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INTRODUCTION  
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NEURODEGENERATIVE DISEASES AND PROTEINOPATHIES 
Neurodegenerative diseases (NDs) are characterized by the progressive degeneration of neurons 

in different region of the nervous system. NDs are a very heterogeneous set of disorders that can 

be differentiated by the age onset, the brain region effected, the clinical outcome, and the 

progression of the pathology. Although NDs are very heterogeneous for their clinical features 

and eziopathology, they share several cellular mechanisms, as, for example, misfolded protein 

accumulation, formation of protofibrils (Hardy, J. 1997), alteration of degradation mechanisms 

(Crippa et al., 2010), oxidative stress (Palacino et al., 2004), mitochondrial damage (Sipione & 

Cattaneo, 2001), failure of axonal transport and loss of synapsis (Li et al., 2001). 

Many mechanisms have been identified that concur to neuron death in NDs (Bossy-Wetzel et al., 

2004). Nevertheless, most NDs, like Alzheimer's disease (AD), Parkinson's disease (PD), 

tauopathies, Amyotrophic Lateral Sclerosis (ALS), Frontotemporal Dementia (FTD), are 

characterized by accumulation of specific protein in nervous tissue. For this common feature 

some NDs are also known as proteinopathies (Bayer, 2013) (Figure 1).  

Proteinopathies are characterized by the aggregation of a single protein or two different proteins 

that misfold and expose hydrophobic amino acid side chains that are normally confined inside 

the protein in its native state. This increases the hydrophobic interactions that leads to protein 

self-association and formation of oligomers, capable to elongate and to bind other intracellular 

proteins forming insoluble aggregates; then, these aggregates may become insoluble and 

precipitate inside the cells. The insoluble aggregates can be amorphous or can be organized in 

fibrils  (Chiti & Dobson, 2006). They can be found in cells altering cellular homeostasis or can be 

released and deposit in the extracellular environment effecting the organ integrity (Almeida & 

Saraiva, 2012; Zraika et al., 2010). 

The origins of misfolded proteins are multiple: proteins may misfold in a stressed environment 

where proteins synthesis is enhanced (Chiti et al., 2001) or their clearance is reduced (Chiti et al., 

2001); there can be a misfunctioning of the folding mechanisms as well as a failure of the protein 

quality control mechanisms (McNaught et al., 2002; Waelter et al., 2001). In addition, mutations 

in genes that express unstable proteins which cannot properly fold, may also occur. All of these 

situations may occur in combination, summing up their deleterious effects in cells.   

At first, it was thought that proteinopathies were triggered by the aggregation of normal 

physiological proteins that became pathologically active after their misfolding (Brundin et al., 

2010; Carrell & Lomas, 1997). Afterwards, data showed that in the brain tissue of affected 
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patients, were present aggregates of proteins truncated and/or post-translationally modified. It 

has been demonstrated that these protein modifications enhance aggregation and increase 

protein-toxicity (Barrow & Zagorski, 1991; Dong et al., 2003; Masters et al., 1985).  

Insoluble protein aggregates lead to cell toxicity and death in many ways. In first place, misfolded 

proteins lose their functionality. Moreover, misfolded proteins or disorganized aggregates bind 

to cellular proteins preventing their functionality (Radford & Dobson, 1999). They can also 

interact with many cellular molecules and oligomers, leading to a multiplicity of mechanisms of 

toxicity. In fact, it has been demonstrated that misfolded proteins can interact with cell 

membrane phospholipid bilayer and receptors (Hirakura & Kagan, 2001; Kourie & Shorthouse, 

2000; Lin et al., 2001) and membranes of organelles like mitochondria, ER and Golgi, causing 

release of Ca2+ and oxidative stress, consequently leading to apoptotic or necrotic cellular death 

(Ross, 2002).  

Cells prevent the accumulation of misfolded proteins or the formation of unstable toxic 

aggregates using specific mechanisms, such as the unfolded protein response (UPR) in the ER or 

the heat shock protein (HSP) response in the cytosol. These mechanisms, supported by the 

degradation pathways, are known as the protein quality control (PQC) system (Rubinsztein, 2002; 

Tofaris et al., 2001).  
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Figure 1 Protein aggregates in neurodegenerative disease: a.Alzheimer disease; 
b.Frantotempral Dementia; c.Parkinson disease; d.Huntington disease; e.ALS; 
f.CJD. (Forman et al., 2004) 
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AMYOTROPHIC LATERAL SCLEROSIS 
Amyotrophic Lateral Sclerosis (ALS) is a ND characterized by a remarkable component of 

alteration in proteostasis. In fact, for these features, is also considered as a proteinopathy.  

ASL has been described for the first time by Jean-Martin Charcot in 1869 and is currently 

diagnosed to 3-4 individuals over 100’000 people. Commonly the disease onset is in adulthood, 

with an age range around 55 years, and the patient dies after 3-5 years after the diagnosis, 

however it might strike earlier and the survival can be of only 6 month or, in fewer cases, it might 

extend up to 25 years.  ALS is characterized by the progressive loss of both upper and lower 

motor neurons (MNs). These neurons are responsible of the control of skeletal muscles; because 

of that, the progressive death of MNs leads to weakness and atrophy of muscles causing loss of 

the voluntary muscular movement (Al-Chalabi & Hardiman, 2013).  

ALS can be classified in familiar forms (fALS) and sporadic form (sALS). About 10% of the ALS cases 

are forms of fALS, where mutations of genes are inherited in families (at least two people in the 

same family). The inherited mutations are almost always a dominant trait and have frequently a 

high penetrance. The remaining 90% of the cases are a sALS form. All ALS cases are characterized 

by the presence of ubiquitin (Ub) positive inclusions (Peters et al., 2015). Moreover, besides the 

presence of inclusions positive to misfolded proteins encoded by mutated genes, around 97% of 

ALS cases, inclusions are positive to wild type proteins such as TDP-43 (Bosco et al., 2010; 

Neumann et al., 2006). Furthermore, another evidence of proteotoxicity in ALS is the presence 

of signs of impairment in the PQC system. Finally, many genes mutated associated to ALS encode 

proteins involved in PQC system as chaperones and ubiquitin proteasome system (UPS) or 

autophagic regulators.  

CLINICAL SIGNS 

The clinical signs of the disease can subdivide ALS in different subsets according to which MNs 

are firstly and mainly affected. About 70% of the patients present a limb-onset. When spinal 

neurons or lower MNs are affected first, patients develop weakness, flaccidity and atrophy of 

limbs. Conversely, if firstly corticospinal MNs are affected and the involvement of spinal MNs is 

limited (known as primary lateral sclerosis) patients show hyperreflexia, spasticity, increased 

limb tone and little muscle atrophy. Moreover, about 25% of the patients present a bulbar-onset. 

The loss of brainstem MNs (known as bulbar ALS) causes tongue atrophy that leads to thickness 

of speech and difficulty in swallowing.  The degeneration of cortical fronto-bulbar MNs (known 
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as pseudobulbar-palsy) leads to a slow and highly dysfunctional speech and swallowing but 

without any tongue atrophy. Finally, the remaining 5% of patients present trunk onset with 

respiratory involvement (Vucic et al., 2007). Most of ALS cases evolve in the other areas of the 

brain tissue and end with death due to respiratory failure. The heterogeneity of medical signs 

and symptoms, leads to a difficult diagnosis that is worsened by the overlapping of clinical 

features with other adult-onset NDs, like FTD (Kiernan et al., 2011; Nass et al., 2012; Phukan et 

al., 2007).   

RISK FACTORS 

The causes of ALS are attributable to genetic alterations and the environment. In some sALS 

patients are found genetic variants present in fALS forms. However, there are no clear differences 

between fALS cases and sALS in clinical symptoms and sings. This leads to think that there could 

be common molecular mechanisms that cause the disease (Hanspal et al., 2017).  

ENVIRONMENTAL FACTORS 

Through years, many environmental factors, that contribute to ALS onset, have been analyzed. 

Studies show that long exposure to physical and chemical substances such as heavy metals, 

pesticides, electromagnetic fields may concur to the onset of the disease. Data show that high 

body mass index (BMI), physical activity or head traumas can also increase risk of ALS onset.  

The exposure to heavy metals, like lead (the most studied), were demonstrated to lead to a high 

risk of ALS. However, in the last decade the knowledge of the risk brought people to decrease or 

even nullify the exposure to lead or other heavy metals. This temporarily eliminated the exposure 

to these metals as a cause of ALS onset (Trojsi et al., 2013; Wang et al., 2017). 

Pesticides include rodenticide, insecticides and herbicides. Studies show that the exposure to 

pesticides induces oxidative stress, mitochondrial dysfunction, α-synuclein storage, that lead to 

neuronal loss. It has been demonstrated that a high exposure to pesticide concurs to ALS onset 

as well as other NDs. Exposure to pesticide risk is strictly correlated to genetic factors. In fact, it 

has been demonstrated that mutations in a specific gene (PON1) increase pesticide induced 

damage. PON1 gene expresses an enzyme that hydrolyzes organophosphate pesticides so its 

misfunctioning worsens pesticide exposure effects (Bozzoni et al., 2016; Slowik et al., 2006).  

Long exposure to electromagnetic fields might also be related to ALS-onset. Some studies have 

associated the increasing risk of motor neuron disease to occupations related to electricity. In 
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particular, works with a high exposure to low frequency electromagnetic fields and electric-

shocks are more subjected  to ALS risk (Johansen, 2000; Mitchell, 2000; Park et al., 2005) . 

Nowicka and colleagues show that all of these risk factors alter cellular homeostasis by inducing 

oxidative stress (Nowicka et al., 2019). In particular, they suggest that these risk factors decrease 

cell capability of eliminating excessive reactive oxygen species (ROS) leading to alteration and 

damage of cell organelles that, if not reverted, leads to cell death. In fact, high exposure to heavy 

metals leads to cell depletion of antioxidant molecules and enzymes (Ercal et al,. 2001). Also 

pesticides increase oxidative stress. Studies demonstrated that pesticides alter the total amount 

of thiol molecules decreasing the antioxidant capacity, and they activate cell membrane lipid 

peroxidation (Mostafalou & Abdollahi, 2018). Finally, in vitro studies showed that exposure to 

low frequency electromagnetic waves resulted in generation of a larger quantity of cellular ROS. 

This was confirmed in vivo where it was also demonstrated that the exposure to low frequency 

electromagnetic fields disables antioxidant properties within cells (Martínez-Sámano et al., 

2012).  

Even if, environmental factors have an important role in ALS onset, in most of the cases the 

simple exposure to environmental factors cannot explain by themselves the onset of the disease. 

In these cases, environmental factors are strictly correlated to genetic factors.  

GENETIC FACTORS 

Most of the fALS cases and some sALS are correlated to mutation of genes that lead to motor 

neuron degeneration. It is difficult to define the genetic contribute to ALS onset, as not all 

mutations have a full penetrance. Some genes have dominant inheritance with a full penetrance, 

some only with a partial penetrance, others are recessive mutations, and finally, some mutations 

can even be X-linked (Zufiría et al., 2016). Moreover, mutations frequency is population-specific. 

In 1993, the first mutation correlated to ALS was found, which was a mutation in superoxide 

dismutase 1 (SOD1) gene. Up to now, sequencing and advanced molecular biological 

technologies have permitted to find up to 50 mutated genes which can concur to the onset of 

ALS. The genes found involved in ALS-onset can be classified by the mechanisms that the proteins 

they express are involved in. Some mutated genes express proteins involved in oxidative stress 

like SOD1, others involved in RNA metabolisms like TAR-DNA binding protein 43 (TDP-43) and 

Fused in Sarcoma (FUS), others implicated in vesicle trafficking like Optineurin (OPTN), Alsin 

(ALSIN), VAMP Associated Protein B (VAPB), others regulate or are implicated in degradation 

systems like Valosin Containing Protein (VCP), Sequestosome 1 (SQSTM1), Ubiquilin 2 (UBQLN2), 
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others cooperate with actin polarization like Profilin 1 (PFN1), and finally there are some 

mutations, which occur in intronic gene sequences resulting in expression of proteins that are 

normally not express, like C9ORF72 gene.  

The most recurrent mutated genes in both European and Asian ALS-patients are SOD1, TDP-43, 

FUS and C9ORF72 (Figure 2). These mutations are present in familiar and sporadic ALS.  

SOD1 

Rosen et al. discovered in 1993 mutations of SOD1 gene correlated to fALS cases. In particular, 

they found 11 missense mutations in 13 different fALS families. Since then, more than 180 

different mutations have been discovered (Rosen et al., 1993). These mutations are mainly single 

point mutations, but there are also deletions, insertions and truncations spread through all the 

5 exons of SOD1 gene (Yamashita & Ando, 2015).  

SOD1 gene is localized on chromosome 21q22.11 and it expresses SOD1 monomeric protein with  

a mass of 16kDa and composed by 153 highly conserved amino acids (Rosen et al., 1993); 

(Doucette et al., 2004). SOD1 is active as a homodimer metalloprotein that binds a Cu2+ and  a 

Zn2+ ions. It is localized mainly in the cytoplasm, but is also distributed in the nucleus, 

mitochondria and lysosomes (Getzoff et al., 1989; Zelko et al., 2002). SOD1 main function is to 

protect from oxidative stress by dismutating the free superoxide radicals (O2
•−) into oxygen (O2) 

and releasing the less reactive hydrogen peroxide (H2O2) (McCord & Fridovich, 1969).  

Mutations in SOD1 are correlated to fALS and to some sALS-patients. These mutations are 

causative of nearly 15% of European-fALS and up to 30% in Asian-fALS cases. While they are 

correlated to only 1.2% of European-sALS and 1.5% in Asian-sALS cases (Zou et al., 2017). ALS 

caused by any SOD1 mutations is known as ALS1. ALS1 can have many different phenotypes 

depending on the variants that are present and if they are homo o heterozygous. In fact, ASL1-

cases can differ for disease duration and severity. For example A4V and G93A mutations are 

correlated to rapid disease progression and shorter survival, while homozygous D90A has a 

slowly progressive paresis that starts in the legs and has some atypical features like bladder 

disturbance (Andersen et al., 1996; Juneja et al., 1997; Yamashita & Ando, 2015). Whereas, 

heterozygous D90A is associated with various ALS forms including bulbar, upper limb or lower 

limb onset with a faster progression (Li & Wu, 2016). The most common and studied mutations 

are D90A, A4V and G93A.  

D90A has an alanine in place of the aspartic acid 90. Patients carrying this mutation can have 

different clinical symptoms and disease course depending on whether is homo or heterozygous 
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as it was first described. Of the three, it is the most common mutation in Europe. In fact, it is 

correlated to 50% of all ALS cases in Sweden and Finland. This SOD1-mutant has normally a 

recessive inheritance, but in fewer cases, it can be also inherited as a dominant mutation.  

A4V has alanine 4 changed to a valine. It is the most common SOD1 mutation correlated to ALS 

that is found in North America (nearly 50%). Biochemically, this mutation leads to the formation 

of aggregates in the nucleus and in cytoplasm.  

G93A mutation has an alanine in place of glycine 93. It is the rarest of the three, but is the most 

researched. In fact, G93A was the first mutation correlated to ALS that was studied in a transgenic 

mouse which had the phenotype of a motor neuron syndrome. G93A is correlated to a disease 

with a rapid progression and a short survival (Andersen, 2006; Yamashita & Ando, 2015). 

Biochemically, the mutation is correlated to the formation of cytoplasmatic aggregates and mis-

localization of the protein that loses the capacity to be retained in the nucleus (Sau et al., 2007). 

Mutations alter SOD1 conformation, destabilizing the dimer and decreasing the enzyme activity 

up to 80% in same cases (Deng et al., 1993; Rosen et al., 1993). However, it has been 

demonstrated that the correlation between SOD1-mutants and ALS is not due to a loss of 

functioning of the enzyme, but probably to a toxic gain of function (Cleveland et al., 1995).  This 

is confirmed by the fact that SOD1-knockout mouse model does not develop an ALS phenotype 

(Siwek, 1996). Conversely, many pathological mechanisms have been proposed, but the main 

toxic pathway is still not fully known. Firstly, aberrant SOD1 leads to anomalous chemical reaction 

as tyrosine nitration, peroxidation and reverse catalysis (Pasinelli & Brown, 2006). Moreover, 

SOD1 altered conformation increases protein-protein interaction and triggers the formation of 

protein aggregates. These results alter cellular homeostasis increasing oxidative stress, DNA 

damage, mitochondrial dysfunction, disturbance in axonal transport and alteration of the PQC 

system in particular, decreasing the functionality of the UPS (Boillée et al., 2006; Ikenaka et al., 

2012; Sau et al., 2007).  

Increase in oxidative stress could be due both to a decrease in SOD1-mutant functioning 

correlated to insufficient degradation of ROS or to an over-functioning of SOD1-mutant with an 

increase in hydrogen peroxide radical levels (Allen et al., 2003). Both can lead to peroxidation of 

fatty acids with alteration in cells membrane. Moreover, increased ROS levels lead to activation 

of signaling pathways and alteration in protein structure and functionality. Nervous tissue is 

particularly sensible to oxidative stress. In fact, in nervous tissue, energy is produced by catabolic 

mechanisms dependent from O2 levels; moreover, there are many unsaturated fatty acids that 
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are sensible to ROS; finally, there is a very low concentration of glutathione, an important 

antioxidant molecule (Wang et al., 2009).  

Oxidative stress and formation of aggregates concur to ER stress. Endoplasmic reticulum stress 

activates UPR which, if the stress persists, activates apoptotic neuron death (Malhotra & 

Kaufman, 2007). The increase in DNA damage is due to mislocalization of SOD1 in cytoplasm 

aggregates that causes a reduction of soluble SOD1 in the nucleus. The loss of soluble SOD1 in 

then nucleus nullify its protective role from ROS and it consequently increases DNA damage 

(Brasil et al., 2018; Inoue et al., 2010; Sau et al., 2007). Aggregates formation also damage 

organelles like mitochondria or proteasome. Mitochondrial damage results in reduction of 

adenosine triphosphate (ATP) synthesis and increased production of oxidative stressors. The 

decrease of ATP levels blocks Na+/K+ pumps leading to a slow depolarization with 

hyperexcitability, and blocks of Ca2+ pumps with an increased intracellular Ca2+ level that 

activates apoptotic pathways leading to cell death (Miquel et al., 2012; Szelechowski et al., 2018).  

Moreover, mitochondrial damage is associated to an increased production of oxidative stressors. 

Several data demonstrate that the increase in ROS further enhance alteration in mitochondrial 

morphology and inhibition of ATP production (Bernard et al., 2007). Mitochondrial damage is 

strictly correlated to alteration in axonal transport. Axonal damage results in alteration of 

organelles transport and in accumulation of neurofilaments that can be found in the brain tissue 

of affected patients (Hirano et al., 1984).  

The progression of the disease correlated to SOD1-mutant and the spreading from lower MNs to 

upper or vice versa could be explained by the fact that SOD1-mutants can spread from cell to 

cell. In fact, it has been demonstrated in vitro and in vivo that SOD1-mutants upregulate the 

release of extracellular vesicles that contain the mutant protein. Moreover, it was observed that 

neurons can intake extracellular vesicles that carry SOD1-mutant (Grad et al., 2014; Münch & 

Bertolotti, 2011). 

TDP-43 

TAR DNA binding protein 43 (TDP-43) is a DNA/RNA binding protein that belongs to a 

heterogeneous nuclear ribonucleoprotein (hnRNP) family. It was firstly identified in 1995 as a 

binding and repressor protein of pyrimidine-rich DNA motifs in a long terminal repeat called TAR 

of HIV1 virus (Ou et al., 1995). Afterword, it was discovered that TDP-43 mainly binds RNA with 

a highly conserved RNA recognition motif (RRM). In 2006, TDP-43 was for the first time associated 

to ALS and FTD as it was discovered to be the main component of insoluble inclusions present in 
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the brain tissue of affected patients (Arai et al., 2006; Neumann et al., 2006). From 2008, 

dominant mutations in TDP-43 gene (TARDBP) were correlated to ALS providing evidence that 

aberrant TDP-43 could be causative of neurodegeneration. To date, nearly 50 mutations in 

TARDBP are correlated to ALS; in particular they are correlated to 4.2% of European fALS cases 

and 1.5% of Asian fALS cases and only 0.8% of European sALS cases and 0.2% of Asian sALS cases 

(Figure 2). However, TDP-43 in its wild type form, is highly relevant in ALS pathology as it is a key 

component of the insoluble and ubiquitinated inclusions of nearly 97% of ALS cases.  

TDP-43 is a ubiquitous protein localized mainly in the nucleus, but it can be also found in 

cytoplasm. TDP-43 can shuttle from a compartment to the other thanks to a nuclear export signal 

(NES) and a nuclear localization signal (NLS) that are present in the protein structure.  

TDP-43 has a key role in RNA metabolism. In fact, it is involved in exon splicing, gene 

transcription, mRNA stability, mRNA biosynthesis, mRNA transport, mRNA degradation and non-

coding RNA regulation. Moreover, data show that TDP-43 concurs in stress granules (SGs) 

formation. 

TDP-43 can bind RNA through two RRM present in a central domain which is linked to a N-

terminal domain and a C-terminal domain. The N-terminal domain (NTD) function is to bind 

another N-terminal domain forming a homodimer. It is debated if TDP-43-NTD dimerization is a 

physiological or a pathological mechanism. Data suggest that dimerization is necessary for TDP-

43 physiological functions, but other suggest that is involved with TDP-43 aggregation. In fact, 

Tsoi and colleagues showed that NTDs dimerization is reversible, but it enhances the propensity 

of the C-terminal region to aggregate (Tsoi et al., 2017). While Jiang and colleagues showed that 

NTD dimerization enhances TDP-43 role in pre-mRNA splicing, improves its solubility and protects 

from the formation of cytoplasmic inclusions (Jiang et al., 2017). 

The two RNA recognition motifs (RRM1, RRM2), attached to one another by 15 aa linker, 

recognize with high specificity short TG/UG-rich sequences of DNA/RNA (Kuo et al., 2014). The 

RRMs contribute in different ways in TDP-43 functioning. They make possible specific mRNA 

recognition and regulation, among which they can also recognize its own mRNA with a resulting 

autoregulation mechanism that controls TDP-43 own total cellular concentration (Ayala et al., 

2011). Moreover, by binding RNA or single stranded DNA (ssDNA), RRMs concur in regulating the 

TDP-43 solubility and helping preventing its aggregation (Huang et al., 2013; Sun & Chakrabartty, 

2017).  
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The C-terminal domain is a glycine-rich segment enriched with uncharged polar amino acids. This 

disordered region resembles highly aggregating prion-like domain (King et al., 2012; Liebman & 

Chernoff, 2012). C-terminal functions are mostly unknown. Recently, it has been shown that C-

terminal domain is involved in stress granule formation. In fact, it concurs in the formation of 

dynamic protein droplets where it has mild transient interactions that seem crucial for the 

formation of SGs (Conicella et al., 2016; Mcdonald et al., 2011).  

