(i) within a time-slot the distribution of APs demand follows a truncated heavy-tail power law
distribution, and hence the majority of APs have low demand but a significant number of APs
have high demand; (ii) the sum of all demands in a time-slot follows the standard daily activity
profile, which shows a steep rise of the demand during morning rush-hour, followed by a stable
rise until the peak of the evening rush-hour, that is in turn followed by a fall; and (iii) for the
single AP, the change of demand during the day follows the same trend of the sum of demands.
Demand for larger time slots has been obtained by aggregation. The second dataset aims at
stressing our algorithms from a computational point of view. Demands were drawn uniformly
at random for the fifteen-minute time slots, with no relationship between demands in consecu-
tive time-slots. We set the demand of an AP in each time slot as the average of the demands in
the fifteen-minute time-slots that are covered by it. Moreover for each demand matrix we com-
puted five different instances by perturbing all demands with noise drawn uniformly at random
in the interval [−5%,+5%]. Cloudlet capacity was set equal to

(
maxt∈T

∑
i∈A d

t
i/|K|

)
· 1.05.

Finally, parameters α and β were both set to 0.5, while parameter U was set to 1.
Table 1 reports for each time-slot granularity (columns), and for the realistic and random

datasets (rows), the mean, minimum and maximum values computed over the five perturbed
instances of: (i) the execution time of our algorithm in seconds and (ii) the percentage gap
between the final fractional solution and the best integer one found with rounding. We can
notice that the realistic demands show better results both in terms of final gap and execution
times. In particular, while in the realistic dataset the optimality gap is always lower than 1%
and the finer discretization requires less than one minute of execution time, in the random
dataset the gap is always higher than 1.5% and the execution takes up to several minutes.
We also notice that on the realistic dataset, the optimality gap increases together with the
number of time-slots, while an opposite behavior is observed on the random dataset. We
impute this behavior to the smooth trend of realistic demands during the day, while random
dataset involves sudden changes in consecutive time-slots.

no. time-slots 12 24 48 96
data type stats. gap time gap time gap time gap time

Realistic
mean 0.96% 1.8s 0.70% 4.6s 0.61% 12.2s 0.42% 54.4s
min 0.69% 1s 0.60% 4s 0.44% 11s 0.32% 51s
max 1.31% 2s 0.85% 5s 0.73% 14s 0.48% 56s

Random
mean 1.77% 5s 1.89% 18s 2.25% 110.2s 2.53% 1165.6s
min 1.69% 5s 1.63% 17s 2.13% 106s 2.42% 1098s
max 1.88% 5s 2.05% 19s 2.41% 112s 2.67% 1244s

Table 1: Computational Results Statistics

42

