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Abstract: Alterations in the tumor suppressor phosphatase and tensin homolog (PTEN) occur in a 
substantial proportion of solid tumors. These events drive tumorigenesis and tumor progression. 
Given its central role as a downregulator of the phosphoinositide 3-kinase (PI3K)/Akt/mammalian 
target of rapamycin (mTOR) pathway, PTEN is deeply involved in cell growth, proliferation, and 
survival. This gene is also implicated in the modulation of the DNA damage response and in tumor 
immune microenvironment modeling. Despite the actionability of PTEN alterations, their role as 
biomarkers remains controversial in clinical practice. To date, there is still a substantial lack of 
validated guidelines and/or recommendations for PTEN testing. Here, we provide an update on 
the current state of knowledge on biologic and genetic alterations of PTEN across the most frequent 
solid tumors, as well as on their actual and/or possible clinical applications. We focus on possible 
tailored schemes for cancer patients’ clinical management, including risk assessment, diagnosis, 
prognostication, and treatment. 

Keywords: PTEN; tumor suppressor; PI3K/Akt; cancer; solid tumors; tumor immune 
microenvironment; biomarker; precision medicine 

 

1. Introduction 

Phosphatase and tensin homolog (PTEN) is a key tumor suppressor that inhibits cell growth 
and enhances cellular sensitivity to apoptosis [1]. Since its first discovery in 1997, the role of PTEN as 
a biomarker in cancer has become more and more significant [2,3]. To date, alterations in this gene 
and/or protein expression are viewed as actionable molecular hallmarks, meaning that their 
presence has implications on clinical decision-making [4]. Loss or altered PTEN function has been 
identified in a wide spectrum of neoplasms, being considered a founder genetic event for 
tumorigenesis and tumor progression [5]. PTEN activity can be either dependent on or independent 
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of the down/de-regulation of the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) 
pathway [6]. Accumulating data suggest that PTEN is also implicated in the overall DNA damage 
response and in modeling the adaptive arm of the anti-tumor immune response [7–9]. The feasibility 
of identifying PTEN alterations in clinical practice is a matter of controversy, given the lack of 
companion and/or complementary diagnostic tests for their investigation. In addition, due to the 
three-dimensional level of alterations (i.e., DNA, mRNA, and protein expression) involving PTEN, 
the development and validation of a single testing approach covering all the clinically significant 
variations are intricate. Despite the fascinating insights provided by several studies over the past 
two decades, the multifaceted biology of PTEN remains not entirely understood. In this review 
article, we seek to outline the biological and genetic changes of PTEN in solid tumors, focusing on 
possible strategies for achieving tailored schemes for patients’ risk assessment, diagnosis, 
prognostication, and treatment. 

2. Structure and Cellular Roles of PTEN Tumor Suppressor 

The PTEN gene (10q23.31) comprises 9 exons and a variable additional exon (i.e., exon 5b) that 
is omitted in the major transcript [1]. A highly conserved sequence upstream of the promoter 
contains a canonic E-box sequence, which is involved in PTEN transcriptional activation [10]. PTEN 
is a dual-specificity protein phosphatase that is composed of 403 amino acids across five functional 
domains and has major enzymatic activity on phosphatidylinositol (3,4,5)-trisphosphate (PIP3) [1]. 

 
Figure 1. Schematic representation of the open and closed conformations of phosphatase and tensin 
homolog (PTEN) based on its phosphorylation status. A. Dephosphorylation leads to the open 
conformation that allows PTEN to associate with the membrane. The association of PTEN with the 
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negatively charged membrane occurs through electrostatic interactions. B. Binding of the C2 domain 
to phosphatidylserine leads to a conformational change and activation of the phosphatase C-tail 
domain. 