TARDBP mutations associated to ALS are mainly localized in exon 6 which encodes TDP-43 C-

terminal region. Mutations modify TDP-43 functioning and stability. In fact, they increase TDP-

43 propensity to aggregate, enhance its cytoplasmic mis-localization, alter protein stability and 

resistance to proteases, and modify TDP-43 interactions with other proteins (Buratti, 2015; 

Lattante et al., 2013; Pesiridis et al., 2009). Some mutations are present in both sporadic and 

familiar forms of ALS. Some are also correlated to other diseases like FTD. However, the overall 

percentage of mutations correlated to ALS, as first shown, is quite low. Conversely, a very high 

percentage of ALS-cases are correlated to inclusions positive to TDP-43 wt. In fact, all cases of 

ALS, except from ALS cases correlated to SOD1 and FUS mutants, present insoluble species 

positive to TDP-43. TDP-43, present in these insoluble species, can be found ubiquitinated, 

phosphorylated and truncated (Arai et al., 2006; M. Hasegawa et al., 2008; Inukai et al., 2008; 

Neumann et al., 2006, 2009). TDP-43 has different potential phosphorylation sites: 41 serine, 15 

threonine and 8 tyrosine residues. Kinases as CK1, CK2 and GSK3 have been identified to 

phosphorylate TDP-43 in various phosphorylation sites like  Ser-409/Ser-410, that is considered 

a signature of ALS pathology (Neumann et al., 2006, 2009). Data show that in neuronal cells, 

phosphorylation enhances mis-localization and aggregation (Barmada & Finkbeiner, 2010; 

Liachko et al., 2010; Nonaka et al., 2009; Takashi Nonaka et al., 2016). Data also show that TDP-

43 is found ubiquitinated. In particular, the ubiquitin ligase, Parkin, ubiquitinates TDP-43 with 

both K-63 and K-48 polyubiquitin chains. Ubiquitination concurs in formation of aggregates that 

could be then addressed to different degradation systems (Hebron et al., 2013; Scotter et al., 

2014). TDP-43 can be found in inclusions as full-length or as truncated forms. The truncated 

forms are C-terminal fragments of 25 or 35 kDa (TDP-25, TDP-35) generated by proteolytic 

cleavages of  caspase and or alternatively calpain proteases (Tsuji et al., 2012; Xiao, Sanelli, et al., 

2015). Data demonstrate that chronic oxidative stress or ER stress can increase caspase activity 

generating TDP-43 C-terminal fragments (Meyerowitz et al., 2011; Suzuki et al., 2011). In these 

studies, TDP-35 is well detected while TDP-25 is found in low levels. On the contrary, in inclusions 
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in brain tissue of effected patients, TDP-35 is rarely observed while TDP-25 is always present, for 

this reason is considered a pathological signature of the ALS and FTD brain (Hasegawa et al., 

2008; Neumann et al., 2006, 2009). Other studies show that C-terminal fragments could be a 

result of an alternative translation of TARDBP that is pathologically upregulated in ALS. Data show 

that could be either the translation of an alternative transcript, or the in-frame translation that 

starts from a downstream initiation codon (Nishimoto et al., 2010; Xiao et al., 2015). In any case, 

C-terminal fragments are found phosphorylated mainly in inclusions of the brain cortex, whereas 

in the spinal-cord there is a predominant deposition of phosphorylated full-length TDP-43 

(Neumann et al., 2009).   

TDP-25 lacks of the NLS as a result of proteolytical cleavage (Lee et al., 2011; Winton et al., 2008). 

The lack of NLS added to the typical prion like structure of the TDP-43 C-terminal domain confers 

to TDP-25 a high propensity to aggregate and to form cytoplasmatic inclusions. The high capacity 

to aggregate of C-terminal truncated forms are considered a possible pathological mechanism 

that triggers aggregation and mis-localization of full-length TDP-43 (Shimonaka et al., 2016).  

TDP-43 mis-localization and aggregation results in triggering different pathogenic pathways. In 

first place, TDP-43 mis-localization leads to a loss of its nuclear functions. Nuclear loss of function 

results in differential splicing and/or expression of TDP-43 targets (Colombrita et al., 2015; 

Highley et al., 2014; Klim et al., 2019). In support that the loss of TDP-43 nuclear functions can 

be a pathway of the disease, the homozygous TDP-43 null mice are not viable (Kraemer et al., 

2010; Sephton et al., 2010)  and inducible TDP-43 knockout in adult mice is lethal (Chiang et al., 

2010). However, the main pathogenic mechanisms seem to be attributable to TDP-43 gain of 

neuronal toxicity function in the cytoplasm. In fact, overexpression of either wild type or mutant-

TDP-43 in animals results in a neurodegenerative phenotype (Ash et al., 2010; Kabashi et al., 

2010; Liachko et al., 2010; Stallings et al., 2010; Wils et al., 2010). 

Increased concentration of TDP-43 alters endocytosis pathways. In fact, it was observed in ALS 

patients and in yeast that, in abnormal abundance of TDP-43, it localizes with endocytosis-

associated proteins. Moreover, Liu and colleagues demonstrate that TDP-43 inhibits endocytosis 

(Liu et al., 2017). On the other hand, endocytosis seems to be involved in TDP-43 turnover, so 

alteration in this pathway increases TDP-43 aggregation and toxicity (Leibiger et al., 2018; Liu et 

al., 2017). Independently from endocytosis, also other degradation pathways are involved in 

TDP-43 toxicity. In fact, TDP-43 can also be degraded by UPS, when it is in its soluble form, and 

autophagic pathway, when it is in its aggregated and insoluble form (Crippa et al., 2016; Scotter 
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et al., 2014; Zhang et al., 2010). Alteration in these systems, that can be due to mutation in genes 

that encode protein involved in the systems, leads to an increase in insoluble TDP-43 aggregates 

(Budini et al., 2017; Filimonenko et al., 2007; Osaka et al., 2016). Whereas the increased activity 

of the systems can decrease the levels of the insoluble TDP-43 (Barmada et al., 2014; Crippa, 

Cicardi, et al., 2016).  In parallel, autophagic pathway can be altered by TDP-43 mutations or mis-

localization as proteins involved in autophagy regulation have mRNAs that are targets of TDP-43 

(Bose et al., 2011) . 

The abnormal levels of TDP-43 wild type and mutants alter mitochondria structure, functioning 

and transport. Wang and colleagues demonstrate in primary MNs that TDP-43 toxicity results in 

mitochondrial length alteration and in impaired mitochondrial movement. Alteration in 

mitochondria dynamics was also detected in mouse and flies models (Altanbyek et al., 2016). 

Mitochondria alteration leads to oxidative stress and increases levels of metal ions like zinc, 

manganese and copper. Moreover, TDP-43 aggregates directly increase oxidative stress and 

damage and cause increased accumulation of the anti-oxidant response (Duan et al., 2010; Tian 

et al., 2017). Finally, TDP-43 mutations are also correlated to alteration of SGs assembly and 

release. In particular recent data show that in primary motor neurons, TDP-43 is recruited to SGs 

and cells expressing TDP-43-mutant have less and smaller SGs (Gordon et al., 2019).  

In the same way as SOD1-mutants, TDP-43 mutants and/or aggregates spread from cell to cell 

with a prion-like mechanism of self-templating propagation (Bräuer et al., 2018; Smethurst et al., 

2016). There are various different mechanisms that assist TDP-43 aggregate spreading. There are 

data that show that TDP-43 aggregates can propagate via cerebrospinal fluid (CSF) (Ding et al., 

2015). Others demonstrate that aggregates are transported along neuroanatomical pathways 

thanks to axonal transport (Fallini et al., 2012; Kassubek et al., 2014). Finally, studies show that 

they can be released locally and spread from cell to cell (Iguchi et al., 2016; Smethurst et al., 

2016). Recently, several studies have identified the secretion of exosome as a new pathway of 

transmission of TDP-43 aggregates (Feiler et al., 2015; Iguchi et al., 2016). It has been 

demonstrated in neuronal cell line that exosomes contain TDP-43 overexpressed and that 

inhibition of exosomes-release increases TDP-43 aggregates. To support the importance of 

exosomes secretion, in sALS-patient exosomes were found higher levels of TDP-43 (Feiler et al. 

2015).  
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C9ORF72 

In 2011 C9ORF72 gene, localized on locus 9p21 of chromosome 9, was correlated to ALS and FTD 

(DeJesus-Hernandez et al., 2011; Renton et al., 2011). Mutations in C9ORF72 gene are found 

mainly in European population, in fact they are associated to nearly 34% of European-fALS and 

more than 5% of European-sALS cases. It is also present in lower levels in Asian population, with 

2.3% in fALS cases and 0.3% in sALS cases (Zou et al., 2017).  

C9ORF72 is transcribed in two  “long” variants and one “short” variant. The long variants (variant 

2 and 3) encode for full length proteins of 481 aa, while the “short” variant (variant 1) encodes 

for short isoform of 222 aa. Isoform 2 is the most expressed in central nervous system (Rizzu et 

al., 2016). C9ORF72 protein function is still to be well clarified. Recent data show that C9ORF72 

protein is involved in endosomal trafficking and autophagy regulation. In fact, bioinformatic 

analysis show that C9ORF72 protein has a high homology with DENN protein family, activators 

of RAB GTPase and regulators of membrane trafficking (Levine et al., 2013). Moreover, C9ORF72 

forms a complex that interacts with different RAB proteins regulating various steps of autophagy 

(Amick et al., 2016; Farg et al., 2014; Sullivan et al., 2016). In support to C9ORF72 protein 

involvement in autophagy regulation, the knockdown of C9ORF72 in primary neurons and in 

iPSC–derived neurons from patients, leads to the accumulation of some autophagy substrates 

like p62, a marker of the autophagic flux (Aoki et al., 2017; Webster et al., 2016).  

Mutations of C9ORF72 correlated to ALS and FTD are hexanucleotide repeat expansions (G4C2) 

of a non-coding region. In particular, the expansion in variants 1 and 3 is located in an intron 

between two alternatively spliced exons, while for variant 2 is located in the promoter region. In 

physiological condition the GGGGCC expansion is less then 11 repeats, whereas in pathological 

condition, it could reach hundreds or even thousands repeats (Beck et al., 2013; DeJesus-

Hernandez et al., 2011; Dobson-Stone et al., 2013; Ishiura et al., 2012). The length of the repeat 

seems to be correlated to survival and age onset: the longer is the expansion the worst is survival 

and the earlier is age onset (Van Blitterswijk et al., 2013; Gijselinck et al., 2016).  

In first place, it was supposed that expansion in C9ORF72 gene led to a loss of function, as in 

patients were found lower levels of C9ORF72 mRNA and protein (Waite et al., 2014; Xiao, 

MacNair, et al., 2015). However, the knockout mouse does not show motor-neuron degeneration 

or ALS phenotype (Koppers et al., 2015). Therefore, C9ORF72 loss of function is not sufficient but 

it has to be associated to a toxic gain of function. Toxicity can be caused by the transcription of 
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sense and antisense RNA with GGGGCC or CCCCGG repeats or it can be due to the ATG 

independent translation (RAN-translation) of dipeptide repeated proteins.  

The repeat-containing RNA forms particular secondary structures as i-motifs, hairpins, and G-

quadruplexes. These structures can interact and sequester RNA-binding proteins forming nuclear 

RNA foci (Fratta et al., 2012; Rahimov & Kunkel, 2013). The sequestration of RBP prevents their 

functioning, altering proper metabolism of target mRNAs (Fratta et al., 2012). RNA foci can be 

found in neurons but also in microglia, astrocytes and oligodendrocytes.  

Dipeptide repeat (DPR) proteins are translated in an ATG independent mechanism called RAN 

translation. They can be translated on both sense GGGGCC and anti-sense CCCCGG mRNA: in 

particular, poly-GA and poly-GR are uniquely translated from the sense RNA, poly-PA and poly-

PR are uniquely translated from the antisense RNA, and poly-GP is translated in both directions. 

DPRs have a highly propensity to aggregate forming inclusions. Inclusions of different DPRs can 

co-occur in the same neuron, but normally there is a higher predominance of inclusions positive 

to sense-strand RNA-encoded DPRs (Mori et al., 2013). DPR inclusions are found mainly in the 

brain and in lower levels in the spinal cord (Gomez-Deza et al., 2015). They are localized in the 

cytoplasm but also in the nucleus of neurons. To date no DPR inclusions are found in microglia, 

astrocyte or oligodendrocyte (Mori et al., 2013). Studies show that all DPRs clearance, except for 

poly-PR, occurs mainly through the autophagic pathway. In fact, the upregulation of genes 

involved in the autophagic machinery as Heat Shock Protein B8 (HSPB8) enhances the 

degradation of DPRs (Cristofani et al., 2018).  

DPR proteins and mRNAs presence activate various pathological pathways as: DNA damage, 

nucleolar disfunction, altered nucleo-cytoplasmatic translocation, dysregulated formation and 

clearance of SGs, translation inhibition and block of the UPS.  

DNA damage is mediated mainly by poly-GR, that alters mitochondria functions causing oxidative 

stress which in turn leads to DNA damage (Choi et al., 2019; Lopez-Gonzalez et al., 2019). 

Alteration in nucleolus leads to cell death as nucleolus activity is fundamental for ribosomal-RNA 

metabolism. The accumulation of DPRs in this compartment leads to altered ribosomal-RNA 

biogenesis by interfering with rRNA splicing and maturation (Kwon et al., 2014). Moreover, RNA-

foci sequester nucleolin, one of the principle components of the nucleolus leading to abnormal 

nucleolar morphology and volume (Haeusler et al., 2014; Mizielinska et al., 2017; Wen et al., 

2014).  
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Nucleo-cytoplasmatic translocation is essential for the functioning of various proteins. DPRs alter 

these mechanisms mainly in different ways. DPRs bind and sequester in RNA foci proteins 

involved in regulating interaction between cargo-proteins and receptors (Zou et al., 2017). 

Moreover, DPRs bind nucleopore proteins causing a reducing in trafficking (Shi et al., 2017).  

SGs dynamics are altered by the presence of DPRs. In fact, DPR proteins interact with prion-like 

domains of RBPs altering capacity of forming SGs (Boeynaems et al., 2017). Moreover, data show 

that the overexpression of DPRs lead to a decrease of cytoplasmatic larger size P-bodies and an 

increase in the formation of SGs (Wen et al., 2014). 

Finally, studies show that the overexpression of DPRs alter proteostasis by blocking translation 

and by preventing proper UPS activity. In fact, DPRs can either bind mRNAs blocking their 

interaction with translation machinery or they can bind and sequester initiation and elongation 

factors or even ribosomal subunits (Green et al., 2017; Kanekura et al., 2016). Data show that 

DPRs also block UPS by directly binding and sequestering proteasome 26 subunits (Guo et al., 

2018).  

FUS 

Fused in sarcoma (FUS) is a DNA/RNA binding protein that belongs to the FET family. In 1993, 

FUS gene was discovered as an oncogene in malignant human mixoid liposarcoma (Crozat et al., 

1993). In 2009, the first mutations of FUS where identified and correlated to ALS patients 

(Kwiatkowski et al., 2009; Vance et al., 2009). FUS mutations are correlated mainly to fALS. In 

particular mutations in FUS are present in 2.8% of European fALS cases and 6.4% of Asian-fALS 

cases. Mutations are also correlated to a small percentage of sALS cases in both European and 

Asian patients (Zou et al., 2017). FUS gene is collocated in chromosome 16 and it encodes a 

ubiquitous protein of 526 amino acid. FUS protein mainly localizes in the nucleus but in lower 

levels it can be found distributed in cytoplasm. FUS shuttling from one compartment to the other 

is possible thanks to NES and NLS present in its structure. FUS structure also presents a RRM and 

a zinc finger motif that permit binding with RNA and DNA. Moreover, FUS structure presents a 

prion-like domain in its N-terminal domain that increases its aggregating propensity (Morohoshi 

et al., 1998). 

FUS is involved in different physiological functions: it is involved in different point of RNA 

metabolism; it regulates DNA transcription; it concurs in DNA damage response. FUS RNA-targets 

are different from TDP-43 targets (Colombrita et al., 2015; Lagier-Tourenne et al., 2012). It 

regulates targets transcription by binding to ssDNA motifs in the promoter region of certain 
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genes and accumulates near the transcription start site (TSS), where it binds and recruits RNA 

polymerase II (Tan & Manley, 2012). Moreover, FUS is implicated in RNA splicing, maturation and 

translocation in cytoplasm (Alliegro & Alliegro, 1996; Fujii et al., 2005). Finally, FUS is also 

involved in RNA degradation by regulating the synthesis of miRNAs in Drasha complex (Gregory 

et al., 2004). Many studies demonstrated that FUS also has an important role in DNA damage 

repair. In fact, FUS is one of the first protein recruited in DNA damage site, where it is involved 

in the activation of ATM/γH2AX signaling pathways and it binds histone deacetylase 1 (HADC1) 

(Wang et al., 2013). FUS promotes the interaction between a single-stranded oligonucleotide and 

a homologous superhelical DNA to form a D-loop, an essential step in DNA double-strand break 

repair (Baechtold et al., 1999).  

To date, more then 50 mutations in FUS gene have been correlated to ALS. Most of mutations 

are missense, but there are also rare insertions, deletions, splicing, and nonsense mutations 

(Lattante et al. 2013). Most of mutations are found in the NLS leading to nucleus depletion (Niu 

et al., 2012; Vance et al., 2013). Other mutations are in the prion-like domain increasing the 

aggregation propensity. The increase of aggregation tendency is enhanced also by the increase 

of FUS cytoplasmatic levels due to its mis-localization (Nomura et al., 2014). FUS-ALS is 

characterized by the presence of inclusions positive to FUS and negative to TDP-43. It is still 

debated if FUS aggregates are caused or concur to increase FUS mis-localization.  

FUS pathological mechanisms are due to FUS loss of function, caused by its mis-localization, and 

FUS gain of function. FUS loss of function contribute to ALS disease is still debated. In fact, the 

FUS knockout mouse model does not present a neurodegenerative phenotype, conversely a 

Drosophila knockdown model presents neurodegeneration and locomotive defects (Kino et al., 

2015; Sasayama et al., 2012). Nevertheless, there are many evidence of FUS toxic gain of 

function. In fact, a FUS mouse model overexpressing FUS wild type has a neurodegenerative 

phenotype characterized by FUS positive cytoplasmatic insoluble inclusions (Mitchell et al. 2013).  

VCP 

Many other genes mutated are correlated to a small fraction of ALS cases. One of these genes is 

VCP, that encodes for Valosin Containing Protein (VCP), an AAA+ (ATPases Associated with diverse 

cellular Activities) protein. VCP was associated to ALS in 2010 (Johnson et al., 2010). Different 

mutations in VCP were found to be associated to about 2% of fALS cases. VCP is involved in many 

pathways of the PQC system like control of misfolded protein and their degradation, and 

autophagy regulation. VCP is also involved in DNA damage regulation, damaged organelles 
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degradation, membrane fusion and NF-kB activation (Franz et al., 2016; Hemion et al., 2014; 

Meyer, 2005; Neal et al., 2017; Schweitzer et al., 2016). VCP function is regulated by its ATPase 

activity and its interaction with various co-factors and adaptors, which concur to its localization 

in different cellular compartments, mediate its binding with various targets and cooperate with 

its activity. VCP mutants are shown to lose some of VCP functionality. An extensive description 

of VCP will be provided below in the Valosin Containing Protein chapter. 

 

PATHOGENIC MECHANISMS 

ALS main pathogenic molecular mechanism is not known, yet probably ALS is caused by an 

interplay between different pathogenic cellular pathways that are not mutually exclusive. 

Moreover, it is still not known if there is a relation between them or if they are caused by an 

upstream alteration. ALS pathogenic mechanisms have been previously outlined in the 

description of the main ALS mutations. However, ALS possible causative mechanisms will be 

described to be better defined. 

OXIDATIVE STRESS 

 Oxidative stress is caused by an imbalance between anti-oxidant cell capacity and the production 

of ROS. Oxidative stress was firstly studied in relation to SOD1-mutants discovery, even if after it 

was discovered that SOD1 toxicity is due to a gain of function rather than a loss of function 

(Reaume et al., 1996; Rosen et al., 1993). Nevertheless, oxidative stress is considered a 

pathological mechanism of ALS as there are various signs that show the presence of an oxidative 

imbalance. Oxidative stress results in accumulation of ROS with alteration in proteins, DNA and 

RNA species. Data on CSF and on serum analysis from ALS patients show an increase of damaged 

products induced by ROS (Vance et al., 1998; Lyras et al., 1996; Mitsumoto et al., 2008). 

The presence of ROS leads to oxidative post-translational modifications of proteins, altering their 

solubility and folding, and triggering the formation of insoluble aggregates (Barber & Shaw, 2010; 

Beckman et al., 2001; Bonafede & Mariotti, 2017; Grune et al., 2004). Moreover, ROS alters RNA 

species. In fact, data show that oxidation of mRNA is already present in MNs and spinal cord 

oligodendrocytes in pre-symptomatic SOD1 mice (Chang et al., 2008).  

Another signal of oxidative stress in ALS patients is the very low glutathione level detected in the 

brain tissue compared to controls (Iguchi et al., 2012). 
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MITOCHONDRIAL DYSFUNCTION 

Alterations in mitochondrial functions have been described in the spinal cord and the skeletal 

muscle of ALS patients (Hirano et al., 1984; Wiedemann et al., 1998, 2002).  In particular, it was 

reported reduced levels and increased mutations of mitochondrial DNA, and alteration in 

respiratory chain complexes activity. Moreover, studies show altered calcium homeostasis in 

SOD1-G93A mice caused by altered mitochondrial calcium buffering capacity (Petri et al., 2006). 

The exact mechanism of mitochondrial disfunction is unclear. However, in SOD1-ALS models it 

has been proposed that misfolded SOD1 could aggregate and prevent mitochondrial protein 

import by blocking TOM/TIM protein import machines (Liu et al., 2004; Wong et al., 1995). 

IMPAIRMENT OF AXONAL TRANSPORT 

MNs are polarized cells with a very long axon. Therefore, proteins and organelles have to be 

transported further then other cell types. This increases the importance and the critical role of 

axonal transport in MNs. Data on ALS patients show neurofilament accumulation and alteration 

in organelle transport that are signs of impaired axonal transport (Breuer et al., 1987; Hirano et 

al., 1984; Julien, 1997; Julien et al., 1998). Mutant-SOD1 mouse models also present 

neurofilament accumulation along with impaired anterograde transport (Zhang et al. 1997). In 

these models the cause of impairment of axonal transport could be either: the increase of 

inflammatory and excitotoxic mediators, or the overload of kinesin-associated protein caused by 

misfolded SOD1 that impede the transport of the physiological cargos (De Vos et al., 2008). 

Moreover, Nicolas and colleagues found mutations in KIF5A gene associated to ALS (Nicolas et 

al., 2018). KIF5A encodes for a kinesin that is part of a complex involved in axonal transport of 

organelles like mitochondria and granules composed of RNA and RNA binding proteins. Nicolas 

and colleagues speculate that KIF5A mutations cause disease by disrupting axonal transport as 

KIF5A has a central role in axonal transport. 

EXCITOTOXICITY  

Excitotoxicity is due to an excessive activation of glutamate receptors, that it may be the result 

of the failure of glutamate clearance in the synaptic boutons, an increase in glutamate release, 

or the increase in postsynaptic sensitivity to glutamate. Excitotoxicity results in a massive Ca2+ 

influx that activates different cellular pathways leading to activation of proteolytic enzymes, 

increase in ROS levels, alteration in mitochondrial functions and energy imbalance (Arundine & 

Tymianski, 2003). 
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Evidences of the presence of excitotoxicity in ALS patients are various. The most important proofs 

are the strong increase in glutamate levels present in ALS patients CSF and the positive effects 

that Riluzole treatment has (Ludolph & Jesse, 2009; Perry et al., 1990; Shaw et al., 1995).  

One of the hypothesis of the possible cause of glutamate increase could be the decreased levels 

of the excitatory amino acid transporters (EAAT2) reported in ALS patients (Foran & Trotti, 2009). 

Physiologically EAAT2 reduces glutamate concentration at synapsis level after its excitatory 

action. The reduced levels of EAAT2 is probably correlated to an aberrant EAAT2 mRNA (Guo et 

al., 2003; Lin et al., 1998). Another hypothesis on the increase of glutamate levels can be found 

in a higher rate of glutamate release. Milanese and colleagues showed that  mutant-SOD1 mouse 

models present higher levels of Ca2+ in spinal cord nerve terminals. This is correlated to activation 

of a kinase, calmodulin, which in turn activates synapsin I phosphorylation and subsequently 

glutamate release (Milanese et al., 2011).  

PROTEIN AGGREGATION 

As mentioned above, one of the main characteristics of ALS is the presence of insoluble inclusions 

(Al-Chalabi et al., 2012). Inclusions originate by the misfolding of protein that expose 

hydrophobic residues promoting interactions with other misfolded proteins. Protein improper 

interaction with other proteins leads to formations of oligomers which then sequester other 

cellular proteins eventually forming aggregates (Rowinska-Zyrek et al., 2015; Soto & Estrada, 

2008). The contribute of aggregates to the development of the disease is still very debated. Some 

studies claim that aggregates are beneficial for cell as they protect from the presence of 

oligomers or misfolded proteins, that are the toxic species (Ciechanover & Kwon, 2015; Guo et 

al., 2011). Conversely, other studies show that disorganized aggregates lead to cell toxicity in 

many ways: by binding to proteins that lose their functionality (Radford & Dobson, 1999); by 

interacting with components of cell membrane (Hirakura & Kagan, 2001; Kourie & Shorthouse, 

2000; Lin et al., 2001) or of organelles membranes; or by causing the release of Ca2+ and oxidative 

stress (Ross, 2002). 

Inclusions can be positive to mutated misfolded proteins or to wt proteins. As described above 

most of ALS patient inclusions are positive to wt TDP-43, in particular in all SOD1-negative familial 

ALS patients (Mackenzie, 2007; Neumann et al., 2006). 

The presence of these insoluble aggregates can also be a consequence of alteration of the PQC 

system. The misfunctioning of the system can be due to different reasons: overwhelming of the 

degradative pathways; the interaction with misfolded proteins that leads to sequestration of 
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proteins involved in the system or damage of organelles like lysosomes or proteasome; or the 

mutations of genes that encode for proteins involved in the system as VCP, ubiquilin and p62.   

The alteration of degradative pathways as UPS and autophagy can cause and also be caused by 

the increase of aggregates concentration. In fact, data show in ALS a decrease in autophagy and 

UPS functionality due to different reasons as: interaction with aggregates and mutations in  genes 

that encode for proteins involved in the system. An extensive description of the UPS and 

autophagic pathway involvement with ALS will be provided below in the Protein Quality Control 

chapter. 

ENDOPLASMIC RETICULUM STRESS 

Accumulations of misfolded proteins activates Endoplasmic Reticulum Stress Response (ERAD) 

and the Unfolded Protein Response (UPR) that are initially protective but if they are prolonged 

they can trigger apoptosis (Kaufman, 2002). In sALS patients and in mutant-SOD1 models UPR 

markers are found upregulated showing an activation of the pathway (Atkin et al., 2008; Saxena 

et al., 2009). The contribute of the ER stress seems non to be a primary pathogenic mechanism, 

but a consequence of misfolded proteins or the ER-Golgi transport disruption (Chen & Madura, 

2005).  

ABNORMAL RNA PROCESSING 

Alteration of physiological RNA dynamics have been discovered in ALS since the association to 

ALS of mutations in genes that encode for RNA binding proteins as TDP-43 and FUS. As previously 

described, mutations in these genes lead to a mis-localization and aggregation of the RNA binding 

proteins. This is correlated to a loss of function and an altered RNA metabolism.  

NEUROINFLAMMATION 

Neuroinflammation is a pathological mechanism in many NDs. The main effectors of 

neuroinflammation are microglia and astrocytes, in fact they generally coordinate the immune 

response after neurons injury.  In ALS, it has been reported an increased activation of microglia 

and astrocytes analysing spinal cord tissue and CSF of effected patients. Moreover, it has been 

detected an increased infiltration in nervous system of T cells and an increase in the levels of 

proinflammatory mediators (Henkel et al., 2004; Kuhle et al., 2009; Sta et al., 2011; Troost et al., 

1990; Zhao et al., 2013). Analysis in mutant-SOD1 mice also revealed an increase of 

inflammatory-related molecules levels in particular in the late stages of the disease (Ferraiuolo 
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et al., 2007; Lincecum et al., 2010). In fact, during disease progression, SOD1 is released by 

affected neurons triggering the switch of M2 microglial cells (neuroprotective and anti-

inflammatory) into M1 microglial cells (pro-inflammatory and neurotoxic cells that secerns ROS 

and cytokines) (Almer et al., 1999; Appel et al., 2011; Y. Zhang et al., 2009). Moreover, data show 

that astrocytes decrease EAAT2 levels leading to an increase in the concentration of glutamate 

with a resulting excitotoxicity (Howland et al., 2002). 

THERAPIES 

To date there is no cure that stops the progression of ALS. All therapeutic approaches that are 

used at the present aim to extend survival by decreasing progression rate and to improve clinical 

features making the disease more bearable. The only two drugs that are approved by Food and 

Drug Administration (FDA) are Riluzole, in 1995 and Edaravone (RadicavaTM) only recently. 

Riluzole slows down the progression of the disease but with a modest efficacy, in fact, it increases 

survival of approximately 3 months and only in 9% of the cases it increases the probability of 

surviving one year (Dharmadasa & Kiernan, 2018). Riluzole inhibits glutamate release reducing 

the excitotoxicity in neurons, but its specific mechanism of action is still unknown (Miller et al., 

2012). Edaravone is a strong antioxidant drug that eliminates lipid peroxides and hydroxyl 

radicals, but its mechanism of action is also still uncertain (Ikeda & Iwasaki, 2015). Its use, 

thought, is limited to patients in early disease stages (within 2 years from the onset) with a forced 

vital capacity of >80%, which is around 7% of ALS cases (Kiernan, 2018).  

As pharmacological approach can still only partially decrease progression and not cure the 

disease, gene therapy and stem cells therapy have started to be considered and studied  

(Bonafede & Mariotti, 2017). To date, these two strategies are studied in animal models and in 

some clinical trials. 

Gene therapy approach is the use of antisense oligonucleotides (ASOs) that leads to RNA 

interference. Studies in mouse model of ALS-SOD1 show that the use of ASO therapy leads to a 

significant delay of disease progression. Phase I clinical studies are testing ASO on patients to 

reduce the expression of mutated SOD1. The limit of this strategy is patient compliance as the 

infusion of ASO should be continuous and administration is intrathecal (Smith et al., 2006). Stem 

cells therapy consist in the use of Neural Stem Cells (NSCs) that are self-renewing and multipotent 

with the ability to promote the formation of novel neuronal cell. In fact, NSCs have neurotrophic 

and anti-inflammatory capacities by producing and secreting immunomodulatory molecules that 



 

 24 

regulate cell migration, cell growth, and cell differentiation (Mazzini et al., 2016). To date some 

studies on animal models have been carried out with promising results. (Faravelli et al., 2014). 
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Figure 2 Proportion of the  four most commonly mutated genes in Asian and in European ALS populations (Mejzini et 
al., 2019) 

Figure 3 most common mutations in ALS  (Taylor et al., 2016) 
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Figure 4 ALS pathogenic mechanisms (Mancuso & Navarro, 2015) 

Figure 5 mutant-SOD1 pathogenic mechanisms (Cleveland &  Liu, 2000) 
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Figure 6 TDP-43 and FUS pathogenic mechanisms (Tsubota et al., 2016) 

Figure 7 C9ORF72 pathogenic mechanisms (Gitler & Tsuiji,2016) 
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VALOSIN CONTAINING PROTEIN 
Valosin Containing Protein (VCP) or p97 is an AAA+ protein. It is a highly conserved protein as 

homologs are found in all species: it is called Cdc48 in yeast, archaea and Caenorhabditis elegans 

and TER94 in drosophila. In 1982, Cdc48 was identified for the first time in S. cerevisiae. In S. 

cerevisiae, Cdc48 function as a regulator of cell cycle in particular it is an inhibitor of cell cycle in 

G2-M transition stage (Moir et al., 1982). In 1987 was identified VCP, the mammalian homolog 

(Koller & Brownstein, 1987). It was thought to be the precursor of a small peptide valosin that 

turned out to be a purification artifact (Gill et al., 1989).  

VCP belongs to type II AAA+ ATPase family. Mammalian AAA+ proteins are involved in degradation 

pathways that serve in different processes as in the remodeling of protein-DNA complexes, of 

protein-protein complexes and of protein aggregates. They use ATP hydrolysis energy to 

generate mechanical forces to act on their substrates. AAA+ proteins structure is generally a 

homoexamer where monomers bind together forming a ring structure. They are classified 

according to the number of the ATPase domain present in the structure. Type I AAA+ ATPase has 

only one ATPase domain, while type II ATPase has two ATPase domains in tandem.  

VCP is highly ubiquitously expressed protein. It is mainly diffused in the cytoplasm, but a fraction 

localizes on different organelles membranes like mitochondria, ER, Golgi and endosomes 

(Acharya et al., 1995; Latterich et al., 1995; Rabouille et al., 1995; Ramanathan & Ye, 2012; Xu et 

al., 2011). Another smaller fraction can be found in the nucleus, where it cooperates in DNA 

remodeling and damage repair (Madeo et al., 1998). The localization in different intracellular 

compartments is possibly through the binding between VCP and a large number of specific 

adaptors.   

In each compartment VCP is involved in different pathways. It has a key role in PQC system by 

segregating proteins from membranes, from chromatin, from protein complexes or from protein 

aggregates and by addressing them to UPS. Moreover, VCP is involved in the degradation of 

organelles like mitochondria and lysosome through the autophagic pathway. Furthermore, it 

cooperates in ribosome quality control (RQC), in the clearance of SGs, in endosomal trafficking, 

in Golgi and nuclear envelope reassembly and in the activation of NF-kB. Finally, VCP is implicated 

in DNA replication, transcription and repair. The involvement of VCP in so many and various 

pathways is possible thanks to the mediation of different co-factors, that cooperate with VCP 

functioning, and adaptors that recruit VCP in different cellular compartment.  
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Altered expression or mutations of VCP gene, collocated on chromosome 9p13.3-12, are  

correlated to pathological phenotypes. VCP upregulation has been detected in some types of 

cancer, for which VCP inhibitors have been developed. In fact, in cancer cells characterized by 

high VCP mRNA levels, the VCP protein could be a possible target for effective therapies 

(Anderson et al., 2015). Instead, mutations and misfunctioning of VCP are correlated to 

degenerative diseases among which the most recurrent are Inclusion Body Myopathy associated 

with Paget’s disease of the bone and Frontotemporal Dementia (IBMPFD) and ALS.  

STRUCTURE 

VCP structure resembles the structure of type II AAA+ ATPase. As shown in Figure 8, VCP 

functional structure is a homoexamer formed by monomers with two ATPase domain each, that 

work in a strictly coordinated manner. Every monomer is composed by a N-terminal domain, two 

ATPase domain (D1 and D2) and an unstructured C-terminal tail. The N-terminal domain role is 

to bind co-factors and adaptors coordinating VCP functioning. ATPase domain D1 binds to N-

terminal and the D2 domains through flexible linkers. D1 main role is to assembly the hexamer 

using ATP hydrolysis. However, studies that use D2 inhibitors, show that D1 also contribute in a 

small percentage (~30%) to VCP functioning (Anderson et al., 2015; Chou et al., 2014; Wang et 

al., 2004). Whereas, D2 is the driving force of VCP, in fact its ATP hydrolysis is the main force of 

VCP activity. D2 can be found bound to a molecule of ADP, ATP or in some cases it can be in a no 

binding state (Apo state) (Huyton et al., 2003). Finally, C-terminal binds to a small set of co-factors 

and adaptors mediating VCP activity, but its main role is to participate with D2 ATP hydrolysis by 

interacting with the other monomers present in the hexamer (Hänzelmann & Schindelin, 2016; 

Niwa et al., 2012). 

Six VCP monomers bind to form a hexamer, which is the VCP functioning structure. The VCP 

hexamer arrange itself in a mushroom-like shape where the ATPase domains form two rings stack 

on top of each other. One ring is formed by D1 domains (D1 ring) and the other by D2 domains 

(D2 ring). In D1 ring there is a restriction site formed by six histidine residues, also known as Hys-

gate. N-D1 ring is larger than D2 ring as it has the N-terminal domains laterally attached (Banerjee 

et al., 2016; Brunger & DeLaBarre, 2003; Davies et al., 2008; Huyton et al., 2003; Peters et al., 

1990; Schuller et al., 2016; X. Zhang et al., 2000). The D2 ring has two pores: a smaller pore 

(loop1) and a larger pore (loop2) that contains positively and negatively charged residues.  
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To permit its activity, VCP is subjected to conformational changes regulated by a ATP hydrolysis 

cycle (Beuron et al., 2006; DeLaBarre & Brunger, 2005; Rouiller et al., 2002; Tang et al., 2010). 

ATP/ADP binding and hydrolysis produce the energy that enhances conformational changes. The 

mechanical force generated by these conformational changes influence in turn substrate 

molecules stability and function. The conformational changes are mainly in the N-D1 ring: the N-

terminal domains are co-planar to D1 ATPase domains when D1 domains bind ADP (down-

conformation), whereas N-terminal domains change into ‘up’ conformation when D1 domains 

change from a Apo state to a ATP-bound state binding ATP (Banerjee et al., 2016). D1 bond to 

nucleotides is highly regulated: in each hexamer there are always at least three ADP bound to D1 

ring. These chemical bonds prevent ATP binding which has a higher affinity for D1 in Apo state 

(Brunger & DeLaBarre, 2003; Tang et al., 2010; Tang & Xia, 2013).  In D2 ring ATP hydrolysis cycle 

leads to other conformational changes with the purpose of regulating D2 pore opening: loop1 

and loop2 modify their conformations resulting in D2 more open pore with flexible loops for 

substrate interactions. It is still debated if the opening of D2 pore is due to ATP binding or to its 

hydrolysis (Banerjee et al., 2016; Brunger & DeLaBarre, 2003).  

CO-FACTORS AND ADAPTORS 

VCP is implicated in a large number of pathways and cellular processes despite having the ability 

of performing only one mechanism: the hydrolysis of ATP. This is only possible thanks to VCP 

binding with many different co-factors and adaptors. Co-factors are normally enzymes that 

cooperate with VCP activity by modifying VCP substrates with N-glycan or Ub-conjugates. In fact, 

co-factors as well as adaptors, may harbor different structural motif that can be involved in 

substrate processing. They can also have substrate recognition motif like Ub-binding domains 

which permit the specific binding to different Ub-chains, in particular K48-, K63-linked chain. 

Co-factors and adaptors can be classified in two groups depending on what part of VCP they 

interact with. Nearly all co-factors and adaptors bind to VCP N-terminal domain, but a smaller 

set bind to the C-terminal tail. The motifs that recognize and bind the N-terminal domain are: 

ubiquitin regulatory X (UBX), UBX-like (UBX-L), VCP interacting motif (VIM), VCP binding motif 

(VBM) or SHP (binding segment 1) motif (Boeddrich et al., 2006; Bruderer et al., 2004; Schuberth 

& Buchberger, 2008).  Most of these motifs target the same binding site present on N-terminal 

domain, for these reasons the binding to VCP is retained mutually exclusive (Jentsch & Rumpf, 
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2007; Meyer et al., 2000). However, there are some co-factors/adaptors that can bind 

simultaneously, collaborating in their activity like UFD1-NPL4 complex (Isaacson et al., 2007). 

UBX motif is a globular domain of 80 aa that is structurally homologous to ubiquitin. To date 12 

proteins are known to have UBX motif. Of these 12 proteins 5 also present an additional 

ubiquitin-associated (UBA) domain that recognizes and binds polyubiquitylated substrates 

(Meyer and Weihl 2014). They all have different cellular role, for example UBXD8, FAF1, SAKS1 

are involved in ERAD pathway (LaLonde & Bretscher, 2011; Madsen et al., 2011) UBXD7 

cooperates in the repair of damaged protein (Huang et al., 2016); and p47 contributes in 

membrane fusion (Kondo et al., 1997). VIM and VBM have a single alfa-helix structure with a 

linear sequence where the arginines are essential for the interaction with VCP. VIM sequence is 

RX5AAX2R, while VBM is a highly polarizing linear sequence motif (RRRRXXYY). VIM is found in 

different proteins as gp78, VIMP and SVIP (Ballar et al., 2006, 2007; Ye et al., 2004). VBM is found 

in ataxin-3, UFD2 and HRD1 (Boeddrich et al., 2006). The SHP motif is a short module with a high 

concentration of hydrophobic residues. It has been identified in proteins like UFD1-NPL4 (Meyer 

et al., 2000) and Derlin-1 (Greenblatt et al., 2010; Lilley & Ploegh, 2004; Ye et al., 2004), but also 

in protein containing UBX motif like p47 (Kondo et al., 1997). These proteins probably use a 

bipartite mechanism to form a complex with VCP by binding in different position of VCP 

structure. 

C-terminal tail motif is PNGase/UBA (PUB) domain that binds the sequence D3LYG. The main 

proteins that harbor PUB domain are: a PNGase, that functions as an enzyme for the removal of 

N-glycan from misfolded glycoproteins present on the ER (Blom et al., 2004); and Phospholipase 

A2 Activating Protein  (PLAA), that is implicated in a large number of pathways like the processing 

of misfolded mitochondria outer-membrane proteins (Wu et al., 2016), endosomal trafficking 

(Ren et al., 2008), ribophagy (Ossareh-Nazari et al., 2010) and lysophagy (Papadopoulos et al., 

2017).  

Generally, VCP hexamer binds to co-factors/adaptors in a sub-stoichiometric manner 

(Hänzelmann & Schindelin, 2016). This can be caused by steric hindrance that prevents a 6:6 

binding and can also enable VCP to interact concurrently with other different co-factors/adaptors 

inducing a specific cellular response.  
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FUNCTION 

VCP by binding different co-factors and adaptors and by forming very dynamic complexes, is 

involved in several pathways of the PQC system, thus is an essential component of the cellular 

proteostasis (Meyer et al., 2012). In general, VCP activity can be summarized in: the energy from 

ATP hydrolysis is used to segregate polypeptides from protein complexes, from protein 

aggregates or from cellular structures such as membranes or chromatin. After polypeptides are 

released, they are degraded through the UPS or transported into the nucleus to promote gene 

expression in response to specific stimulating cues.  

ENDOPLASMIC RETICULUM-ASSOCIATED DEGRADATION 

Endoplasmic reticulum-associated degradation (ERAD) is a cellular process used to control 

proteins formation in the ER. It can be divided in three types, depending on which type of protein 

is involved. It is called ERAD-L for luminal proteins, ERAD-M for membrane proteins and ERAD-C 

for cytosolic domain of membrane proteins (Christianson & Ye, 2014; Xudong Wu & Rapoport, 

2018). Proteins that are unproperly folded, are retro-translocated to the cytoplasm, where they 

are ubiquitinated and degraded through the UPS. VCP promotes proteins retro-translocation 

using the energy ATP hydrolysis (Stein et al., 2014; Ye, 2006).  

Proteins are retro-translocated by a complex composed by membrane proteins HRD1, HRD3, and 

other accessory proteins like DERLIN1 and HERP that all together form the protein-conducting 

channel (Baldridge & Rapoport, 2016; Schoebel et al., 2017). The complex UFD1-NPL4 recruits 

VCP to the ER where there are ubiquitinated substrates (Ye et al., 2004). Also UBX2 recruits VCP 

to the ER membrane and facilitates the interaction between VCP and HRD1 which is a membrane-

anchored ubiquitin ligase that ubiquitinates substrates. Once HRD1 has polyubiquitinated 

substrates, VCP binds to gp78, an E3 ligase that mediates the substrates degradation through the 

UPS (Ballar et al., 2006; Gauss et al., 2006; Kikkert et al., 2004).  

ORGANELLE DEGRADATION 

VCP is also involved in the turnover of mitochondrial membrane proteins. In fact, VCP 

coordinates the removal of mis-folded proteins from the mitochondria outer membrane (Hemion 

et al., 2014). Moreover, by the removal of proteins on the outer membrane of the mitochondria, 

VCP participates to damaged mitochondria degradation via the autophagic pathway, also known 

as mitophagy. (Tanaka et al., 2010). The complex UFD1-NPL4 recruits VCP to the surface of 
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mitochondrial membrane. In mitophagy, the damaged mitochondria stabilizes PIKN1 exposure 

on outer membrane by inhibiting its degradation. PINK1 regulates the ubiquitination of 

substrates and recruits various E3 ubiquitin ligases like Parkin, that amplifies ubiquitination of 

proteins present on the damaged organelle. Some of these proteins, like mitofusin, have K48-Ub 

chains. These proteins are substrate of VCP and are eliminated via UPS. The degradation of these 

proteins is necessary for mitochondria degradation (Tanaka et al., 2010). 

Furthermore, VCP in similar mechanism cooperates to the degradation of damaged lysosomes, 

known as lysophagy. VCP forms a complex with YOD1, UBXD1 and PLAA. Together they 

selectively remove K48-linked Ub-conjugates from damaged lysosomes promoting their 

degradation (Papadopoulos et al., 2017). An extensive description of lysosome degradation will 

be provided below in the Protein Quality Control-Lysosome chapter. 

RIBOSOME-ASSOCIATED DEGRADATION 

VCP cooperates in the removal of aberrant nascent proteins translated from a defective mRNA. 

When there is an altered mRNA translation the ribosome stalling occurs. The defective mRNA is 

decomposed and the aberrant polypeptide needs to be degraded. Various factors promote the 

release of the subunits of the stalled ribosome, allowing the recruitment of a ribosome-

associated ubiquitin ligase (listerin 1) to polyubiquitinate the aberrant nascent polypeptide. Then 

the polyubiquinated substrate and the ribosome factor Rqc1 recruit VCP bound to the complex 

UFD1-NPL4 that promotes defective polypeptide degradation through the UPS (Brandman et al., 

2012; Defenouillère et al., 2013; Verma et al., 2013).  

REGULATION OF AUTOPHAGY 

Data show that VCP is also implicated in another degradation pathway: autophagy, that targets 

degradation of misfolded proteins, protein aggregates or damaged organelles through 

lysosomes. VCP contribute in these processes is controversial. In fact, some studies demonstrate 

that VCP is a positive regulator of autophagic flux, whereas others demonstrate that VCP inhibits 

autophagic degradation. In support to a positive contribute of VCP in autophagy studies on S. 

cerevisiae show that a Cdc48 co-factor named SHP1P binds the autophagic regulator ATG8 to 

promote autophagy. However it is not known if the human analogue has the same function (Krick 

et al., 2010). Conversely, a study demonstrated that VCP inhibition leads to an increase in the 

clearance of autophagic substrates rather than a decrease, suggesting an inhibitory role of VCP 

(Anderson et al., 2015). 
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CHAPERONE ACTIVITY 

Various studies demonstrate that VCP acts in a chaperone like way by segregating misfolded 

proteins from cytoplasmatic aggregates and addresses them to the proteasome for degradation, 

or by simply preventing protein aggregation (Gallagher et al., 2014; Neal et al., 2017; Nishikori et 

al., 2008; Yamanaka et al., 2004). In fact, by studying VCP effects on heat-denatured firefly 

luciferase, it was demonstrated that VCP wild type is involved in the re-folding and the 

consequently reactivation of luciferase. Moreover, it was shown that VCP ATPase activity is 

essential for this function. Indeed, mutants with a decrease ATPase activity fail to reactivate 

luciferase (Kobayashi et al., 2007).  

 VCP was shown to co-localize with preformed insoluble aggregates until they completely 

disappear (Kobayashi et al., 2007). VCP un-aggregating role suggests that its activity could be 

critical for degradation of aggregation-prone proteins (Gallagher et al., 2014). In support to this, 

recently Ghosh and colleagues show that VCP functions as a disaggregase chaperone by 

disassembling polyglutamine-expanded Huntigntin-exon1 aggregates (Ghosh et al., 2018). 

However, it was also shown that VCP enhances both aggregate formation and clearance. In fact, 

if there is a high concentration of soluble aggregate-prone proteins, VCP catalyzes protein 

aggregation. While, VCP catalyzes aggregates degradation when there is a low concentration of 

soluble aggregate-prone proteins as in presence of pre-formed aggregates (Kitami et al., 2006; 

Kobayashi et al., 2007).  

CHROMATIN-ASSOCIATED DEGRADATION  

One of VCP central function is the removal of proteins from chromatin to allow the access of 

repair factors in sites of DNA damage, or to facilitate helicase and polymerase activity. There 

have been identified many nuclear substrates that are removed by VCP activity. The degradation 

of these proteins is needed to disassemble complexes or to facilitate the binding of other proteins 

(Polo & Jackson, 2011; Schwertman et al., 2016).  

DNA double-strand-break is repaired thanks to many complexes that are regulated by 

phosphorylation and ubiquitination. In particular, ubiquitination has an important role in the 

assembly and disassembly of protein complexes. In these processes VCP has a key role (Franz et 

al., 2016). For example, one of VCP substrates is the complex Ku70/Ku80 which binds the open 

ends of DNA double-strand break to enhance the reparation via a non-homologous end 

joining (van den Boom et al., 2016; Taccioli et al., 1994). RNF8 ubiquitinates with K48 chains 
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Ku70/Ku80 complex, once it accomplished the task, K48-Ub chains recruit VCP that removes the 

complex from the DNA. To coordinate VCP activity there have been identified different co-

factors: either FAF1 or UFD1-NPL4 complex. In addition, VCP removes proteins involved in DNA 

repair, to allow the functioning of other proteins that bind downstream. An example of this is 

VCP involvement in the recruitment of downstream DNA damage response proteins like BRCA1, 

53BP1 and RAD5. VCP bound to NPL4 co-factor, is recruited to DNA double-strand break by RNF8-

generated K48-Ub chain and removes K48-Ub conjugates. The removal of these substrates 

permits the proper binding of BRCA1, 53BP1 and RAD5 (Meerang et al., 2011). Other VCP 

substrates are: RNA polymerase Pol II complex (Verma et al., 2013), transcriptional repressor α2 

(Wilcox & Laney, 2009) mitosis regulator Aurora B kinase (Ramadan et al., 2007; Sasagawa et al., 

2012) and certain DNA polymerases (Davis et al., 2012; Mosbech et al., 2012). 

NF-κB ACTIVATION 
NF-κB is a transcription factor that enhances the expression of cytokines, immunoreceptors and 

other components of the immune system (Pahl, 1999). NF-κB activation is regulated by 

membrane receptors like Toll-like receptors or interleukin-1 receptor. The activation of these 

receptors triggers downstream phosphorylation and K63-ubiquitination of proteins which leads 

to NF-κB activation and translocation from cytoplasm to the nucleus (Chen, 2012). When NF-κB 

is in an inactive state it is found in the cytoplasm bounded to IκBα. To be activated NF-κB has to 

release IκBα which is degraded (Dai et al., 1998; Henkel et al., 1993). Firstly, both NF-κB and IκBα 

are phosphorylated, then IκBα is ubiquitinated by CRL1β-TrCP recruiting VCP (Schweitzerand et al., 

2016). VCP co-factors implicated are not well characterized but data show that co-factors p47 

and FAF1 inhibits activation of NF-κB (Kinoshita et al., 2006; Shibata et al., 2012).  

MEMBRANE FUSION 

With a totally different mechanism from the other pathways, VCP is implicated in membrane 

fusion of most of the membranes present in cellular compartments such as Golgi, ER, nuclear 

membrane and lysosomes. In membrane formation processes VCP functions as a scaffold, and 

its ATPase activity does not seem essential.  

Golgi membranes undergo to disassembly and re-assembly during cell cycle. In these cycles, 

ubiquitination cooperates in the regulation membrane dynamics (Meyer, 2005). The co-factors 

that are involved in Golgi membrane regulation are p47, the E3 ubiquitin ligase HACE1 and the 

DUB VCIP135 (Kondo et al., 1997; Meyer, 2005; D. Tang et al., 2011). HACE1 and VCIP135 interact 
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with SYN5, the t-SNARE receptors present on Golgi membrane. t-SNARE proteins are membrane 

receptors that bind v-SNARE proteins present on vesicles mediating their interaction and fusion. 

During early mitosis HACE1 ubiquitinates SYN5, preventing the interaction with BET1, its 

corresponding v-SNARE. VCP-p47 complex binds the ubiquitinated SYN5. Afterword, during late 

mitosis VCIP135 associates with VCP complex and deubiquitinates SYN5 permitting its interaction 

with BET1, membranes fusion and finally Golgi cisternae formation (Huang et al., 2016). 

The contribute of VCP in formation of ER and nuclear membrane is still not so clear. It is known 

that in nuclear membrane formation VCP co-factor UFD1 binds CHMP2A, a protein present in 

ESCRT-3 complex involved in the membrane transport and remodeling. The inhibition of UFD1 

prevents CHMP2A localization to the nuclear envelope (Olmos et al., 2015). In ER membrane 

formation VCP seems involved in a similar way then to Golgi membrane formation forming 

complexes with p47 and VCIP135 (Totsukawa et al., 2011).  

VCP DISEASE-ASSOCIATION  

Alteration or mutation in VCP gene expression is correlated to various diseases. The upregulation  

of VCP expression is correlated to some type of cancers, while its mis-functioning due to 

mutations leads to degenerative diseases. The main pathologies, to which VCP is correlated, are 

IBMPFD and ALS. VCP is also correlated to PD, CMT and AD. 

A VCP mutation was first associated to IBMPFD, a dominant disorder with a multisystem 

involvement and an adult onset (Watts et al., 2004). IBMPFD was firstly described in 2000 when 

a new autosomal dominant disease was reported with a clinical myopathy that resembles limb 

girdle muscular dystrophy, in the majority of the cases was associated to Paget disease of bone 

and in fewer cases was also associated to FTD (Kimonis et al., 2000). Patients can manifest 

myopathy with disabling muscle weakness that can lead to the involvement of cardiac and 

respiratory muscles (Nalbandian et al., 2011). Moreover, they can have an involvement of bone 

tissue with bone pane and fracture due to excessive osteoblastic and osteoclastic activity 

(Farpour et al., 2012). Finally, 30% of patients can have brain involvement with incapacity of 

learning and deficits in memory, problems in speaking, altered personality and social skills. This 

is caused by the degeneration of neurons in the frontal and anterior temporal lobes of the brain 

(Kimonis et al., 2008; Neary et al., 1998).  

More than 40 missense mutations in VCP gene have been found in IBMPFD patients. Mutations 

involve amino acids in 29 different positions (Mehta et al., 2013; Nalbandian et al., 2011). 
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Mutations are mostly localized near the interface between the N-terminal and D1 domains of 

VCP. These mutants alter D1 affinity for ADP (Tang et al., 2010b), leading to an increased ATPase 

activity of D2 domain and a loss in the coordinated movement of N-terminal domain (Halawani 

et al., 2009; Schuetz & Kay, 2016; Tang et al., 2010; Tang & Xia, 2013). Moreover, these mutants 

alter some of co-factors binding, decreasing its affinity or even preventing it (Bulfer et al., 2016; 

Fernández-Sáiz & Buchberger, 2010). The most abundant mutations are missense mutations in 

Arginine-155 like R155C and R155H. Generally, patients having the same mutation might have 

completely different phenotypes. However, R155C mutation normally, is correlated to patients 

with a more severe phenotype, with an earlier onset and with a decrease survival compared to 

those with the R155H mutation. Moreover, VPC R155C patients generally have clinically a 

myopathy and Paget disease (Mehta et al., 2013). 

At cellular level, muscles fibers present vacuoles that contain ubiquitin and VCP (Watts et al., 

2004). While neurons present nuclear and cytoplasmatic inclusions positive to VCP and ubiquitin 

(Kimonis & Watts, 2005). Moreover, both muscles and neurons present TDP-43 inclusions. In fact, 

studies have demonstrated a correlation between VCP and TDP-43 cytoplasmatic redistribution, 

and TDP-43 cytotoxicity in presence of VCP mutants (Ritson et al., 2010).  

Mutants of VCP were correlated to ALS in 2010 by Johnson and colleagues. Using exome 

sequencing they identified, in an Italian family with autosomal dominant fALS, a point mutation 

in VCP: VCP R191Q (Johnson et al., 2010).  The subsequent screening on a cohort of ALS patients 

showed other mutations correlated to the disease: R155H, R159G and D592N. To date VCP is 

correlated to all most 2% of fALS cases. Almost 20 mutations in 12 different positions have been 

correlated to ALS. Although there is an overlapping between ALS and IBMPFD mutations, most 

of ALS mutants are located in the D2 domain and most of them are not in the interface between 

the N-terminal and D1 domains as it was for IBMPFD. At cellular level, Johnson and colleagues 

found inclusion positive to ubiquitin and/or deposition of TDP-43 positive aggregates (Johnson 

et al., 2010). 

Mutations in VCP gene do not prevent VCP total functionality, but impair a subset of its functions. 

In fact, VCP-knockout mice are not vital as there is an early embryonic lethality (Muller et al., 

2007), yet generally patients and mice with VCP mutations develop normally and have disease 

symptoms manifesting only late in life (Badadani et al., 2010).  

The persistence of inclusions in IBMPFD and VCP-ALS patients suggests an alteration in the PQC 

system, in particular in protein degradation pathways. Indeed, VCP mutants affect the 
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consolidation of aggregate-prone proteins like TDP-43, into insoluble aggregates. Moreover, in 

some cases mutations in VCP disrupt the degradation of ubiquitylated proteins through the 

autophagic pathway, leading to the accumulation of autophagosomes, a common pathologic 

feature (Ju et al., 2009; Ju et al., 2008; Tresse et al., 2010). In support to this theory, it was 

reported that mutants like VCP R155C and VCP R191Q cause alterations in the maturation of 

autophagosome, defects of autophagosome-lysosome fusion and autolysosome formation (Ju et 

al., 2009; Tresse et al., 2010). Moreover, recently data showed that VCP mutants can alter 

autophagic functioning by preventing damaged lysosomes degradation. Alteration in lysophagy 

mechanism results in the accumulation of damage lysosomes that leads to a cellular severe stress 

condition. Moreover, it alters autophagic pathway by decreasing the pool of lysosome available 

for the process (Papadopoulos et al., 2017).  

Conversely, in some cases data show a different pathological mechanism. In fact, some IBMPFD-

mutants like VCP P137L and VCP R93C were shown to stimulate both autophagosome and 

autolysosome formation (Bayraktar et al., 2016). This suggests that cellular mechanisms leading 

to VCP-disease may be highly variable.  
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Figure 8  VCP structure (Meyer et al., 2012) 

Figure 9 VCP mutations (Tang &  Xia, 2016) 
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Figure 10 VCP functions (modified from Meyer & Weihl, 2014) 

Figure 11 VCP functions (modified from Meyer & Weihl, 2014) 
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PROTEIN QUALITY CONTROL SYSTEM 
The aggregation of misfolded proteins is one key element of ALS pathogenesis. In fact, most of 

the mutations in genes described before, lead to protein destabilization and to its incorrect 

folding, resulting in an increased tendency to aggregate. The formation of protein aggregates can 

then cause cytotoxicity by altering various cell mechanisms such as axonal transport, 

mitochondria processes and the degradative pathways. Moreover, aggregates can sequester 

other properly folded proteins preventing their functioning and threatening cell viability 

(Cozzolino et al., 2008; Pasinelli & Brown, 2006; Seetharaman et al., 2009). Neurons are much 

more sensitive than other cells to the accumulation of aggregates because they cannot “dilute” 

them through cell division as they are post-mitotic cells (Lee et al., 2011). Therefore, cells to 

maintain their homeostasis and to protect themselves, use different mechanisms that prevent 

the formation of aggregates or eliminate them. The correct protein homeostasis is controlled by 

the chaperones and degradative systems. 

Chaperones recognize and bind proteins that have not yet reached or have lost the correct 

conformation (unfolded, misfolded). By binding misfolded proteins, chaperones prevent proteins 

aggregation and enhance their refolding to proper conformation. If proteins are too much altered 

to reach their correct conformation, chaperones by forming complexes with co-chaperones, 

deliver them to the degradation pathways. 

The main degradation pathways are: the UPS and the autophagic pathway. 

CHAPERONE SYSTEM 

Chaperones are proteins ubiquitously expressed that assist newly synthetized proteins to reach 

their correct conformation, they cooperate in the assembly of complexes, prevent protein 

misfolding and aggregation or, if it occurs, cooperate with protein unfolding and aggregate 

disassembly. In particular, they have a crucial role in preventing or in correcting protein 

denaturation caused by cellular stress.  Cellular stresses include toxin exposure, heat shock or 

disease conditions, etc.. Generally, chaperone substrates have not specific post transcriptional 

signal recognitions but chaperones recognize proteins not properly folded that expose 

hydrophobic residues that are normally inside the protein structure. (Gidalevitz et al., 2011; Hartl 

et al., 2011; Saibil, 2013). To assist protein folding or refolding chaperones can either use ATP 

hydrolysis or they can just bind to substrates protecting them during their assembly (Mayer, 

2010).  
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The major chaperone family is the family of the Heat Shock Proteins (HSPs). Initially, they were 

discovered as proteins that are upregulated after a heat shock (Schlesinger, 1990).  HSPs 

expression is regulated by Heat Shock Factor 1 (HSF-1), a transcription factor normally found 

inactive in the cytosol as a monomer bound to HSP90, that becomes active after stress exposure 

migrating in the nucleus as a trimer to activate transcription of stress responsive genes (Clos et 

al., 1990). HSPs are classified according to their molecular weight in: HSP40, HSP60, HSP70, 

HSP90, HSP100 and small HSP (sHSPs). Members of the HSP60, HSP70, HSP90 and HSP100 family 

have an ATP dependent activity while HSP40s and sHSPs do not use ATP energy to carry out their 

activity. 

HSP70 is involved in various pathways by binding with different co-factors as HSP100, HSP40 also 

known as J proteins, and nucleotide exchange factors (NEF) that coordinates HSP70 ATP-binding. 

HSP70 functionality depends on its dynamic conformational cycle that is regulated by ATP 

binding, hydrolysis and release. HSP70 functions are: to bind and to maintain substrates that are 

in an unfolded state to prevent their aggregation or to permit organelle membrane translocation; 

to cooperate in the removal of Clathrin coat on endocytosis vesicles; to disassemble large 

aggregates (Rampelt et al., 2012; Rothnie et al., 2011; Sharma et al., 2010). 

HSP90, as well as HSP70, cooperates with various partners including HSP70. HSP90 also binds 

unfolded protein preventing their aggregation and cooperating with their proper folding. In 

particular, HSP90 activity occurs in the late stages of folding of substrates that are involved in 

cellular signalling, as hormone receptors, kinases and important oncogenic proteins. By binding 

to these specific substrates, HSP90 modulates their activity, their localisation and their 

degradation maintaining them in a un-folded conformation. HSP90 works as a dimer and is 

regulated by post-transitional modifications and co-chaperone binding, that modulates its 

activity and targets to its substrates (Johnson, 2012; Li et al., 2012; Taipale et al., 2010). 

HSP60 or Chaperonins can be divided into two subgroups: group I is composed of the bacterial 

(GroEL, GroES), mitochondrial and chloroplast specific HSP60; and group II comprehends archaea 

and eukaryotic cytosolic proteins. HSP60 binds with few partners in fact, it forms a symmetrical, 

self-contained complex. HSP60 complex binds the substrate inside its structure enhancing and 

facilitating its correct folding (Goloubinoff et al., 1989; Horwich & Fenton, 2009; Ostermann et 

al., 1989). 
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HSP100 proteins function is to unfold protein or disaggregate by removing unfolded proteins 

from aggregates, and addressing them to degradation pathways. HSP100 proteins are members 

of the AAA+ superfamily, that were previously described (Neuwald et al., 1999).  

sHSPs are characterized by a low mass (10-40kDa) and a particular a-crystallin domain of 90 aa. 

sHSPs role is crucial for the maintenance of proteostasis. In fact, they are their first chaperones 

that recognize misfolded proteins and bind them preventing aggregation in an ATP-independent 

manner (Ehrnsperger et al., 1997) sHSPs can be found assembled in oligomeric forms, where 

their interaction with substrates are very low, or disassembled in smaller species, generally in 

dimers, that can easily interact with substrates. As dimers sHSPs bind substrates and they can 

either form assemblies smaller and easier to rescue than insoluble protein aggregates, or they 

can interact with other chaperonea and co-chaperones to enhance substrates degradation 

(Haslbeck & Vierling, 2015; Stengel et al., 2010; Treweek et al., 2015). To support chaperones 

activity there are different proteins families known as co-chaperones. There are several families 

of co-chaperones proteins, as the Bcl-2-associated athanogene (BAG) containing family that 

contains the BAG domain; the family containing the TPR motif, whose members are CHIP, HIP 

and HOP, and the co-chaperone protein HSP40. 

UBIQUITIN PROTEASOME SYSTEM 

The UPS is a cellular pathway responsible for removing short-lived or abnormal proteins. UPS is 

a selective proteolytic system that degrade misfolded or damaged proteins in small peptides. It 

is a selective degradation system, in fact proteins that are degraded, are recognized by the 

system only if they bind a polyubiquitin chain K48 (Ciechanover & Stanhill, 2014). 

The proteasome is composed by an internal proteolytic subunit (20S) and two external regulatory 

subunits (19S) that harbour receptors to recognize substrates (Bedford et al., 2011). The 20S 

subunit is composed of 4 rings stack one above the other, formed by 7 subunits each. The outer 

rings are called α while the two inner ones are called β (α7 β7 β7 α7). Three of the seven β subunits 

have proteolytic activity and cleave hydrophobic, basic and acidic sites. The presence of multiple 

simultaneously active subunits leads to faster degradation of the substrate (Groll et al., 1997). 

The 20S subunit can be found in three conformations: active state, inactive state and 

intermediate state. It is activated when it interacts with the 19S regulatory subunits 

(Unverdorben et al., 2014). The two 19S subunits are located at the ends of 20S and are formed 

by nine subunits each. Their function is to recognize the ubiquitinated substrate, to 
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deubiquitinate it and to linearize proteins using ATPases energy. Once substrates are linearized, 

19S introduce them into the core of the proteasome (Finley, 2009; Glickman et al., 1998). 

The proteasome substrates are misfolded proteins and fast-turnover proteins located in the 

cytoplasm, nucleus and ER. Proteins with incorrect conformation are recognized by chaperones 

and Ubiquitin-ligase (E3). These enzymes recognize the substrate that have altered structure as 

exposed hydrophobic residues or incorrect disulfide bonds. Once substrates are recognized, they 

are marked and then degraded (Clague & Urbé, 2010). 

The UPS degradation mechanism is composed by various steps where about 500-1000 proteins 

cooperate. In the first step substrates are conjugated with an ubiquitin chain that is needed as 

recognition signal for the proteasome. Ubiquitin is regulatory protein of 76aa, it is activated in 

the active site of the enzyme E1 through the formation of a thioester bond between Gly76 in its 

C-terminal domain and a cysteine. Once the ubiquitin is activated it is transferred to enzyme E2 

through another thioester bond. Then enzyme E3 ligase transfers ubiquitin and catalyzes its 

binding to a lysine residue of the substrate (Glickman & Ciechanover, 2002; Hershko, 2005). Once 

the substrate is bound to ubiquitin it can be addressed to different pathways. To be addressed 

to the proteasome, the protein must bind the ubiquitin in lysine 48. Furthermore, to be 

recognized by the 19S subunit, the chain must have at least 4 ubiquitins (Clague & Urbé, 2010; 

Thrower et al., 2000). 

The substrate is recognized through two receptors present on the 19S subunit: Rpn10 and Rpn13. 

To facilitate recognition there are shuttle proteins, such as Ubiquilin and p62, that have a UBL 

(Ubiquitin-like) domain that interacts with the proteasome, and a UBA (Ubiquitin-associated) 

domain that interacts with the polyubiquitin chain. Thanks to their structure, these proteins act 

as linkers between the proteasome and the target protein (Chen & Madura, 2005; Husnjak et al., 

2008). 

After the interaction with the substrate, 19S subunit activates the enzymes that deubiquitinate 

the substrate: deubiquinating enzymes (DUBs). This step allows the protein to enter in the core 

of the 20S subunit and allows the ubiquitins to be recycled and used for other proteins 

degradation. Deubiquitination is an important phase that must take place in the right time since 

that if deubiquitinated proteins fail to enter the proteolytic site they are released again into the 

cell (Hanna & Finley, 2007). The deubiquitinated substrates then enter into the core of the 

proteasome passing through a very narrow opening (diameter of 13 A°) that mechanically 

linearize them. In the center of the 20S ring substrates are reduced to small peptides through the 
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β5, β2 and β1 subunits which have a chymotryptic, tryptic and post-acidic action (Hendil et al., 

1998; Tanahashi et al., 2000). 

UPS AND DISEASE 

UPS malfunctioning leads to irreversible alteration of cell homeostasis resulting in the formation 

of aggregates which can lead to alteration of various vital cell processes and to subsequent 

cytotoxicity and cell death. The UPS malfunction may be due to problems in the ubiquitination 

phase, in the addressing of the substrate to the proteasome or in the activity of the proteasome 

itself (McKinnon & Tabrizi, 2014). 

In neurodegenerative diseases, the alteration of UPS seems to be due to a decrease in proteolytic 

activity. In fact, the direct interaction between misfolded proteins and proteasome reduces or 

inhibits its activity. The alteration of UPS activity could also be due to toxic events associated with 

ALS such as ATP depletion or oxidative stress (McKinnon & Tabrizi, 2014). 

In ALS, proteasome dysfunction plays an important role, in fact most inclusions contain 

ubiquitinated proteins. Studies on ALS proteasome dysfunction, have shown that the aggregation 

of mutated SOD1 leads to a significant decrease in the functioning of the proteasome (Crippa et 

al., 2010; Sau et al., 2007). In SOD1-ALS, proteasome defects are due to SOD1 aggregates that 

damages mitochondria causing ATP depletion and increase in the levels of free radicals (Ugarte 

et al. 2010). Some studies have also shown that SOD1 aggregates can inhibit the translocation of 

substrates to the proteasome preventing their degradation (Sau et al., 2007). Studies conducted 

on TDP-43 associated ALS models show that inhibition of the proteasome leads to an increase in 

the levels of the C-terminal fragments of TDP-43 as it blocks their degradation. Indeed, 

proteasome inhibition increases toxicity of TDP-43 fragments as TDP-43 and its fragments are 

initially degraded by UPS. However, if during the transport to the proteasome TDP-43 and its 

fragments escape the control of ubiquitinating enzymes they are prone to aggregate. Once 

aggregated they can no longer be degraded by the proteasome but other degradative systems 

are needed (Andersen & Al-Chalabi, 2011). 

The UPS dysfunction in ALS may also be caused by mutation of genes that encode for proteins 

involved in the system like UBQLN2 or SQSTM1, genes that encodes respectively for Ubiquilin-2 

and p62 (Deng et al., 2011; Fecto et al., 2011).  Mutations in UBQLN2 were associated to ALS in 

2011. Mutated Ubiquilin-2 is shown to lead to impairment of protein degradation, with abnormal 

protein aggregation and neurodegeneration (Chang & Monteiro, 2015; Deng et al., 2011).  
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Figure 12 Proteasome structure (Marshall &  Vierstra, 2019) 

Figure 13 UPS mechanism (Marshall & Vierstra, 2019) 
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AUTOPHAGY 

Autophagy is a catabolic process that eliminates large portions of cytoplasm, proteins with a long 

half-life and damaged organelles. 

Autophagic degradation can be non-specific or targeted to ubiquitinated substrates such as 

protein aggregates, intracellular organelles and microorganisms (Kirkin et al., 2009; Xie & 

Klionsky, 2007). These ubiquitinated complexes are recognized by receptors such as Microtubule-

associated protein light chain 3 (LC3) and GABA (A) Receptor-Associated Protein (GABARAP) 

(Rogov et al., 2014), via different mechanisms they are transported to lysosomes that degrade 

substrates by proteases and acid pH. 

Initially, it was thought that the only role of autophagy was to enhance cell death by apoptosis 

(Ghavami et al., 2014). However, recently autophagy has been shown to play an important role 

in maintaining cell homeostasis by degrading organelles and non-functional proteins (Mizushima 

& Klionsky, 2007). Indeed, several studies have shown that autophagy can be induced by 

denatured or aggregated proteins, damaged organelles, oxygen radicals, hypoxia or stress. 

(Kroemer et al., 2010). 

Autophagy can be subdivided in three different processes according to how the substrate 

reaches lysosome to be degraded. The three mechanisms are: chaperones-mediated autophagy 

(CMA), microautophagy and macroautophagy.  

CHAPERONES-MEDIATED AUTOPHAGY 

CMA degraded substrates that harbour in their structure a pentapeptide motif 

(LysPheGluArgGln; KFERQ) which is recognized and bound by a molecular chaperone called Heat 

Shock Cognate 70 (HSC70). Under physiological conditions this sequence is not exposed outside 

the protein, but due to protein misfolding or to mutations in its primary structure, it can be 

exposed outside and recognized (Kiffin et al., 2004). The substrate-HSP70 complex is in turn 

recognized by Lysosome-associated membranes glycoprotein (LAMP2A), a protein present on 

the lysosome membrane. The interaction with LAMP2A leads, LAMP2A dimerization and to the 

internalization of the substrate and its degradation (Arias & Cuervo, 2011). This process can be 

activated to compensate the mis-functioning of macroautophagy. 
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MICROAUTOPHAGY 

Microautophagy degradation is even more direct than CMA, in fact lysosomes themselves 

incorporate portions of the cytoplasm forming invaginations of the membrane (Glick et al., 2010). 

Invagination of the membrane occurs where there is a very low content of transmembrane 

proteins and is regulated by dynamin-related GTPase, VPS1P (Uttenweiler et al., 2005).  First 

lysosome membrane bulges with a lateral segregation of lipids and a local exclusion of large 

transmembrane proteins (Uttenweiler et al., 2005). Then the invagination extends inside 

lysosome lumen and forms tubular structure termed “autophagic tube” (Müller et al., 2000). 

Thanks to enzymes, the invagination enlarges in a bubble-like structure enriched of lipids and 

without transmembrane protein (Sattler & Mayer, 2000; Uttenweiler et al., 2007). Invagination 

is regulated by two Atg7-complexes. Moreover, in yeast the Vacuolar Transporter Chaperone 

(VTC) complex regulates protein redistribution and triggers membrane invagination through 

Calmodulin (Doelling et al., 2002; Uttenweiler et al., 2005). Finally, the vesicle formed separates 

from the membrane.  

Microautophagy is generally non-selective, however in yeast are found different types of 

selective microautophagy. In selective microautophagy lysosomes sequester organelles with 

arm-like protrusions. The organelles, substrates of microautophagy, are: peroxisome 

(micropexophagy), non-essential parts of the nucleus (Piecemeal microautophagy of the nucleus, 

PMN) and mitochondria (micromitophagy) (Bellu et al., 2001; Dawaliby & Mayer, 2010; Kiššova 

et al., 2007).  

MACROAUTOPHAGY 

Macroautophagy (generally named autophagy) is a more complex mechanism. It consists in the 

degradation of substrate by lysosomes mediated by autophagosome that incorporates and 

transport the material. Macroautophagy can be divided into four main phases: initiation, where 

there is the recruitment of the initial membrane, called the phagophore; elongation of this 

membrane until it forms the autophagosome; maturation, when the autophagosome fuses with 

endosomes and finally lysosomes and degradation of the cytoplasmatic material. 

During the initiation the internal cell membranes are reorganized to be used to incorporate the 

substrate. The cell membranes that are involved are still not clear but data show a contribute of 

ER, mitochondria, mitochondria-associated membranes (MAMs), Golgi, plasma membrane and 

recycled endosome (Frake et al., 2015; Lamb et al., 2013; Ravikumar et al., 2010). Elongation 
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with autophagosome formation, is regulated by the assembly of two complexes: the protein-

kinase autophagy complex (ULK1-Atg13-FIP200) and the lipid-kinase signalling complex (PI3KCIII 

complex: Vps34-Vps15-Atg14-Beclin-1). The reorganization of the membranes leads to the 

formation first of the phagophore and then of the autophagosome thanks to the recruitment of 

ATG proteins (AuTophaGy related).  

The ULK1-Atg13-FIP200 complex is regulated by mTORC1 complex and by AMPK (Mizushima, 

2010; Shang & Wang, 2011). mTORC1 is a complex containing mTOR, a serine/threonine protein 

kinase, that inhibits autophagy activation. mTORC1 actively inhibits ULK1-Atg13-FIP200 complex 

by phosphorylating ULK1 and Atg13 and directly binding ULK1 (Jia et al., 2018). ULK1-Atg13-

FIP200 complex activation is mediated by inhibition of mTORC1, by phosphorylation of AMPK 

and by autophosphorylation. AMPK phosphorylates ULK1 activating its functionality, and 

phosphorylates mTORC1 inhibiting it. ULK1 phosphorylates its self and both Atg13 and FIP200 

activating the complex (Kim et al., 2011). Once ULK1-Atg13-FIP200 complex is activated, it 

activates the PI3KCIII complex containing Beclin-1. This enzymatic cascade leads to the formation 

of the phagophore (Simonsen & Tooze, 2009). Substrate incorporation and autophagosome 

transformation occurs through two ubiquitin-dependent systems: Atg12-Atg5 conjugation 

system and microtubule-associated protein1A/1B - light chain 3 (LC3) conjugation system. The 

Atg12-Atg5 complex forms thanks to Atg7, an E1 enzyme, and Atg10, an E2 enzyme. Atg12-Atg5 

complex enhances the formation of LC3-II. LC3-I is first clavated in its C-terminal end by Atg4, 

then it is conjugated to a phosphatidylethanolamine by Atg3 forming LC3-II. LC3-II enhances the 

fusion of the lipid double layer of the phagophore, thus forming the autophagosome. Once 

formed LC3-II remains anchored on the membrane (Hanada et al., 2007). Before the formation 

of the autophagosome is complete, LC3-II interacts with autophagy receptors as p62, that 

mediate the internalization of the ubiquitinated substrates. In fact, p62 harbours UBA motif that 

when p62 is not activated, dimerizes by binding to another p62 on its UBA motif. Subsequent 

phosphorylation by ULK1 and TANK-binding kinase 1 (TBK1) destabilizes p62 dimer and increases 

its affinity for ubiquitin leading to p62 binding to ubiquitinated substrates. P62 also has a LC3-

interacting region (LIR) that binds LC3 in different regions permitting the specific degradation of 

substrates (Ichimura et al., 2008; Lim et al., 2015; Pankiv et al., 2007).  

The maturation phase involves the transition from the autophagosome to the autolysosome 

through the fusion first with the endosome or amphysome and then with the lysosome (Longatti 

& Tooze, 2009). Firstly, the autophagosome formed must be transported to the cell body through 
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an antegrade transport which occurs thanks to the interaction with Dinactin and with Dinein 

(Eschbach & Dupuis, 2011). In neurons this transport, also known as axonal transport, is a critical 

passage. In fact, neuronal terminal parts, where the autophagosome are formed, are often very 

far from the cell body. The fusion of autophagosomes and lysosomes occurs thanks to the 

presence of various proteins including ESCRT (endosomal sorting complex required for 

transport), Rab and SNARE (N-ethylmaleimide-sensitive factor-activating protein receptor) (Ritz 

et al., 2011).  

The degradation phase takes place inside the autolysosome thanks to proteases, lipases and 

nucleases and thanks to the acid pH (pH 4.5-5) that activates the enzymes. The pH level is 

maintained by an ATPase proton pump (Saftig & Klumperman, 2009). 

TRANSCRIPTIONAL REGULATION OF AUTOPHAGY 

Besides post-translational modifications of proteins, autophagy is regulated also at 

transcriptional level. Different transcription factors are involved in promoting the expression of 

genes that are implicated in autophagosome formation, fusion of autophagosomes with 

lysosomes and lysosome biogenesis. Some members of the microphthalmia family of basic helix-

loop-helix leucine-zipper transcription factors (MiT/TFE) are involved in these processes like: 

transcription factor EB (TFEB), TFE3 and MITF. MiT members recognize and bind palindromic 

CACGTG E-box and asymmetric TCATGTG M-box sequences present in the promoter of various 

genes, regulating them. MiT transcription factors bind these DNA regions as monomers, 

homodimer or heterodimer by interacting specifically with any other member of the MiT family. 

(Aksan & Goding, 1998; Hemesath et al., 1994). TFEB and TFE3 regulate the expression of a similar 

set of genes. However, mice with different knockout-MiT transcription factors have different 

phenotypes proving that MiT members may have specific functions and a limited redundancy 

(Betschinger et al., 2013; Ferron et al., 2013; Steingrímsson et al., 2002; Yagil et al., 2012). TFEB 

and TFE3 regulates Coordinated Lysosomal Expression And Regulation (CLEAR) genes. CLEAR 

genes are involved in autophagosome biogenesis and are implicated in autolysosome formation 

(Sardiello et al., 2009; Settembre et al., 2011).  

TFEB regulation depends on post-translational modifications, protein-protein interactions and 

spatial organization. In particular TFEB can be found in an inactive state: localized in cytoplasm, 

phosphorylated and bound to chaperone 14-3-3, or else it can be found in an active state: 

dephosphorylated and with a nucleus localization. Phosphorylation is the main regulator of TFEB 

activity. In particular, inactive TFEB is phosphorylated in Ser142 and in Ser211 (Martina, et al., 



 

 51 

2014; Roczniak-Ferguson et al., 2012; Settembre et al., 2012). Ser211 inhibits TFEB functioning 

by masking NLS motif present in TFEB structure and promoting binding with chaperone 14-3-3 

(Roczniak-Ferguson et al., 2012). TFEB phosphorylation and inactivation is regulated by mTORC1 

complex. Activation of mTORC1 complex is promoted by v-ATPase that activate Rag (Ras-related 

GTP-binding) GTPases. Rag proteins recruit mTORC1 to lysosome membranes where GTPase 

Rheb activates the complex (Sancak et al., 2010; Zoncu et al., 2011). Rag GTPases also bind TFEB 

addressing it to lysosomes, where it is phosphorylated by mTORC1 (Martina & Puertollano, 

2013). When starvation or lysosomal stress occurs, mTORC1 is inactivated and released from 

lysosomes (Sancak et al., 2010) and in parallel cytoplasmatic Ca2+ increases activating 

phosphatases as Calcineurin/PPP3CB. In turn, Calcineurin dephosphorylates TFEB that 

translocate in the nucleus promoting gene transcription (Medina et al., 2015). 

Martina and colleagues showed that TFE3 is also regulated by Rag GTPase recruitment and 

mTORC1 phosphorylation. Moreover, TFE3 activation and nucleus translocation results in the 

expression of genes related to the autophagic pathway and lysosomal biogenesis (Martina et al., 

2014).  

In same cell types TFE3 and TFEB role can seem redundant, however some biological functions 

may be unique and their expression levels are differentiated in some cell types (Martina et al., 

2014; Raben & Puertollano, 2016). 

CHAPERONE-ASSISTED SELECTIVE AUTOPHAGY  

Autophagy can be either non-specific or specific. In selective autophagy chaperone complexes 

recognize specific substrates and address them to autophagic degradation. A type of selective 

autophagy is named chaperone-assisted selective autophagy (CASA). In CASA pathway substrates 

are routed to autophagosomes by CASA complex. CASA complex is formed by HSPB8, a sHSP, 

BAG3, HSP70 and CHIP. HSPB8 recognizes and binds misfolded proteins and CHIP ubiquitinates 

them. BAG3 binds dynein that together with dynactin mediates substrates-complex transport 

along microtubules to the microtubule organizing centre (MTOC). At MTOC ubiquitinated 

substrates are bound by p62 proteins forming aggresomes that are then engulfed in 

autophagosomes (Arndt et al., 2010; Massey et al., 2006). Studies have tried to potentiate this 

mechanism in order to enhance degradation of misfolded proteins. To achieve this goal, 

members of the complex as HSPB8 or BAG3 were upregulated.  
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LYSOSOME 

Lysosome is a double membrane organelle responsible of macromolecules, organelles and 

extracellular material degradation. Recent discoveries have found that lysosomes are involved in 

other cellular processes like metabolic signaling, regulation of genes, plasma membrane 

reparations, immunity and cell adhesion and migration (Ballabio & Bonifacino, 2020; Conus & 

Simon, 2008; Michelet et al., 2018; Reddy et al., 2001). Many proteins are present in lysosomal 

membrane and lumen to coordinate its functioning. Lysosome protein can be classified in soluble 

lysosomal proteins, present in the lumen and in the integral lysosomal membrane proteins 

(LMPs). Lumen proteins comprehend hydrolases, enzyme activators, protective factors and 

transport factors (Lübke et al., 2009). To date there are at least 50 different hydrolases, that each 

targets different substrates degrading them. Besides from their key role in degradation, 

hydrolases are also involved processing of antigens cooperating with immune response, in 

degradation of extracellular matrix and in initiation of apoptosis (Conus & Simon, 2008). LMPs 

present in lysosomes are at least 20 and they also cooperate in many functions. The main LMPs 

are: v-ATPase that are responsible for the acidification of lysosomal lumen; Lysosome Associated 

Membrane Protein (LAMP), highly glycosylated proteins, that protect lysosome from hydrolyses 

and acid pH; ion channels that maintain ion homeostasis; transporters that permit the export of 

lysosomal degradation products; and finally SNARE proteins that coordinate lysosome fusion 

with vesicles or organelles (Eskelinen, 2006; Hasegawa et al., 2015). Moreover, lysosomes 

through RAG-GTPases interact with various complexes cooperating in different signaling 

pathways as mTORC1/TFEB.  

Another significant modality used by lysosomes to exert their activity is Ca2+ segregation and 

release. In fact, lysosomal Ca2+ release enhances various cellular processes as lysosomal re-

formation, endosome-lysosome fusion, TFEB translocation to the nucleus, autolysosome 

formation and lysosomal exocytosis (Morgan et al., 2011; Reddy et al., 2001).  

Several conditions as bacteria, photodamage, sterile damage and endocytosed neurotoxic 

aggregates lead to lysosome membrane permeabilization and rapture (Bussi et al., 2018; Hung 

et al., 2013; Thurston et al., 2012). Lysosomal membrane permeabilization can eventually result 

in leakage of lumen cathepsins, that can trigger lysosome-dependent cell death (Aits & Jäättelä, 

2013; Wang et al., 2018). However, to prevent lysosome-dependent cell death, cell activates 

pathways, known as Endo-Lysosomal Damage Response (ELDR), that either repair or eliminate 

damaged lysosomes. Physiologically HSP70 prevents membrane permeabilization and maintains 
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balanced lipid composition by binding to an anionic phospholipid 

bis(monoacylglycero)phosphate (BMP) which is an essential co-factor for lysosomal 

sphingomyelin metabolism. When small damage occurs, lysosomal repair is activated (Kirkegaard 

et al., 2010). ESCRT-I, ESCRT-II, and in particular ESCRT-III are recruited to the damaged lysosome. 

Lysosomal Ca2+ depletion triggers ESCRT-III recruitment through ALIX activation. Once ESCRT-III 

is localized on lysosomes membrane, it forms filamentous spirals on the surface of the lipid 

bilayer that could close membrane holes (Radulovic et al., 2018; Skowyra et al., 2018). When the 

ruptures is irreversible, damaged lysosomes can be eliminated through the autophagic pathway 

in a process called lysophagy (Maejima et al., 2013; Papadopoulos et al., 2017). Lysosomes 

activate their degradation via lysophagy in different ways. Firstly, ruptured lysosomes expose on 

their membrane a group of cytosolic lectins, known as galectins (GAL3, GAL8), to mark the 

damage. GAL8 directly recruits and binds NDP52 an autophagy receptor, that in turn recruits LC3 

on the phagophore. GAL3 recruits and binds ULK1, that stimulates phagophore formation, and 

TRIM16. GAL3/TRIM16 complex enhances ubiquitination of LMPs with K48 and K63 polyubiquitin 

chains and recruits autophagic initiation factors to promote local phagophore formation 

(Chauhan et al., 2016; Thurston et al., 2012). Ubiquitinated K63 LMPs also recruit autophagy 

receptors. In parallel ubiquitinated K48 proteins are targeted by VCP to UPS degradation. VCP 

recruitment to lysosome membranes and functioning is mediated by its co-factors and adaptors: 

the deubiquitinating enzyme YOD1, UBXD1 and PLAA. UBXD1 has a UBA motif that permits 

ubiquitin chains recognition mediating substrates binding. (Akutsu et al., 2016; Fujita et al., 2013; 

Papadopoulos et al., 2017). 

AUTOPHAGY AND DISEASES 

The autophagic functioning can decrease for different reasons. The first is the aging, which leads 

to a decrease in transcription, translation and post-translational modifications of elements 

involved in autophagy (Mizushima, 2010). Another cause is the malfunctioning of the 

components of the autophagic pathway due to direct interaction with protein aggregates (Wang 

et al., 2009). Finally, the decrease in activity may be due to mutations in genes that encode 

protein involved in the pathway. 

Several gene mutations associated to ALS alter the normal functioning of autophagy. Studies 

have shown that mutated SOD1 interacts with Beclin-1 (co-factor in the initiation phase) 

destabilizing its interactions with other co-factors (Hara et al., 2006). Another autophagic protein 

associated to ALS is dynactin which is found mutated in few cases of fALS. Dynactin mutants 
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prevent the retrograde transport of autophagosomes and subsequently enhance accumulation 

of aggregates (Münch et al., 2004; Puls et al., 2003). Finally, mutations in VCP and CHMP2B 

(Charged Multivesicular Body Protein 2B a subunit of ESCRT-III) are shown to prevent the fusion 

between autophagosome and lysosome (Parkinson et al., 2006; Skibinski et al., 2005). 

Another protein involved in autophagy dysfunction is TDP-43 mutants. Recent studies have 

shown that loss of function of TDP-43 mutants, leads to destabilization of Atg7 mRNA resulting 

in a reduced  expression of Atg7 (Bose et al., 2011). This may prevent the autophagosome 

formation since Atg7 has an important role in the initiation phase. 

Autophagy seems to have a fundamental role in the degradation of TDP-43 inclusions. Initially 

these aggregates are eliminated via UPS but when they become too large they are eliminated via 

autophagy (Andersen & Al-Chalabi, 2011; Ciechanover & Kwon, 2015). 
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Figure 14 Different subtypes of autophagic pathway: macroautophagy, CMA and microautophagy. (Kaushik  & Cuervo, 2018) 

Figure 15 Regulation of autophagic pathway (Dikic  & Elazar, 2018) 
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Figure 16 TFEB regulation (modified from Napolitano & Ballabio, 2016) 

Figure 17 TFEB regulated pathways (modified from Napolitano & Ballabio, 2016) 
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Figure 18  Lysophagy pathway (Papadopoulos &  Meyer, 2017) 

Figure 19 VCP role in lysophagy (Papadopoulos &  Meyer, 2017) 
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MATERIALS AND METHODS 
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CELL CULTURES 

To study ALS, a motor neuron disease, it was used Neuroblastoma Spinal Cord (NSC34), which is 

a mouse motor neuron immortalized cell line. NSC34 cells are routinely used in our lab. NSC34 

are maintained in high glucose medium (Euroclone, Pero, MI, Italy) added with glutamine 1mM 

(Euroclone), with the antibiotics: penicillin G 100 U/ml (SERVA, Electrophoresis GmbH, 

Heidelberg, Germany) and streptomycin 100 U/mL (SERVA), and 5% fetal bovine serum (Sigma-

Aldrich). Cells grow at 37°C and 5% of CO2. 

To use a human cell line to compare results obtained on NSC34 it was used SH-SY5Y. SH-SY5Y is 

neuroblastoma human cell line with neuronal phenotype. SH-SY5Y are maintained in high glucose 

medium (Euroclone, Pero, MI, Italy) added with glutamine 1mM (Euroclone), with the antibiotics: 

penicillin G 100 U/ml (SERVA, Electrophoresis GmbH, Heidelberg, Germany) and streptomycin 

100 U/mL (SERVA), and 10% fetal bovine serum (Sigma-Aldrich). Cells grow at 37°C and 5% of 

CO2. 

PLASMIDS AND siRNA 

The plasmid used are the following: 

• pFLAG-VCP WT: encodes for human VCP WT tagged in N-terminal with FLAG tag, kindly 

provided by Prof. Serena Carra (UNIMORE). 

• pFLAG-VCP R155H: encodes for human VCP mutant, R155H, tagged with FLAG on N-terminal 

domain. This plasmid is kindly provided by Prof. Serena Carra (UNIMORE). 

• pFLAG-VCP R191Q: encodes for human VCP mutant, R191Q, tagged with FLAG on N-terminal 

domain. This plasmid was obtained replacing Arginin-191 with a Glutamine on pFLAG-VCP 

WT (Eurofins Genomics).  

• pSOD1 WT: encodes for human SOD1 WT. 

• pSOD1 G93A: encodes for human SOD1 mutant, G93A. 

• pGFP-SOD1 WT: encodes for human SOD1 WT tagged with GFP fluorescence protein. 

• pGFP-SOD1 G93A: encodes for human SOD1 G93A tagged with GFP fluorescence protein. 

• pGFP-SOD1 A4V: encodes for human SOD1 A4V tagged with GFP fluorescence protein. 

• pGFP-GAL3: encodes for Galectin 3 (GAL3), a marker of lysosomal damage: in physiological 

condition it is found diffused in the cytoplasm, after a lysosomal damage it colocalized with 

lysosomal raptured membrane . GAL3 is tagged with a GFP . 	

• pGFP-TFE3: encodes for TFE3 tagged with GFP.	
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• pCDNA3: Addgene plasmid, used as a transfection control. 

• pSVIP: encodes for the functional domain of an isoform of SVIP a cofactor of VCP that is 

involved in ERAD and autophagy activation. Kindly provided by Prof. Serena Carra 

(UNIMORE). We used this plasmid in the first set of experiments, to analyze if it could 

contribute in enhancing VCP WT functioning, but the size and conformation of the partial 

domain of SVIP encoded, made it impossible to detect the expressed protein using our 

techniques. Moreover, the data where more complex than what it was firstly supposed so it 

was decided to leave aside SVIP contribute and to concentrate on explaining other data.    

• pEGFPN1: Addgene plasmid that encodes for GFP protein, it is used as transfection control 

 

The following siRNA duplex were used for silencing mPPP3CB endogenous expression: siRNA 

sense: 5ʹ UGAC AGAAAUGUUGGUAAAUU 3ʹ and antisense: 5ʹ UUUACCAA CAUUUCUGUCAUU 3’. 

As a control was used a non-targeting siRNA sense: 5ʹ UAGCGACUAAACACAUCAAUU 3ʹ and 

antisense: 5ʹ UUGA UGUGUUUAGUCGCUAUU 3ʹ (Dharmacon). 

CHEMICALS 

Cells were treated with:  

• Z-Leu-Leu-Leu-al or MG132 (Sigma-Aldrich, Merck, Darmstadt, Germany) at 10μM for 16 

hrs to inhibit the proteasome.  

• 3-methyl-adenine or 3MA (Selleckem, Houston, TX, U SA) at 10mM for 48 hrs, directly 

diluted in medium. 3MA inhibits autophagy preventing autophagosome formation. 

• N2,N4-dibenzylquinazoline-2,4-diamine or DBeQ (Sigma-Aldrich, Merck, Darmstadt, 

Germany) at 2.5 µM for 16 hrs  a potent and specific inhibitor of VCP. It is reported that 

it inhibits the degradation of ubiquitinated proteins, the ERAD, and autophagosome 

maturation. DMSO was used as control (Sigma-Aldrich, Merck, Darmstadt, Germany). 

• D-(+)-trehalose dihydrate (trehalose) (Sigma-Aldrich, T9531) used at 100 mM for 24hrs to 

study cytoplasmatic/nuclear translocation of TFEB and TFE3, and for different periods to 

study lysosomal damage: 18hrs, 6hrs, 2hrs. Recently it was demonstrated that trehalose 

treatment induced lysosomal damage and enhanced autophagy through the activation of 

TFEB in an mTORC1 independent pathway. (Rusmini et al., 2019). 

• NH4Cl was used at 4μM for 90min. NH4Cl is a late autophagy inhibitor, in particular it alters 

lysosomal pH preventing its functioning.  
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TRANSFECTION PROCEDURE 

NSC34 cells were transfected with Lipofectamine® Transfection Reagent (Invitrogen, Thermo 

Scientific Life Sciences Research, Waltham, MA, USA), using manufacturer protocol: plasmid DNA 

is previously incubated with transferrin (Sigma-Aldrich, Merck, Darmstadt, Germany) and then 

mixed with Lipofectamine. SH-SY5Y cells were transfected with Lipofectamine 3000® 

Transfection Reagent (Invitrogen, Thermo Scientific Life Sciences Research, Waltham, MA, USA) 

using manufacturer protocol: plasmid DNA is previously incubated with p3000 in OPTIMEM and 

then mixed with Lipofectamine. 

Experiments of Figure 20 were carried out in 12-well plates and the following quantities of 

plasmids were used: 0.5μg of pSOD1 WT or of pSOD1 G93A and 0.6 µg of pFLAG-VCP WT/pFLAG-

VCP R55H/pFLAG-VCP R191Q or pCDNA3 as a control.  

Experiments of Figure 21 on protein evaluation were carried out in 12-well plates and the 

following quantities of plasmids were used: 0.5μg of pSOD1 G93A and 0.6 µg of pCDNA3. MTT 

experiments where were carried out in 24-well plates and the following quantities of plasmids 

were used: 0,5mg of pCDNA3.   

FLoIT experiments of Figure 22 were carried out in 24-well plates and the following quantities of 

plasmids were used 0.2μg of pGFPN1/pGFP-SOD1 WT/pGFP-SOD1 G93A/pGFP-SOD1 A4V and 

0.3µg of pFLAG-VCP WT/pFLAG-VCP R55H/pFLAG-VCP R191Q or pCDNA3. 

For experiments concerning VCP role in lysosomal damage, WB and FTA analysis the following 

quantities of plasmids were used: 1μg of pFLAG-VCP WT/pFLAG-VCP R55H/pFLAG-VCP R191Q or 

pCDNA3 as a control.  

For Nuclear-Cytoplasmic analysis quantities were doubled. 

For Immunofluorescence analysis cells were transfected with 0.2μg of pGFP-TFE3, and 0.3μg of 

pFLAG-VCP WT, pFLAG-VCP R155H, pFLAG-VCP R191Q or 0.5μg of pFLAG-VCP WT, pFLAG-VCP 

R155H, pFLAG-VCP R191Q.  

For Galectin Puncta Assay cells were transfected with 0.2μg pGFP-GAL3, 0.2μg pSOD1 WT/pSOD1 

G93A and 0.2μg of pFLAG-VCP WT, pFLAG-VCP R155H, pFLAG-VCP R191Q or 0.2μg pGFP-GAL3 

and 0.3μg of pFLAG-VCP WT, pFLAG- VCP R155H, pFLAG-VCP R191Q.  

For Electron Microscopy analysis cells were transfected with 0.8μg of pCDNA3, pFLAG-VCP 

R155H, pFLAG-VCP R191Q. 

siRNA were transfected in NSC34 with Lipofectamine® 2000 Transfection Reagent (Invitrogen) 

following manufacturer instructions. 20 pmole of siRNA were incubated with Lipofectamine® 



 

 62 

2000 reagent and the mix was added to cells directly in medium deprived of serum and 

antibiotics. After 5 hours medium was replaced with complete medium. 

PREPARATION OF PBS PROTEIN EXTRACTS 

NSC34 cells were plated in 12-well plate at 90,000 cell/ml. Whereas, SH-SY5Y cells were plated 

in 12-well plate at 120,000 cell/ml. After 48hrs from transfection and treatment cells were 

harvested, centrifuged (1,200 rpm for 5 min at 4°C) and resuspended in 75μL of PBS (Euroclone) 

with protease inhibitor cocktail 100X (IP) (Sigma-Aldrich). After sonication (3 hits at 10% of 

intensity) to lyse membranes, the total protein content of each sample was quantified with 

bicinchoninic acid (BCA) assay (Euroclone). 

NUCLEAR-CYTOPLASM EXTRACTION 

To analyze nuclear-cytoplasmic TFEB and TFE3 localization at the different condition, NSC34 were 

plated in 6-well plate at 90’000 cells/ml, transfected as explained, and treated for 24hrs with 

trehalose. Cells were harvested and were collected and centrifuged at 1’200 rpm for 5 min. at 

4°C. Then pellets were lysed in lysis buffer (Tris-HCl 50 mM, pH 7.5, Triton X-100 0.5% (Sigma- 

Aldrich), NaCl 137.5 mM, glycerol 10% (Sigma-Aldrich), ethylenediaminetetraacetic acid 5 mM 

containing protease inhibitor cocktail (Sigma-Aldrich) to extract cytoplasmic fraction. Whereas, 

the supernatant, containing the nuclear fraction was transferred in a new tube, centrifuged 

13’000 rpm for 15min at 4°C. The pellet was then resuspended in lysis buffer added with 0.5 % 

SDS (Sigma-Aldrich) and was sonicated (3 hits at 10% of intensity). Samples were then 

centrifugated and supernatant was transferred into a new tube. Protein quantification was then 

measured through the bicinchoninic acid (BCA) assay (Euroclone). 

Samples were analyzed with WB assay. 

FILTER TRAP ASSAY 

Filter trap assay (FTA) is a technique that permits to quantify protein aggregates bigger than 

0.22µm. utilizing the Bio-Dot SF Microfiltration Apparatus (Bio-Rad, Hercules, CA, USA) and 

specific antibodies. Samples containing 6μg of PBS soluble extracts from NSC34 and 9µg of PBS 

soluble extracts from SH-SY5Y, were loaded on a cellulose acetate membrane with pores of 0.22 

μm. Then, thanks to a vacuum system, samples were filtered on the membrane. Proteins, 

trapped on the acetate membrane were then fixed by using methanol (10%). To analyze PBS-
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insoluble proteins levels, the membrane was incubated first in blocking solution (5% dried non-

fat milk (Euroclone) in T-BST 1X) for 1 hr, then with primary antibody in blocking solution for 1 

hr. After two washes with TBS-T 1X of 10 min, the membrane was then incubated for 1 hr with 

HRP-conjugate secondary antibody diluted in TBS-T 1X. After a wash of 15 min. and four washes 

of 5 min. in TBS-T 1X signal was revealed with ClarityTM Western ECL Blotting Substrate (Bio-

Rad) and optical densitometry was acquired using ChemiDoc XRS System (Bio-Rad). Results were 

finally analyzed using Prism 5.0, applying student T-test. Each result represents mean ± SEM of 

three biological replicates. 

 

Primary antibodies used were: rabbit polyclonal SOD1 antibody (1:1000 Enzo Life Sciences) to 

analyze SOD1; mouse polyclonal anti-FLAG antibody (1:1000 Sigma-Aldrich) to analyze 

overexpressed VCP; mouse polyclonal anti-VCP antibody (1:1000 Abcam) to analyze total VCP 

expressed.  

Secondary antibodies used were goat anti-rabbit HRP-conjugate secondary antibody (1:10’000 

Santa Cruz Biotechnology) and goat anti-mouse IgG-HRP (1:10’000 Jackson ImmunoResearch). 

WESTERN BLOT 

Western blot is a technique that permits to evaluate total amount of SDS-soluble protein using 

specific antibodies. Experiments were carried out using 12% acrylamide gels. To analyze SOD1 

protein, 15μg of NSC34 samples and 20μg of SH-SY5Y were loaded on gels. After electrophoresis, 

proteins were transferred with Trans-Blot Turbo (BIORAD) for 40 min at 25 V at RT on a 

nitrocellulose membrane with 0.45µm pores. Transfer with Trans-Blot Turbo is used to detect all 

proteins except for LC3. To detect LC3, proteins were transferred with Mini Trans-Blot® Cell 

(BIORAD) for 2hrs at 100V at 4° on a nitrocellulose membrane with 0.45µm pores. Membrane 

was then incubated for 1 hr at RT with blocking solution and then overnight at 4° with a primary 

antibody diluted in blocking solution. After two washes of 10 min with TBS-T 1X the membrane 

was incubated for 1 hr with secondary antibody diluted in TBS-T 1X. 

Signal was revealed and acquired as for FTA.  

The primary antibodies used were: rabbit polyclonal SOD1 antibody (1:1’000, Enzo Life Sciences), 

mouse polyclonal anti-VCP antibody (1:1’000, Abcam), mouse polyclonal anti-FLAG antibody 

(1:1’000, Sigma-Aldrich), rabbit polyclonal anti-p62 antibody (1:1’000, Sigma-Aldrich), rabbit 

polyclonal anti-GAPDH (1:1’000, Santa Cruz Biotechnology), mouse monoclonal anti-α-tubulin 
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(1:3’000, Sigma-Aldrich), rabbit polyclonal anti-LC3A/B (1:2’000, Sigma-Aldrich); rabbit polyclonal 

anti-TFEB (1:4’000, Bethyl Laboratories), rabbit polyclonal anti-TFE3 (1:3’000, Sigma-Aldrich), 

rabbit polyclonal anti-histone H3 (1:40’000, Abcam). The following secondary antibodies were 

used: goat anti-mouse HRP-conjugate secondary antibody (1:10’000, Santa Cruz Biotechnology), 

goat anti-rabbit HRP-conjugate secondary antibody (1:10’000, Santa Cruz Biotechnology), goat 

anti-rabbit IgG-HRP (1:10’000, Jackson ImmunoResearch), goat anti-mouse IgG-HRP (1:10’000 

Jackson ImmunoResearch). 

MTT ANALYSIS 

NSC34 cells were plated in 24-well plate at 70’000 cell/ml, then were transfected as described 

before and finally were treated with DBeQ solution at different concentration. DBeQ solution 

was concentrated 1mM, 2.5 mM and 5mM and they were used as 1000X with a final 

concentration of 1µM, 2.5 µM and 5µM. DMSO was used as control.  

MTT analysis was done after 16h hours of treatment. Cell medium was replaced with cell culture 

medium added with 1.5mg/1ml of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide) powder and then cells were incubated for 30min at 37°C. During incubation period MTT 

was taken in cells and it was reduced to formazan, changing color from yellow to purple, by 

NAD(P)H-dependent cellular oxidoreductase enzymes present mitochondria of living cells. After 

incubation medium was taken away and it was added 2-propanol to stop the reaction and 

solubilize cells. Finally, samples absorption rate at OD 550 was read with spectrophotometer 

Enspire.  

FLOW CYTOMETRIC ANALYSIS OF INCLUSIONS AND TRAFFICKING 

Flow cytometric analysis of Inclusions and Trafficking (FLoIT) is a technique used to study protein 

inclusions and the trafficking of proteins between different cellular compartments. In this work 

it was used to study aggregates in particular for their identification and their quantification.  

By using a cytofluorimeter, FLoIT technique allows to obtain: the number of inclusions (ni) 

present in a certain volume; the approximate number of cells by quantification of nuclei (nnuc) 

present in that volume; and transfection efficiency (g) in the same volume. With these data it is 

possible to obtain the relative number of inclusions respect to the percentage of transfected 

cells. We defined the protocol for our model starting from the protocol described by Whiten and 

colleagues (Whiten et al., 2016). 
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NSC34 cells were plated in 24-well plate at 60’000 cell/ml, were transfected as described above 

and were harvested after 72 hrs in PBS. Samples were centrifuged (1’200 rpm for 5 min at 4°C) 

and resuspended in 300μL of PBS (Euroclone) added with 5% of filtered fetal bovine serum 

(Sigma-Aldrich).  

Then 30µl (A) of the resuspension was analysed with NovoCyte Flow Cytometer 3000 (ACEA 

Biosciences, San Diego, CA 92121, USA). This first measurement permitted to quantify 

transfection efficiency (g). By using non-transfected samples, we could gate the GFP fluorescence 

eliminating cells’ autofluorescence. GFP fluorescence was measured using laser with excitation 

wavelengths of 488 nm and detector with band pass filter emission collection windows 

515/10 nm.  

In parallel, 150µl of LYSIS BUFFER 2x was added to 150µl of cell resuspension (B) and then was 

analysed with NovoCyte Flow Cytometer 3000. LYSIS BUFFER lysis cells membranes but cannot 

lyse aggregates and nuclei membrane. Aggregates and nuclei membrane resistance to LYSIS 

BUFFER permits to free them from cellular compartment and to quantify and analyse them 

individually. By using a control sample diluted in LYSIS BUFFER without DAPI (nuclei dye) it was 

possible to discriminate between nuclei population and non-nuclei population. DAPI 

fluorescence was measured using laser with excitation wavelengths of 407nm and detector with 

band pass filter emission collection windows 450/50 nm. 

On nuclei population the number of nuclei present in the sample analysed where quantified 

(nnuc).  

On non-nuclei population GFP signal was analysed. By using a sample transfected with pEGFPN1 

(that it is known to encode for GFP soluble proteins) it was possible to discriminate between 

soluble GFP-events and aggregates GFP-events (ni) present in the samples.  

 

Subsequently for each sample it was calculated the n° of inclusions (i) present in 100 transfected 

by using the formula:  

i = ( ni / nnuc*g)* 100 

 

LYSIS BUFFER consists in PBS buffer added with protease inhibitor 100X, 0.5% of Triton X-100 

(Sigma-Aldrich) and the nuclei dye, DAPI solution 20 mg/ml (Sigma-Aldrich) 10’000X.  
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IMMUNOFLUORESCENCE 

NSC34 were plated on 13-mm coverslips in a 24-well plate at 70’000 cells/mL. Cells were 

transfected and/or treated as described before. Cells were then fixed using 4% 

paraformaldehyde solution and permeabilized using 10% TRITON X-100 in PBS solution. After the 

1hr incubation at RT in blocking solution, cells were incubated with primary antibody overnight 

at 4°C and subsequently were incubated for 1 hr at RT with secondary antibody. Nuclei were 

stained with DAPI (1:10’000 in PBS) and coverslips were mounted on a support. Images were 

acquired using microscope Axiovert 200 (Zeiss, Oberkochen, Germany). 

The following primary antibodies were used: mouse polyclonal anti-FLAG antibody (1:500, Sigma- 

Aldrich) and rabbit polyclonal anti-LC3A/B (1:200, Sigma-Aldrich). The following secondary 

antibodies were used: goat anti-mouse 549 Alexa Fluor® (1:1’000, Life Technologies, Thermo 

Fischer) and goat anti-rabbit 488 Alexa Fluor® (1:1’000, Life Technologies, Thermo Fischer). 

Fluorescence experiments in Figure 27 and Figure 28, were not processed with antibody after 

fixing. Nuclei were dyed with DAPI and coverslips were directly mounted on a support. 

GALECTIN PUNCTA ASSAY 

Galectin puncta assay was used to quantify lysosomal damage. To perform Galectin Puncta Assay, 

NSC34 were plated on 13-mm coverslips at 70’000 cells/ml in 24-well plates and transfected and 

treated as described. The cells were fixed as described for immunofluorescence assay, and cells 

with > 3 EGFP-GAL3 puncta were quantified by manual counting of 3 fields per sample and 3 

samples per condition, using a PL 20X eyepiece with graticules (100 mm × 10 mm in 100-grid 

divisions). Fields were randomly selected (n = 3). Then cells that express green fluorescence was 

counted on the same  field. To quantify positive GAL3 puncta cells on total transfected cells it 

was calculated the ratio between these parameters counted on each field. Then a statistical 

analysis was performed using Prism 5.0, applying student T-test. Each result represents the mean 

± SEM of three biological replicates. 

ELECTRON MICROSCOPY ANALYSIS 

NSC34 cells were seeded at 90’000 cells/ml in a 2-well Nunc® Lab-Tek®Chamber SlideTM system 

(Nunc, C6682). The cells were transfected as described and after 48hrs were fixed using 2.5% 

glutaraldehyde (Sigma-Aldrich) in 0.1M sodium cacodylate (Sigma-Aldrich) pH 7.4 solution for 1 

hr at RT. Then fixed cells were postfixed in osmium tetroxide (Electron Miscroscopy Science) for 
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2 hrs, and subsequently with 1% uranyl acetate (SERVA Electrophoresis) for 1 hr. Samples were 

then dehydrated using a graded ethanol series and then flat embedded in resin EMBED-812 

(Electron Microscopy Science, 14120) for 24 hrs at 60°C. Ultrathin sections of 50 nm were then 

cut parallel to the substrate, stained with uranyl acetate 5% solution in 50% ethanol. Digital 

images were taken with a Megaview 3 camera using a CM10 electron microscope (Philips, 

Eindhoven, The Netherlands). 
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PART I: VCP ROLE IN AGGREGATES 
CLEARANCE IN A fALS MODEL 
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AIM 
ALS is a deleterious disease with no cure to date. One of the main pathological hallmarks is the 

presence of insoluble aggregates/inclusions that may lead to cell toxicity and death. Cells activate 

various mechanisms to counteract aggregates toxicity by eliminating them. Previous studies from 

my lab have demonstrated the involvement of different chaperones complexes in the enhanced 

clearance of insoluble aggregates associated to fALS, sALS and to other motor neuron diseases.   

In my work I focused on the functioning of VCP, a AAA+ ATPase protein with an important role in 

disassemble large aggregates. Data demonstrate VCP co-localization with different type of 

aggregates. Moreover, recently it has been shown VCP involvement in the clearance of 

polyglutamate aggregates. In addition, VCP-mutants associated to degenerative diseases are 

correlated to the presence of inclusions positive to TDP-43 and to signs of alteration in the 

degradative systems. These findings show an important role of VCP in the clearance of insoluble 

aggregates.  

In this context I analysed VCP involvement in the clearance of SOD1-mutants, a model of fALS. In 

particular, I studied VCP role on SOD1 G93A overexpressed in an immortalized motor neuron cell 

line.  

In parallel, to confirm VCP role I compared its functioning with two different VCP-mutants (VCP 

R155H and VCP R191Q) associated to ALS, that should lose VCP disaggregating function. In fact, 

VCP R155H and VCP R191Q are both correlated to the presence of TDP-43 inclusions in the brain 

tissue of affected patients.  

Moreover, as VCP-mutants are not dominant negative of VCP but only partially loose VCP 

functionality, I also studied SOD1 G93A aggregates in the presence of chemical inhibition of VCP, 

using DBeQ treatment.  
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RESULTS 

VCP WT AND MUTANTS OVEREXPRESSION DECREASES THE LEVELS 
OF SOD1 G93A INSOLUBLE SPECIES 
 

To study VCP WT chaperone like activity and its function on the disassembling of SOD1 G93A 

aggregates, SOD1 WT and SOD1 G93A were co-transfected in NSC34 with human VCP WT and 

VCP-mutants. (Figure 20 A, B). VCP-mutants were firstly used as a negative control. As I have 

explained VCP-mutants are associated to the presence of protein inclusions and of altered 

degradative systems.   

To analyse SOD1 G93A insoluble species levels a FTA was performed; this technique permits to 

quantify the levels of PBS-insoluble species characterized by a size bigger than 0.22µm. To 

evaluate the overall levels of SOD1 protein which is SDS-soluble, I utilized a classical WB analysis. 

I used an anti-SOD1 antibody showed capable to recognize both the exogenous overexpressed 

human SOD1 (~23kDa, higher band) transfected in cells and the endogenous mouse SOD1 

(~19kDa, lower band).  

In WB (Figure 20 B) I found that the levels of the SDS-soluble fraction of SOD1 G93A were 

specifically decreased when co-transfected with VCP WT and mutants if compared to mock 

transfected cells. Also, SOD1 WT overexpressed levels decrease in presence of VCP WT showing 

a function of VCP in the clearance of SOD1 when its translation is increased. Moreover, WB 

showed that there is an increased trend of the overall p62 levels in presence of SOD1 G93A, 

which can be considered a signal of an alteration in the degradation pathways. GAPDH was used 

as loading control.  

The FTA data (Figure 20 A) showed higher levels of the insoluble fraction of SOD1 G93A 

comparing to SOD1 WT levels (***=p<0.001). These data are in line to those reported in 

literature; indeed, SOD1-mutants tend to form insoluble aggregates whereas SOD1 WT is found 

mainly in soluble form. Moreover, in FTA I found a decrease in the levels of the insoluble fraction 

of SOD1 G93A in presence of overexpressed VCP WT (**=p<0.01). Surprisingly SOD1 G93A 

insoluble fraction decreased also in the presence of VCP-mutants overexpression (***=p<0.001, 

**=p<0.01).   

In experiment described human VCP WT and mutants were overexpressed in mouse cell line. 

Therefore, I evaluated that the overexpressed human VCP could interact correctly with the 
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mouse endogenous VCP forming a proper homo-hexamer, and consequently that the decrease 

in the insoluble fraction of SOD1 G93A was due to the overexpressed VCP and not to the 

endogenous VCP WT (Figure 20 C). To this purpose, SOD1 G93A accumulation was tested in 

presence of VCP WT, VCP R155H, VCP R191Q in a human derived neuronal cell line: the SH-SY5Y 

cells. The results obtained were found to be very similar to those observed in the mouse NSC34 

cell line. In fact, the FTA (middle inset) showed a decrease trend of SOD1 G93A levels in presence 

of VCP WT and a significant decrease in presence of VCP mutants (**=p<0.01, *=p<0.05). WB 

analysis (upper inset) performed using the SOD1 antibody, showed together endogenous and 

exogenous human SOD1 at comparable levels in all conditions tested. a-Tubulin (TUBA) was used 

as loading control.  
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Figure  20 VCP WT and mutants overexpression decreases the levels of SOD1 G93A insoluble species. (A) Filter TRAP assay (FTA) 
(upper inset) of PBS extracts and optical densitometry quantification of FTA (lower inset) ***=p<0.001, **=p<0.01; T-test. (B) Western 
blot (upper inset) and optical densitometry quantification of SOD1 in WB (lower inset) **=p<0.01, *=p<0.05; T-test.  (C) Western blot 
(upper inset) and Filter Trap assay (FTA) (middle inset) of PBS extracts. Optical densitometry quantification of FTA (lower inset) 
**=p<0.01, *=p<0.05; T-test. 
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VCP WT ENHANCES THE CLEARANCE OF SOD1 G93A AGGREGATES  
THROUGH THE UPS 
 

Once I have found that overexpressed VCP WT decreases the levels of SOD1 G93A insoluble 

species I further analyzed VCP role in the clearance of SOD1 G93A by defining which degradative 

pathway was involved (Figure 21). In particular, I have studied if VCP enhances SOD1 G93A 

degradation through the UPS or the autophagic pathway. Thus, to evaluate which pathway VCP 

used to decrease SOD1 G93A insoluble fraction, I co-transfected SOD1 G93A and VCP WT and the 

corresponding mutants in NSC34 cells, then I chemically inhibited the two major degradation 

pathways: to inhibit the UPS I used MG123, an inhibitor of the proteasome and to inhibit the 

autophagic pathway I used 3MA, an early inhibitor of the autophagic pathway.  

WB analysis (Figure 21 A upper inset, B, C) showed that MG132 treatment increased the levels 

of the SDS-soluble fraction of SOD1 G93A in all conditions. Moreover, WB showed that 3MA 

treatment increased the SDS-soluble fraction in mock cell condition, that is reverted only in 

presence of VCP WT (*=p<0.05). a-Tubulin (TUBA) was used as loading control.  

In FTA (middle and lower inset), MG123 treatment brought to a significant increase in the levels 

of the SOD1 G93A insoluble species compared to untreated samples (**=p<0.01). The increased 

insoluble-fraction levels of SOD1 G93A were partially reverted by the presence of VCP WT 

(*=p<0.05) and VCP mutants (at non-significant trend).  

The FTA also showed that 3MA treatment brought to an increase of the SOD1 G93A insoluble 

species compared to untreated control (**=p<0.01). The increased insoluble-fraction levels of 

SOD1 G93A were completely reverted by the overexpression of VCP WT (***=p<0.001). 

Whereas, the overexpression of VCP-mutants only partially reverted the increase (*=p<0.05). 

Moreover, SOD1 G93A insoluble-fraction levels in presence of VCP-mutants were significantly 

higher than SOD1 G93A insoluble-fraction levels in presence of VCP WT overexpressed 

(***=p<0.001, *=p<0.05). This brought to define a specific loss of function of VCP mutants in 

presence of autophagy inhibition.  

Together, these data show that VCP WT works through the UPS. In fact, UPS inhibition prevented 

VCP WT functioning while autophagy inhibition did not influence VCP WT functionality. 

Moreover, inhibition of either degradative pathways prevented VCP-mutants activity in the 

decrease of SOD1 G93A insoluble fraction levels. In particular, these data show that the inhibition 
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of autophagy leads to a different behavior of VCP-mutants from VCP WT, underling a dependence 

of VCP-mutants on autophagy.  
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Figure 21 VCP WT enhances the clearance of SOD1 G93A aggregates through the UPS. (A) Western blot (upper inset) and Filter 
Trap assay (FTA) (middle inset) of PBS extracts. Optical densitometry quantification of FTA (lower inset) ***=p<0.001, **=p<0.01, 
*=p<0.05; T-test. (B) Optical densitometry quantification of SOD1 in WB for MG132 treatment. (C) Optical densitometry 
quantification of SOD1 in WB for 3MA treatment; *=p<0.05; T-test. 
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VCP INHIBITION HAS NO EFFECTS ON SOD1 G93A AGGREGATION  
 

Previous data showed that SOD1 G93A insoluble fraction clearance is dependent from VCP WT 

and that VCP WT overexpression triggers its degradation. To define if VCP WT has an exclusive 

role in the degradation of SOD1 G93A aggregates, I studied SOD1 G93A aggregation levels in 

condition in which VCP was chemically inhibited. In particular, I used DBeQ, which is a specific 

inhibitor of VCP acting by preventing the functioning of both ATPase domains. The DBeQ 

treatment was performed on NSC34 cells overexpressing SOD1 G93A.  

I firstly tested different concentrations of DBeQ treatment in our model to find the highest 

concentration that did not influence cells viability (Figure 22 A). NSC34 cells were transfected 

pCDNA3 and treated for 16hrs with different concentration of DBeQ: 1µM, 2.5µM and 5µM. MTT 

analysis showed a decrease in cell viability only with 5µM DBeQ treatment (**=p<0.01), so 2.5µM 

is the highest concentration used that did not alter cell viability.  

Once defined DBeQ concentration, NSC34 cells were transfected with SOD1 G93A and treated 

with 2.5µM DBeQ, using DMSO as control (Figure 22 B, C). WB analysis and quantification (Figure 

22 B), showed an increase of p62 levels that confirmed the efficiency of DBeQ treatment. 

Moreover, WB showed comparable levels of the total SOD1 G93A. GAPDH was used as loading 

control. FTA (Figure 22 C) confirmed that VCP inhibition did not influence SOD1 G93A levels as it 

was shown by WB analysis. In fact, FTA showed that insoluble-fraction levels of SOD1 G93A in 

presence of DBeQ treatment were comparable to the insoluble-fraction levels of SOD1 G93A 

treated with DMSO.  

Data obtained showed that VCP role is not exclusive in the removal of SOD1 G93A aggregates. In 

fact, VCP inhibition did not result in an increase of SOD1 G93A levels that would have reported a 

dependency from VCP activity. Indeed, DBeQ treatment did not change neither total levels of 

SOD1 G93A, as WB analysis showed, nor the insoluble-fraction levels of SOD1G93A, as FTA 

showed. 
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Figure 22 VCP inhibition has no effects on SOD1 G93A aggregation (A) MTT analysis, **=p<0.01; t-test. (B) Western Blot (upper 
inset). Optical densitometry quantification of P62 (middle inset); *=p<0.05; t-test. Optical densitometry quantification of SOD1  (lower 
inset). (C) Filter Trap assay (FTA) (middle inset) of PBS extracts. Optical densitometry quantification of FTA (lower inset).  
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FLoIT QUANTIFICATION OF SOD1 G93A INSOLUBLE AGGREGATES IN 
PRESENCE OF VCP WT AND MUTANTS 
 

To better quantify SOD1 insoluble levels and confirm VCP contribute in SOD1 G93A aggregates 

clearance I defined and applied FLoIT technique in our model. FLoIT is a novel technique used to 

study protein inclusions and their trafficking between different cellular compartments. In 

particular, I used FLoIT to quantify and evaluate modifications in the levels of SOD1 G93A 

aggregates in presence of overexpressed VCP WT and VCP-mutants.  

Using FLoIT I was able to quantify the total number of inclusion relative to transfected cells. Firstly 

I defined samples transfection efficiency, quantifying in a certain volume of not lysed sample the 

total number of cells present and the number of cells that expressed GFP protein transfected 

(Figure 23 A). Then, after lysing samples as described in “Materials and methods chapter”, I 

quantified for each sample the number of DAPI-positive nuclei (considered the number of cells) 

and the number of GFP-positive inclusions (Figure 23 B). Finally to quantify for each sample the 

number of inclusions relative to transfected cells I divided the number of inclusions quantified 

by the total number of transfected cells quantified in the same sample.  

In Figure 23 A, B and C samples analysed were NSC34 cells transfected with pEGFPN1, pGFP-SOD1 

WT, pGFP-SOD1 G93A and pGFP-SOD1 A4V. Figure 23 A shows the analyses done on samples not 

lysed to evaluate their transfection efficiency. In the first column through SSC and FSC 

parameters cell population was identified. On cell population using FITC detector (that collects 

GFP fluorescence) I first defined a gate using a non-transfected sample then I counted GFP-

positive cells for each sample (second column of Figure 23 A). Figure 23 B shows data collected 

of each sample after it had been lysed to permit the individuation and quantification of each 

insoluble aggregate that cannot be detected in an un-lysed cell. By using PASIFIC BLUE detector 

(that collects DAPI fluorescence) and a sample lysed with a LYSIS BUFFER w/o DAPI, I firstly 

defined a gate that discriminated between DAPI-positive and DAPI-non positive populations (not 

shown). DAPI-positive population was quantified to define the number of nuclei present in the 

sample. Then on DAPI-non positive population (in second column of Figure 23 B) using FITC 

detector and pEGFPN1 sample I defined a gate that discriminated in GFP-positive and GFP-non 

positive population. GFP-positive population was quantified to define the number of inclusions 

present in the sample. The graphic in Figure 23 C, shows the total number of inclusions relative 

to transfected cells quantified for each condition, (all conditions were reported to the condition 
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expressing pEGFPN1). The figure shows an increase in SOD1 mutant aggregates compared to 

SOD1 WT (***=p<0.001, **=p<0.01) as it was reported in literature. Figure 23 D shows inclusion 

quantification and condition comparison of samples co-transfected with pSOD1 G93A and 

pFLAG-VCP WT and mutants. Surprisingly, SOD1 G93A inclusions significantly decreased only in 

the presence of VCP R191Q (**=p<0.01). 
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Figure 23 FLoIT quantification of SOD1 G93A insoluble aggregates in presence of VCP WT and mutants. (A) Definition of 
transfection efficiency. (B)Definition of nuclei and non-nuclei populations and GFP aggregates. (C) Quantification of relative 
number of GFP positive inclusions respect to the percentage of transfected cells. ***=p<0.001, **=p<0.01. (D) Quantification of 
relative number of GFP positive inclusions respect to the percentage of transfected cells. ***=p<0.001, **=p<0.01. 
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DISCUSSION 
Amyotrophic Lateral Sclerosis (ALS) is a motor neuron disease with an incidence of 4-5 cases over 

100’000 per year, for which no cure is available. Different pathogenic mechanisms have been 

identified to concur to ALS onset. One of the main mechanism is the alteration proteostasis. In 

fact, ALS is characterized by the presence of insoluble inclusions found in the brain of affected 

individuals. Moreover, various mutated genes as SOD1, TDP-43, FUS and C9ORF72, express 

proteins that misfold and form aggregates. If not removed, aggregates may become toxic to cells 

concurring to their death (Hirakura & Kagan, 2001; Kourie & Shorthouse, 2000; H. Lin et al., 2001; 

Ross, 2002). To prevent aggregates toxicity, cells activate different processes that are part of the 

PQC system. PQC system activates different chaperone complexes to eliminate misfolded 

proteins aggregating prone and aggregates. VCP is an AAA+ ATPase protein with a key-role in 

many pathways of the PQC system. One of its role is to disassemble protein aggregates (Gallagher 

et al., 2014; Ghosh et al., 2018). In particular, it has been shown to co-localize with misfolded 

protein aggregates and to concur in the clearance of polyglutamine protein aggregates.  

In my lab different pathways have been studied as targets to enhance aggregates clearance 

(Crippa et al., 2010; Crippa et al., 2016; Cristofani et al., 2017, 2018). In this work I studied VCP 

contribute in the removal of aggregates in a fALS model. In particular, I studied VCP role in 

presence of overexpressed SOD1 G93A in NSC34 cell line.  

First, FTA analysis showed a decrease in SOD1 G93A insoluble-fraction in presence of 

overexpressed VCP WT. Moreover, by inhibiting UPS and the autophagic pathway, that are the 

degradation pathway where VCP is involved, I could define that VCP WT enhanced the clearance 

of SOD1 G93A insoluble-fraction through UPS. In fact, when the UPS was blocked VCP WT 

overexpression only partially decreased SOD1 G93A insoluble-fraction levels whereas, the 

inhibition of autophagy did not alter VCP WT functioning that completely reverted SOD1 G93A 

aggregation. These data confer a novel role to VCP in the removal of ALS-associated aggregates, 

confirming VCP chaperone activity previously shown in relation to other models as Huntingtin-

mutant model (Ghosh et al., 2018). Moreover, I further analysed if VCP contribute was essential 

for SOD1 G93A insoluble-fraction degradation by chemically inhibiting VCP, using DBeQ 

treatment. Results showed that chemical inhibition of VCP did not change SOD1 G93A insoluble-

fraction levels. These data suggest that VCP WT contribute in the removal of SOD1 G93A 

inclusions is not essential, but there are other pathways involved. In fact, in my lab it has been 

previously demonstrated that the modulation of another chaperon (HSPB8), could promote 
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SOD1-mutant clearance through the autophagic pathway (Crippa et al., 2010). Thus, VCP WT 

modulation could be an alternative pathway UPS-dependent. 

In parallel, I studied VCP mutants (VCP R155H and VCP R191Q) contribute in the removal of SOD1 

G93A in NSC34 cell line. In brain tissue of patients, VCP R155H and VCP R191Q were both 

correlated to the presence of insoluble inclusions and signs of alteration in degradation pathways 

(Johnson et al., 2010). These data suggested VCP mutants general misfunctioning in aggregates 

clearance. For these reasons I decided to study these mutants in the condition previously 

described, comparing them to VCP WT functioning. Surprisingly, FTA analysis showed that VCP 

mutants overexpression led to a decrease in the levels of insoluble species of SOD1 G93A. As VCP 

mutants behaviour was not in line with my hypothesis, I tested the same condition in a human 

cell line to be sure that the decrease in SOD1 G93A levels was due to the overexpressed human 

VCP that could interact correctly with human endogenous VCP. Data in human cell line were in 

accord with data observed in NSC34, confirming VCP-mutants contribute in decreasing SOD1 

G93A aggregates.  Moreover, also VCP mutant functionality was studied in condition of inhibition 

of the degradation systems. With proteasome inhibition, VCP mutant behaviour was similar to 

VCP WT. Conversely, VCP mutant behaviour differed from VCP WT when the autophagic 

pathways was inhibited. In fact, in this condition VCP WT completely reverted SOD1 G93A 

increased inclusion levels, whereas VCP mutant only partially reverted SOD1 G93A increased 

inclusion levels. Thus, SOD1 G93A insoluble fraction levels in presence of VCP mutants were 

significantly higher compared to the presence of overexpressed VCP WT. This unexpected activity 

of VCP-mutants, which both presented in patients tissue signs of altered activity, was further 

investigated in the second part of my work as I will describe in “Part II: VCP mutants enhance 

lysosomal damage and activate autophagy” chapter. I speculated that the presence of VCP-

mutants could induce cellular-stress that could activate degradation pathways as it shown for 

SOD1-mutants (Morimoto et al., 2007). 

Finally, in this part, I defined a protocol to better evaluate SOD1 mutant inclusion levels and to 

better appreciate changes in aggregation levels. FLoIT technique resulted very reliable and 

reproducible to visualize SOD1 G93A inclusions, so I retested the same condition previously 

described. Using FLoIT, VCP WT and VCP R155H overexpression showed a not significant 

influence on SOD1 G93A inclusion levels. Conversely VCP R191Q overexpression showed a partial 

decrease in SOD1 G93A insoluble inclusions levels.  
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PART II: VCP MUTANTS ENHANCE 
LYSOSOMAL DAMAGE AND ACTIVATE 

AUTOPHAGY 
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AIM 
As shown, ALS is associated to alteration in proteostasis. For this reason ALS is considered a 

proteinopathy. Among the different features, proteinopathies are characterized by the presence 

of misfolded protein aggregates and alteration PQC system. ALS-associated VCP-mutations are 

correlated at cellular level, to the presence of cytoplasmic TDP-43 insoluble aggregates and to 

the presence of altered degradation pathways. Alteration of proteostasis associated to VCP-

mutants can be correlated to VCP mis-functioning. In fact, VCP is involved in several pathways of 

the PQC system. Recently studies demonstrated that VCP plays an essential role in regulating 

damaged lysosome degradation through the autophagic pathway. Lysosomes damage is 

deleterious for cells in different ways. Firstly, for their loss of function, that prevents the correct 

functioning of autophagic mechanisms. Moreover, lysosome damage results in leakage of lumen 

proteinases, cathepsins and Ca2+ that induce cellular toxic effects.  

In this part of my thesis, lysosomal-damage response was analysed in presence of overexpressed 

VCP WT, and its ALS-associated mutants (VCP R155H and VCP R191Q) in NSC34 cells. To study 

VCP role in this mechanism, I biologically and chemically induced lysosome damage. 

Moreover, as I observed that VCP-mutants overexpression led to lysosome alteration, I analysed 

if and which pathway resulted activated in these conditions.  
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RESULTS 

VCP-MUTANTS FORM INSOLUBLE SPICIES IN NSC34 

The first part of my work showed an unexpected behavior of VCP-mutants in relation to their 

chaperone-like activity. In fact, data from literature show that VCP-mutants are associated to the 

formation of intracellular inclusions and altered degradation pathways, signals of a loss of 

functionality. Whereas, I observed a functionality of VCP-mutants in the removal of SOD1 G93A 

aggregates. For these reasons I decided to further investigate VCP ALS-associated mutants 

behavior in ALS in vitro model. To perform this study, I overexpressed VCP WT and VCP-mutants 

(VCP R155H and VCP R191Q) in NSC34 cells. 

Firstly, I analyzed VCP-mutants tendency to aggregate in this model using FTA technique (Figure 

24 A and B). To study the insoluble fraction of overexpressed VCP, FTA was processed with FLAG-

antibody (figure 24 A) which recognizes the FLAG tag present in the N-terminus of the 

recombinant VCP protein overexpressed. FTA showed a significant increase of VCP-mutants 

insoluble-fraction compared to VCP WT (*=p<0.05). Moreover, VCP R191Q showed higher 

increased levels compared to VCP R155H (*=p<0.05). Then, I analyzed whether exogenous VCP-

mutants altered total VCP tendency to aggregate by processing FTA with VCP-antibody, which 

can recognize both endogenous and exogenous overexpressed VCP (Figure 24 B). VCP R191Q 

insoluble-fraction levels are higher compared to VCP WT and to VCP R155H (*=p<0.05). In 

particular VCP insoluble-fraction in the samples overexpressing VCP R191Q  was increased of an 

average of three times respect to the samples overexpressed VCP WT, whereas in the case of the 

samples overexpressing the VCP R155H mutant I did not find any significant increase of the 

overall amount of the VCP insoluble-fraction.  

WB analyses (Figure 24 C) processed with FLAG antibody showed that overexpressed VCP WT 

and mutants SDS-soluble fraction have comparable levels. Moreover, using VCP antibody, the 

WB analysis showed that total levels of VCP expressed are comparable in all conditions. Thus, 

VCP mutants affected total VCP insoluble-fraction, as FTA showed, but did not alter the SDS-

soluble fraction. GAPDH was used as loading control.  

These data showed that VCP mutants have an aggregate propensity in a neuronal model in line 

to what is shown in literature. Moreover, their increased tendency in aggregating did not 

influence the levels of the total VCP expressed.  

  



 

 86 

  
Figure 24 VCP-mutants form insoluble species in NSC34. (A,B) Filter Trap assay (FTA) (upper inset) of PBS extracts. Bar graphs 
represent the FTA mean relative optical density computed over three independent biological samples for each condition (n=3) ± 
SD *=p<0.05; T-test. (C) Western blot of PBS extracts (upper inset). Optical densitometry quantification of FLAG  in WB (middle 
inset). Optical densitometry quantification of VCP  in WB (lower inset). 
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VCP-MUTANTS LEAD TO LYSOSOME DAMAGE IN NSC34 

The persistence of protein aggregates alters cellular homeostasis. In particular data show 

sequestration of protein and RNA preventing their functionality and alteration in organelles 

membranes that leads to loss of ions and lumen content.  

In these contexts, I decided to investigate if VCP-mutants aggregation could lead to cell alteration 

in our model. In particular, to study VCP-mutants impact on organelles, NSC34 cells 

overexpressing VCP mutants were evaluated using Electron Microscopy analysis (Figure 25 A). 

Images acquired showed that in presence of VCP-mutants lysosomes lose their physiological 

structure. In fact, in these conditions, lysosomes were characterized by different dimension, 

morphology and luminal content.  The overexpression of VCP mutants resulted associated with 

larger and empty lysosomes, that presented a darker membrane indicating a different lipid-

composition.  

As electron microscopy analysis showed altered lysosomes in presence of VCP-mutants, I 

performed a Galectin Puncta Assay to evaluate, and eventually quantify, lysosomal damage in 

presence of VCP-mutants (Figure 23 B). Galectin Puncta Assay is a technique that, using 

microscopy, quantifies cells that present number of damaged lysosome, relative to total number 

of transfected cells present in the same area considered. In this technique GAL3 is used as a 

marker of lysosome damage; indeed, GAL3 in physiological condition can be found diffused in 

cytoplasm, conversely, when a damage in lysosome membrane occurs, GAL3 binds to damaged 

lysosomes showing a dotted like cytoplasmatic localization. Galectin Puncta Assay was 

performed on NSC34 cells transiently overexpressing GFP-GAL3 and pCDNA3, FLAG-VCP WT, 

FLAG-VCP R155H, FLAG-VCP R191Q. Galectin Puncta Assay showed a significant increase of 

lysosomal damage in presence of both VCP-mutants compared to VCP WT (**=p<0.01 *=p<0.05). 

Moreover, lysosomal damage level in presence of VCP R155H was significantly higher compared 

to lysosomal damage level in presence of VCP R191Q (*=p<0.05).  

Finally, fluorescence microscopy analysis (40 magnification) was performed on NSC34 cells 

transiently overexpressing GFP-GAL3 and pCDNA3, FLAG-VCP WT, FLAG-VCP R155H, FLAG-VCP 

R191Q. GFP-GAL3 (green), anti-FLAG antibody (red) and nuclei were stained with DAPI (blue). In 

presence of control or overexpressed VCP WT, GAL3 was homogeneously diffused in cells, 

showing no signs of lysosomal damage. On the contrary, in presence of VCP-mutants GAL3 

showed its classical punctate staining which is associated to the presence of lysosome damage, 

since GAL3 redistributes into lysosomes in these conditions. In these conditions GAL3 signal is in 
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not anymore diffused in cells, but it was dotted and this punctated distribution was particularly 

evident in the case of NSC34 cells overexpressing VCP R155H. Since red immunoreactivity is 

associated to the FLAG signal and shows overexpressed VCP, the cells considered showed both 

red-FLAG and green-GFP signals to ensure that variation in GAL3 localization was due to the 

presence of overexpressed VCP. 

Altogether, these data show that the presence of VCP-mutants lead to lysosomal structure 

alteration and membrane damage.  
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Figure 25 VCP-mutants lead to lysosome damage in NSC34.  (A) Electron microscopy analysis of NSC34 Ly, lysosome. 
Scale bar: 500 nm. (B) Quantification of percentage of the ratio of cells with GFP-GAL3 puncta/green cells computed 
over 5 independent biological samples for each condition (n=5) ± SD **=p<0.01, *=p<0.05. (C) Microscopy analysis (40 
magnification). GFP-GAL3 (green), anti-FLAG antibody (red) and nuclei were stained with DAPI (blue). A 2x magnification 
of selected areas is shown. 
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OVEREXPRESSION OF VCP-MUTANTS LEADS TO THE CONVERSION 
OF LC3-I IN LC3-II AND ACTIVATES AUTOPHAGY 
Different studies demonstrated that lysosomal damage activates the autophagic pathway in 

order to stimulate lysophagy and the clearance of these damaged organelles, restoring the 

proper cell homeostasis. As the previous data showed that VCP-mutants induced lysosome 

damage, I decided to study whether the presence of the mutants could modulate the autophagic 

flux. To study autophagy activation, I analyzed LC3 activation, a marker of autophagy, in presence 

of VCP-mutants. LC3 activation can be quantified measuring LC3-II/LC3-I ratio. Moreover, to 

evaluate if the increase of LC3-II/LC3-I ratio was due to activation or inhibition of the autophagic 

flux, NSC34 cells were treated with NH4Cl, a late inhibitor of autophagy which prevents the fusion 

of autophagosomes with lysosomes, leading to an accumulation of the LC3-II which normally is 

cleared from cells when the flux is properly working. Thus, by inhibiting autophagy in its final 

steps, LC3 conversion is not prevented, but I should see if the pathways was already blocked in 

its initial step or not. In fact, if autophagic flux was previously blocked NH4Cl treatment would 

not show any further significant increase in LC3-II/LC3-I ratio. Conversely, if autophagic pathway 

was activated, NH4Cl treatment would prevent LC3-II degradation further increasing LC3-II/LC3-I 

ratio. 

To analyze LC3-II/LC3-I ratio, WB analysis was performed on NSC34 cells transiently expressing 

pCDNA3, FLAG-VCP WT, FLAG-VCP R155H or FLAG-VCP R191Q. Cells were treated with NH4Cl 

4µM for 2hrs. In WB analysis LC3 antibody detects LC3-I, higher signal, and converted LC3-II, the 

lower signal. WB blot showed an increase in LC3-II signal in samples treated with NH4Cl. In 

particular, LC3-II was increased in presence of VCP R155H. In Figure 26 B, C, D, E and F I also 

performed the quantification of WB analysis of 5 independent biological samples for each 

condition (n=5) ± SD analyzed with student t-test. 

In figure 26 B I quantified the mean of LC3-II/LC3-I ratio of each condition. In untreated samples, 

VCP R155H mutant led to a significant increase of LC3-II/LC3-I ratio compared to the control 

(**<0.01). NH4Cl treatment led to an increase of LC3-II/LC3-I ratio in presence of VCP-mutants 

respect to LC3-II/LC3-I ratio in presence of VCP-mutants without treatment (*=p<0.05). 

Moreover, VCP-mutants led to an increase of LC3-II/LC3-I ratio compared to treated control 

(**=p<0.01). These data indicate that the activation of the autophagic flux is enhanced by VCP-

mutants overexpression. Figure 26 C shows LC3-I mean level for each condition. T-test analysis 

did not reveal any relevant variation between each condition. Conversely, Figure 26 D indicates 
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an increase of LC3-II levels in presence of VCP-mutants, in particular VCP R155H mutant led to a 

significant increase of activated LC3 (*=p<0.05). LC3 total level, quantified in figure 26 E, showed 

an increased trend in samples treated with NH4Cl in particular in presence of VCP-mutants. 

Finally, p62, another marker of the autophagic flux, is quantified in Figure 26 F. P62 quantification 

showed an increased trend in presence of VCP-mutants treated with NH4Cl. P62 is also a marker 

of the autophagic flux as it is implicated and cleared by autophagy. When the autophagic flux is 

inhibited in its last steps, an accumulation of p62 indicates the presence of an increased number 

of active autophagosomes, sign of activated autophagic flux. Thus, an increased trend in p62 

levels in presence of VCP-mutants and NH4Cl treatment, is in line with the increased LC3-II/LC3-I 

ratio in these conditions, confirming that VCP-mutants presence is associated to an activation of 

autophagic flux.  

Finally, immunofluorescence analysis (63 magnification) was performed on NSC34 cells 

transiently overexpressing pCDNA3, FLAG-VCP WT, FLAG-VCP R155H and FLAG-VCP R191Q and 

treated with NH4Cl (Figure 26 G). LC3 localization and distribution analyzed in presence of VCP-

mutants and autophagy inhibition. As Figure 26 G shows, VCP-mutants in presence of late 

autophagy inhibition induced a robust increase in LC3 puncta indicating an enhance in the 

formation of autophagic vesicles. These data confirmed LC3 activation that was quantified in WB 

in the same condition.  In fact, VCP mutant presence when autophagic pathway was inhibited in 

its last steps showed, by WB analysis, a significant increase of LC3-II/LC3-I ratio, that is in line 

with the increase of LC3 puncta showed by microscope analysis.  
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Figure 26 Overexpression of VCP-mutants leads to the conversion of LC3 I in LC3 II activating autophagy. (A) WB analysis of PBS 
extracts. Cells were treated with NH4Cl 4µM for 2hrs. (B) Bar graph represents mean ±SD for n=5 independent samples LC3-II/LC3-
I ratio (**<0.01, *p<0.05 T-test) (C)The bar graph represents mean ±SD for n=5 independent samples LC3-I/GAPDH ratio. (D) The 
bar graph represents mean ±SD for n=5 independent samples LC3-II/GAPDH (ratio *p<0.05 T-test). (E) The bar graph represents 
mean ±SD for n=5 independent samples totalLC3/GAPDH ratio. (F) The bar graph represents mean ±SD for n=5 independent 
samples p62/GAPDH ratio. (G) Microscopy analysis (63 magnification). Anti-LC3 antibody (green), anti-FLAG antibody (red) and 
nuclei were stained with DAPI (blue). A 2x magnification of selected areas is shown. 
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OVEREXPRESSION OF VCP-MUTANTS SPECIFICALLY ACTIVATES TFE3 
NUCLEAR TRANSLOCATION 
Once defined that VCP-mutants overexpression enhanced the activation of the autophagic 

pathway, I analysed the mechanisms through which VCP-mutants activated autophagy. 

Lysosomal damage, induced by VCP-mutants, could activate autophagy in different ways. In 

particular I focused on the activation of transcription factors involved in lysosome and/or 

autophagy regulation. Firstly, I focused on TFEB, a key regulator of autophagic gene and secondly 

I extended my analysis to TFE3, another transcription factor that is involved in activation of 

autophagy and lysosomes biogenesis. To define VCP-mutants pathway in activating autophagy 

pCDNA3, FLAG-VCP WT, FLAG-VCP R155H, FLAG-VCP R191Q were overexpressed in NSC34 cell 

line. Trehalose treatment for 24hrs was used as control of TFEB activation. Literature data 

showed that trehalose treatment induces lysosomal damage that leads to TFEB activation and its 

nuclear translocation (Rusmini et al., 2019). Trehalose-induced lysosomal damage is visible after 

6hrs of treatment; whereas TFEB nuclear levels significantly increase after 18hrs of trehalose 

treatment. WB analysis was carried out on cytoplasmic (C) and nuclear extracts (N) (Figure 27 A). 

a-Tubulin (TUBA) was used as loading control of the cytoplasmic fractions, while Histone 3 (H3) 

was used as loading control of nuclear fractions. WB analysis showed TFEB translocation from 

cytoplasmic to nuclear fraction in presence of trehalose treatment, as it is shown in literature. 

However, TFEB nuclear levels did not increase neither in presence of overexpressed VCP WT, as 

expected, nor in presence of VCP-mutants. Conversely, WB analysis showed TFE3 translocation 

in different conditions. First, WB showed that trehalose treatment induced TFE3 nuclear 

translocation. Moreover, I could also observe that the presence of both VCP-mutants led to an 

increase in the nuclear TFE3 fraction if compared to mock transfected cells. Figure 27 B, C, D, E 

and F are the quantification of WB analysis of the mean of 5 independent biological samples for 

each condition (n=5) ± SD analyzed with student t-test. TFEB fractions analysis are shown in figure 

B and C. Cytoplasmic fraction did not have any relevant changes between each condition. 

Whereas TFEB nuclear fraction significantly increased only when cells were treated with 

trehalose (*=p<0.05). In the presence of VCP-mutants or VCP WT overexpressed no significant 

increase in TFEB nuclear levels were detectable. In Figure 27 D it was quantified the cytoplasmatic 

fraction of TFE3, by normalizing TFE3 with TUBA. It showed no significant changes of TFE3 levels 

in any condition compared to the control. While, in Figure 27 E it was evaluated TFE3 nuclear 

fraction, normalizing nuclear TFE3 with H3. Figure showed an increased trend of nuclear TFE3 in 
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presence of trehalose (*=p<0.05), which therefore, has a similar effect towards both 

transcription factors analyzed. Moreover, Figure 27 E showed that nuclear TFE3 levels increased 

in presence of both VCP-mutants, in particular it resulted significant in presence of VCP R191Q 

compared to the control (*=p<0.05). Finally, in Figure 27 F it was quantified nuclear/cytoplasmic 

TFE3 ratio that indicates the TFE3 translocation from cytoplasmatic to nuclear compartment. The 

graphic showed an increased trend in nuclear/cytoplasmic TFE3 ratio in presence of both VCP 

mutants and trehalose treatment, whereas the overexpressed VCP WT nuclear/cytoplasmic TFE3 

levels are comparable to the mock transfected cells.  

To confirm WB analysis on nuclear/cytoplasmic extracts I did a microscopy analysis (63 

magnification) of NSC34 cells transiently overexpressing GFP-TFE3 and pCDNA3, FLAG-VCP WT, 

FLAG-VCP R155H, FLAG-VCP R191Q. GFP-TFE3 (green) and nuclei were stained with DAPI (blue) 

(Figure 27 G).  Microscopy analysis permitted to evaluate TFE3 localization and distribution in 

presence of VCP-mutants. Paralleling the data of WB analysis, IF analysis showed that trehalose 

treatment, used as control of TFE3 activation, resulted as expected in TFE3 translocation. In the 

control and in presence of overexpressed VCP WT, TFE3 is found diffused in cytoplasm. Whereas 

when VCP mutants were overexpressed TFE3 partially translocated and localized in the nuclei 

and partially was found retained in cytoplasmic compartment. TFE3 activation and translocation 

enhanced by VCP-mutants presence showed by microscope analysis, is in line to TFE3 increased 

nuclear level in presence of VCP-mutants showed by WB analysis and quantification.  

Overall these data show that autophagy flux activated by VCP-mutants presence is specifically 

mediated by transcription factor TFE3. 
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Figure 27 Overexpression of VCP-mutants specifically activates TFE3 nuclear translocation. (A) WB analysis of cytoplasmic (C) 
and nuclear extracts (N). (B) The bar graph represents mean ± SD for n=5 independent samples of cytoplasmic TFEB/TUBA ratio. 
(C) The bar graph represents mean ± SD for n = 5 independent samples of nuclear TFEB/H3 ratio (*p<0.05 T-test). (D) The bar 
graph represents mean ± SD for n=5 independent samples of cytoplasmic TFE3/TUBA ratio (*p<0.05 T-test). (E) The bar graph 
represents mean ± SD for n=5 independent samples of nuclear TFE3/H3 ratio (*p<0.05 T-test). (F) The bar graph represents mean 
± SD for n=5 independent samples of nuclearTFE3/cytoplasmaticTFE3 ratio. (G) Microscopy analysis (63 magnification). GFP-TFE3 
(green) and nuclei were stained with DAPI (blue).  
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VCP-MUTANT-MEDIATED TFE3 ACTIVATION IS CALCINEURIN 
DEPENDENT 
 
Once it was determined that TFE3 nuclear translocation mediates VCP-mutants autophagy 

activation, I analyzed TFE3 activation pathway. Thus, to better define VCP pathway I analyzed if 

TFE3 activation was regulated by calcineurin (PPP3). PPP3 is calcium and calmodulin dependent 

serine/threonine protein phosphatase that is involved in activation of different transcription 

factors as TFEB and TFE3. Some studies demonstrated that PPP3 is activated by lysosomal Ca2+ 

release. Thus, in condition of lysosomal membrane rupture there is a Ca2+ release, which can 

activate PPP3 and promotes autophagic activity. To analyze if PPP3 mediates TFE3 activation in 

presence of VCP mutants, I silenced PPP3 in NSC34 cells overexpressing GFP-TFE3 and pCDNA3, 

FLAG-VCP WT, FLAG-VCP R155H or FLAG-VCP R191Q. In these conditions I carried out a 

microscopy analysis (63 magnification) (Figure 28). GFP-TFE3 (green) and nuclei were stained 

with DAPI (blue). NSC34 cells transfected with non-targeting siRNA were comparable with 

microscope analysis shown in Figure 26 G: in NSC34 cells analyzed in control condition or in 

presence of overexpressed VCP WT, GFP-TFE3 is retained in cytoplasmic compartment; in 

contrast, in presence of VCP-mutants, GFP-TFE3 is mostly found in the nucleus and only in a 

smaller fraction it is retained in the cytoplasm. On the other hand, NSC34 cells transfected with 

siRNA PPP3CB presented TFE3 localized exclusively in cytoplasmic compartment.  

These data showed that TFE3 activation induced by VCP-mutants presence is mediated by 

calcineurin.  
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Figure 28  VCP-mutants TFE3 activation is calcineurin dependent. Microscopy analysis (63 magnification). GFP-TFE3 (green) and 
nuclei were stained with DAPI (blue).  
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VCP WT OVEREXPRESSION IN NSC34 CELLS DECREASES LYSOSOME 
DAMAGE INDUCED BY TREHALOSE 
In parallel to the study of VCP-mutants induced lysosomal damage, I analyzed VCP WT and VCP-

mutants contribute in the clearance of damaged lysosomal. Lysosomal damage was chemically 

induced using trehalose treatment at different times (figure 29 A and B).  

To study VCP WT and VCP-mutants role in chemical induced lysosomal damage I used microscopy 

analysis (40 magnification) of NSC34 cells transiently overexpressing GFP-GAL3 and pCDNA3, 

FLAG-VCP WT, FLAG-VCP R155H, FLAG-VCP R191Q and treated with trehalose at 2hrs, 6hrs and 

18hrs. GFP-GAL3 (green), anti-FLAG antibody (red) and nuclei were stained with DAPI (blue). In 

the untreated condition, IF showed GFP-GAL3 localization similar to what it was shown in Figure 

23 F: GFP-GAL3 is diffused, showing no lysosomal damage with control and VCP WT 

overexpression; VCP-mutants overexpression showed lysosomal damage with a GFP-GAL3 

punctate distribution. Moreover, IF showed that trehalose treatment induced lysosomal damage 

in presence of VCP mutants and control. Whereas VCP WT overexpression prevented lysosomal 

damage induced by trehalose treatment. In fact, GFP-GAL3 can be observed in dotted-like 

distribution in all condition treated with trehalose excepts when VCP WT is overexpressed.  

In Figure 26 B, Galectin Puncta Assay was performed on the same condition described in Figure 

26 A, to quantify the effect of VCP WT overexpression on lysosomal damage induced by chemical 

treatment. The bar graph shows the mean of the quantification of percentage of cells with GFP-

GAL3 puncta (n=9). In the case of the untreated condition I found that this is comparable to what 

was shown in Figure 25 E. Conversely, trehalose treatment for 2 hrs led to a significant increase 

of lysosomal damage in all conditions compared to the untreated except from VCP R155H 

overexpression condition (++p<0.01, +++ p<0.001). In fact, VCP R155H induced lysosomal damage 

levels present in condition of not treated with trehalose were comparable to lysosomal damage 

levels after 2hrs of treatment. The overexpression of VCP WT significantly decreased lysosomal 

damage compared to control (*p<0.05). Trehalose treatment for 6hrs resulted in a great increase 

of lysosomal damage in the control and in presence of VCP R155H mutant compared to the 

untreated samples and to the trehalose treatment for 2hrs (+++ p<0.001, °° p<0.01, °°° p<0.001). 

Lysosomal damage present in control condition was prevented with VCP WT overexpression (*** 

p < 0.001) and partially prevented with VCP R191Q mutant expression (*p<0.05). Trehalose 

treatment for 18hrs resulted in a significant decrease of lysosomal damage levels in control 

condition compared to trehalose treatment for 6hrs, in line with our previously reported data 
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(Rusmini et al., 2019) (^ p<0.05), but lysosomal damage levels were still significantly higher than 

the ones in untreated condition or after 2hrs of treatment (+++ p<0.001, °° p<0.01). As I have seen 

for data obtained with trehalose treatment for 6hrs, VCP WT overexpression significantly 

prevented lysosomal damage compared to the to mock transfected cell (control condition) (*** 

p < 0.001) while VCP R191Q mutant overexpression partially decreased lysosomal damage 

compared to control condition (**p<0.01). With all different treatments tested, VCP R155H 

mutant overexpression led to lysosomal damage levels comparable to mock transfected cells. 

While VCP R191Q mutant overexpression in parallel with trehalose treatment for 6 and 18 hrs 

led to lysosomal damage levels significantly higher compared to levels present in presence of VCP 

WT overexpression (*p<0.05, **p<0.01). Summarizing, the data shown in Figure 29 B 

demonstrate that VCP WT overexpression prevented chemically-induced lysosomal damage. 

Moreover, VCP R155H mutant completely lost VCP functioning in this context: in fact, lysosomal 

damage levels in presence of overexpressed VCP R155H mutant, when lysosomal damage has 

been chemically-induced with trehalose, was always comparable to the control condition. Finally, 

VCP R191Q mutant partially reverted lysosomal damage chemically induced with trehalose, but 

it partially lost VCP functionality if lysosomal damage levels were compared to the levels in 

presence of overexpressed VCP WT used as control.  
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Figure 29 VCP WT overexpression in NSC34 decreases lysosome damage induced by trehalose. (A) Microscopy analysis (40 
magnification) GFP-GAL3 (green), anti-FLAG antibody (red) and nuclei were stained with DAPI (blue). (B) Quantification of 
percentage of the ratio of cells with GFP-GAL3 puncta/green cells computed over 9 independent biological samples for each 
condition (n=9) ± SD (*p<0.05, **p<0.01, *** p < 0.001; ++p<0.01, +++ p<0.001, against NT; ° p<0.05,  °° p<0.01, °°° 
p<0.001,against 2hrs trehalose treatment; ^ p<0.05, ^^ p<0.01 against 6hrs trehalose treatment; T-test).  
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VCP WT OVEREXPRESSION IN NSC34 DECREASES LYSOSOME 
DAMAGE INDUCED BY MISFOLDED PROTEINS 
 

After studying VCP WT overexpression contribute in presence of lysosomal damage chemically 

induced with trehalose, I decided to evaluate also VCP WT overexpression contribute in presence 

of lysosomal damage biologically induced with misfolded proteins. Recent data showed that the 

presence of protein aggregates led to lysosome membrane breakage. Thus, I decided to evaluate 

if SOD1 G93A overexpression enhanced lysosomal damage and if VCP WT overexpression could 

influence damage levels (Figure 30).  

To study these conditions, I performed a Galectin Puncta Assay and I quantified VCP contribute 

in lysosomal damage biologically induced with misfolded proteins. Galectin Puncta Assay was 

performed on NSC34 cell line transfected with pCDNA3, FLAG-VCP WT, FLAG-VCP R155H, FLAG-

VCP R191Q and SOD1 WT or SOD1 G93A. The bar graph shows the mean of the quantification of 

percentage of cells with GFP-GAL3 puncta (n =7).  

Firstly, I demonstrated that SOD1 G93A induced lysosomal damage. In fact, the figure shows a 

significant increase in lysosomal damage in presence of SOD1 G93A compared to the 

overexpressed SOD1 WT (**p<0.01).  

Moreover, lysosomal damage induced by SOD1 G93A was reverted only by the overexpression 

of VCP WT. In fact, lysosomal damage levels in presence of VCP WT overexpressed were 

significantly lower respect to lysosomal damage levels in presence of mock transfection 

(*p<0.05). Conversely, the presence of VCP mutants did not decrease lysosomal damage level 

induced by SOD1 G93A presence. Indeed, lysosomal damage levels in presence of VCP-mutants 

were comparable to the levels in presence of SOD1 G93A.  
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Figure 30 VCP WT overexpression in NSC34 decreases lysosome damage induced by SOD1 G93A overexpression. Quantification 
of percentage of the ratio of cells with GFP-GAL3 puncta/green cells computed over 7 independent biological samples for each 
condition (n=7) ± SD (*p<0.05, **p<0.01 T-test). 
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DISCUSSION 
All ALS forms are characterized by the presence of insoluble protein aggregates present in the 

brain tissue of affected patients. In fact, various mutations in genes lead to the expression of 

proteins that misfold and aggregate. Moreover, there are many genes involved in protein 

regulation that are found mutated. One of these genes associated to ALS encodes for VCP. VCP 

ALS-mutants are correlated with altered proteostasis. In fact, VCP-mutants are associated to 

ubiquitin positive inclusions, TDP-43 positive inclusions and accumulation of vacuoles-like 

structure, a sign of altered degradation pathways (Johnson et al., 2010). 

 VCP has many roles in the regulation of proteostasis. Recent studies demonstrate that VCP is 

also involved in the removal of altered organelles like lysosomes (Papadopoulos et al., 2017). The 

alteration of lysosomes is deleterious for cell; firstly, for its key role in proteostasis and secondly 

lysosome-damage leads to massive lysosomal leakage that causes cell toxicity and death (Aits & 

Jäättelä, 2013; Wang et al., 2018). There are different mechanisms that can be activated to 

maintain the lysosomal activity. The most studied is lysophagy where VCP has been found 

involved.  

In the second part of the work VCP contribute to lysosomal damage was analysed by 

overexpressing VCP WT and VCP ALS-associated mutants (VCP R191H and VCP R191Q) in NSC34.  

Firstly, it was determined by FTA that VCP-mutants significantly aggregate, in particular VCP 

R191Q mutant. FTA analysis showed an increase in the insoluble fraction of the overexpressed 

VCP mutants compared to the wild-type. WB analysis showed that the increased soluble fraction 

was not correlated and explained with an increase of the total protein expression, therefore it 

can only be explained with an increased aggregating capacity. These data confirms to what is 

observed in VCP-mutants associated patient tissue which presents VCP-positive inclusions 

(Hübbers et al., 2007). 

Aggregates if not removed lead to cell toxicity, thus I decided to verify if VCP-mutants aggregation 

could alter cellular organelles by analysing NSC34 cells organelles morphology in presence of 

VCP-mutants. Electron-microscopy analysis showed that VCP-mutants presence altered 

lysosomal morphology, which presented increased size and empty lumen. To prove that VCP-

mutants associated to ALS altered lysosomes and also caused membrane rupture and leakage I 

performed a Galectin Puncta Assay. As expected lysosomal damage quantification showed 

increased levels in presence of VCP-mutants compared to the levels in presence of the 

overexpressed VCP WT. In particular, VCP R155H mutant expression showed a sensible increase 
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in lysosomal damage levels compared to the overexpressed VCP WT but also to VCP R191Q 

expression. These data were then confirmed by immunofluorescence analysis. In fact, it was 

observed that in control and overexpressed VCP WT condition Galectin 3 signal was diffused, 

whereas in presence of VCP-mutants Galectin 3 signal had a dotted-like localization that 

resembles Galectin 3 recruitment to damaged lysosomes. The alteration of lysosomal 

morphology, size and membrane confers a new insight to VCP-mutants pathological 

mechanisms. 

Different studies demonstrate that lysosomal damage activates the autophagic pathway to 

enhance damaged lysosomes clearance (Aits et al., 2015; Rusmini et al., 2019). VCP WT and 

mutants contribute in regulating the autophagic flux is very debated in literature, so I decided to 

determine if lysosomal damage induced by VCP-mutants influenced the autophagic pathway 

activation in the condition that I was studying. To study this, LC3 conversion was analysed. Firstly, 

it was observed an increase in LC3 conversion in presence of VCP R155H mutant that further 

increased when the autophagic flux was blocked in its end stage (fusion of autophagosomes to 

lysosomes), demonstrating an activation of the autophagic flux. In fact, an inhibition of 

autophagy in its late steps permits to discriminate if the increase of LC3 conversion is due to 

autophagic inhibition or to an increase of autophagic flux. By blocking the autophagic flux in its 

last steps, I could also define that VCP R191Q mutant determined an increase of the autophagic 

flux. The activation of the autophagic flux was also confirmed by IF analysis where the presence 

of VCP-mutants and autophagic late inhibition led to puncta like localization of LC3 indicating 

autophagic vesicles formation.  

Once it was defined that VCP-mutants positively regulated the autophagic flux, I analysed which 

pathway could have been implicated and activated by VCP-mutants. Lysosomal damage activates 

autophagy flux through different pathways. In particular, it enhances the activation and 

translocation of different transcription factors that regulate expression of autophagic genes and 

lysosomal related genes. I started analysing TFEB activation as it is the main transcription factor 

generally involved. By analysing cytoplasmic and nuclear TFEB fraction in presence of VCP WT 

and mutants overexpressed, I could determine that TFEB was not involved in the pathway. Thus, 

I extended my research to TFE3 an analogous of TFEB. By IF and nuclear-cytoplasm extraction 

analysis I determined that VCP mutants, in particular VCP R191Q mutant, increased TFE3 nuclear 

level and subsequent gene regulation. Moreover, TFE3 translocation in presence of VCP mutants 

was prevented by PPP3 silencing. PPP3 is a calcium-dependent phosphatase that activates 
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various transcription factors among which TFEB and TFE3. Thus VCP-mutants, in particular VCP 

R191Q mutant, specifically increased nuclear levels of TFE3 and not TFEB. More studies are 

needed to determine the reason of this specific modulation.  

In the last part of my work, I analysed if VCP WT overexpression could positively regulate 

lysosomal damage degradation. In fact, it was recently demonstrated that VCP has a key role in 

damaged lysosome degradation and that VCP inhibition or VCP mutants are correlated to the 

persistence of damaged lysosome impeding their clearance (Papadopoulos et al., 2017).  

To study VCP WT overexpression contribute in this pathway I chemically and biologically induced 

lysosome damage in NSC34 cells overexpressing VCP WT and mutants. I chemically induced 

lysosome damage treating cells with trehalose. Using Galectin Puncta Assay and IF I 

demonstrated that VCP WT overexpression prevented chemical lysosomal damage in all different 

time treatment. Also, VCP R191Q mutant overexpression moderately prevented lysosomal 

damage chemically induced with trehalose, but it partially lost VCP functionality. In fact, chemical 

induced lysosomal damage level, in presence of VCP R191Q mutant is significantly higher 

compared to chemical induced lysosomal damage level in presence of overexpressed VCP WT. 

Finally, I could determine that VCP R155H mutant completely lost VCP WT functioning; in fact, 

both IF and Galectin Puncta Assay showed that chemically induced lysosomal damage is not 

influenced by overexpressed VCP R155H mutant. In this condition, lysosomal damage levels were 

always comparable to lysosomal damage levels in mock transfection condition. 

To biologically induce lysosomal damage, I determined that overexpression of SOD1-mutant 

could lead to lysosome damage. Thus, inducing lysosomal damage overexpressing SOD1-mutant 

I could confirm VCP WT overexpression role in presence of induced lysosomal damage. Indeed, 

data show that the overexpression of VCP WT prevented lysosomal damage induced by SOD1-

mutant presence. Conversely VCP-mutants lost VCP functionality. In fact, VCP-mutants presence 

could not revert lysosomal damage biologically induced by SOD1-mutants. These findings open 

VCP as a target to positive regulate the clearance on damaged lysosome restoring cellular 

homeostasis.  
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CONCLUSIONS 
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During my PhD period, my worked focused on the role of Valosin Containing Protein (VCP) in 

different pathways of the protein quality control (PQC) system. I analysed VCP wild type 

overexpression to study if enhancing its activity could ameliorate pathological conditions 

correlated to ALS. Moreover, I focused my attention on two VCP ALS-associated mutants to 

determine and define their pathological contribute on PQC system. My work can be divided in 

two parts. 

  

In the first part, I studied VCP contribute in the disassemble and clearance of misfolded protein 

aggregates associated to ALS, in particular focusing to SOD1-mutants aggregates. I could 

determine that VCP WT overexpression led to SOD1-mutant clearance through UPS. Moreover, I 

determined that VCP WT contribute in SOD1-mutant clearance was not essential, but there are 

other pathways that are involved. These data show that promoting VCP activity could be a target 

for the clearance of ALS-associated inclusions. It would be interesting to determine if VCP 

modulation could trigger the clearance of other type of ALS-associated inclusion.  

In this part, I could also demonstrate that VCP-mutants did not lose functionality in SOD1-

mutants clearance in basal conditions, but they partially lost their functionality when autophagy 

was inhibited, showing a dependency to this degradation pathway. Finally, as SOD1-mutants 

aggregates were very instable and there were many conditions that could alter their aggregation 

levels, data where difficult to obtain. Thus, starting from a protocol used by Whiten and 

colleagues, I developed a more reliable and reproducible technique that better defined and 

quantified SOD1 mutant inclusion levels.   

 

In the second part of my work, I focused on VCP WT and mutant role in lysosomal damage. Firstly, 

I found that VCP-mutants aggregated and that their expression led to lysosome morphology 

alteration and damage, giving a new insight on VCP-mutants pathological mechanisms. The 

modulation of autophagy in presence of VCP-mutants is very debated. Here I demonstrate that  

VCP-mutants induced lysosome damage led to specifically increase of TFE3 nuclear levels, 

resulting in activation of the autophagic flux. In fact, in presence of VCP-mutants, LC3-II/LC3-I 

ratio significantly increased. Moreover, I found that TFE3 activation induced by VCP-mutants 

presence was mediated by PPP3.  

In parallel, I studied if overexpressing  VCP WT could promote damaged lysosome clearance via 

lysophagy, when the damage was triggered chemically or biologically with trehalose or misfolded 
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protein, respectively. To biologically induce lysosome damage, I firstly demonstrated that 

overexpress SOD1 G93A led to lysosome membrane breakage. It resulted that VCP WT 

overexpression prevented lysosome damage when it was both chemically and biologically 

induced. This data show another possible pathway where VCP is found implicated, that can be 

modulated and could positive ameliorate cellular pathological condition. Moreover, studying 

lysosome induced damage in presence of VCP-mutants I found that: VCP R155H mutant 

completely lost VCP activity in preventing lysosome damage; while VCP R191Q mutant only 

partially lost VCP functionality. In fact, VCP R191Q mutant reduced in part lysosomal damage 

levels chemically induced with trehalose.  

 

Connecting data of part-I and part-II on VCP-mutants, I could speculate an explanation for VCP-

mutants capacity in removing SOD1-mutants aggregates. In fact, data from part-I showed that 

VCP-mutants could decrease insoluble SOD1-mutants fraction, but that by inhibiting either the 

UPS or autophagy they lost their functionality. Interestingly, VCP-mutants had a different 

behaviour from VCP WT with autophagy inhibition: VCP WT activity was not influenced by 

autophagy inhibition; VCP-mutants activity was partially lost with autophagy inhibition, showing 

a correlation with this pathway. In the second part it was shown that VCP-mutants aggregation 

and induced lysosomal damage led to autophagy activation. This could explain VCP-mutants 

unexpected functionality in removing SOD1-mutants aggregates (Figure 31). 
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Figure 31 VCP mutants aggregate inducing lysosomal damage and autophagy activation. Autophagy activation resulted in SOD1 
G93A enhanced clearance. 
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