The first 14 residues at the N-terminal region constitute the phosphatidylinositol 
4,5-bisphosphate (PIP2) binding domain (PBD) [11]. Several oncogenic mutations may target this 
region, resulting in a lowered affinity of PTEN for the cell membrane [1]. The protein tyrosine 
phosphatase (PTPase) domain represents the active site of PTEN. This wide and positively charged 
pocket region is able to accommodate the large, negatively charged PIP3 substrate. Located at the 
C-terminal region, the PTEN type II calcium-independent (C2) domain interacts nonspecifically with 
the plasma membrane. The complexity of the interaction between the PTPase and C2 domains, and 
the critical role in PTEN regulation, have led to their depiction as a “super-domain” [12]. Several 
driver mutations result in the breakdown of the PTPase-C2 boundary, with subsequent PTEN 
inactivation (Figure 1A). The PTEN C-terminal extremity is composed of a carboxyl-terminal tail 
(C-tail) and a PDZ-binding domain (PDZ-BD) that acts as a protein-protein interaction motif [5]. 
Premature stop codons that remove the C-tail are driver genetic events for tumorigenesis and tumor 
progression. The spectrum of possible post-translational modifications of the PTEN C-terminal 
region is exceedingly heterogeneous [1]. Phosphorylation in C2 and C-tail domains of the C-terminal 
region promotes their interaction, resulting in the “closed” conformation of the phosphorylated 
form of PTEN [1,13]. As a consequence of this modification, the interactions between PDZ-BD and 
PDZ domain-containing proteins in the plasma membrane are inhibited [14]. 
Auto-dephosphorylation reverses this conformational change to “open” status, allowing PTEN to 
bind to the membrane and PDZ domain-containing proteins (Figure 1). As a general rule, we can say 
that phosphorylation phenomena reduce PTEN activity by increasing its chemical stability. Other 
post-transcriptional modifications include ubiquitylation, oxidation, acetylation, and small 
ubiquitin-like modifier (SUMO)ylation. 

2.1. PTEN as a Downregulator of the PI3K/Akt/mTOR Pathway 

The phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) is the most 
commonly upregulated pathway in human cancers [15]. It is profoundly involved in many aspects 
of cell growth, proliferation, survival, metabolism, and immune response regulation (Figure 2) [16]. 
Abnormal activating events targeting PI3K/Akt result in a deep disturbance of these processes, 
which ultimately leads to tumorigenesis, metastasis, tumor progression, and therapy resistance [17–
19]. PI3Ks are grouped into three classes based on their substrate specificity and structure [20]. In 
particular, class I PI3Ks are signal transducers of tyrosine kinases, G protein-coupled receptors 
(GPCRs), and small GTPases, while class II and class III PI3Ks influence signaling indirectly by 
mainly regulating membrane trafficking [21]. Activation of G protein-coupled receptors (GPCRs), 
chemokine receptors (CKRs), and receptor tyrosine kinases (RTKs) on the plasma membrane by 
specific ligands results in autophosphorylation on tyrosine residues [16]. The three classes of PI3K 
are then recruited and activated, resulting in the production of the second messenger PIP3 from the 
substrate PIP2 [22]. This process leads to the recruitment of signaling proteins, including protein 
serine/threonine kinase-3′phosphoinositide-dependent kinase 1 (PDK1) and Akt [16,22]. This 
mechanism is the “core” of cell survival and cell cycle progression control. Following 
phosphorylation, the serine-threonine kinases are fully activated, either by PDK1, the mTOR 
complexes, or other kinases [23]. Akt is directly inactivated by the dephosphorylation from 
phosphatase domain and leucine-rich repeat protein phosphatase (PHLPP) [23]. On the contrary, the 
negative regulation of mTORC1 and PIP3 activity by PTEN, tuberous sclerosis 1 (TSC1), tuberous 
sclerosis 2 (TSC2), and liver kinase B1 (LKB1) lead to the indirect inactivation of Akt [24]. An 
important part of the PTEN tumor suppressor role is represented by the negative regulation of the 
PI3K/Akt/mTOR pathway (Figure 2). Loss of PTEN activity leads to the stable activation of the 
PI3K/Akt signaling, with subsequent abnormal cell growth, survival, and proliferation [25]. It is 
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important to note, however, that an important part of the PTEN tumor-suppressor role is outside the 
PI3K/Akt axis [26]. 

Figure 2. PI3K/Akt/mTOR signaling and its interaction with PTEN. The PI3K pathway regulates 
diverse cellular processes, including protein synthesis, cell survival, proliferation, glucose 
metabolism, apoptosis, DNA repair, and genome stability. Akt-mediated phosphorylation inhibits 
the activity of the TSC1-TSC2 complex, also known as hamartin-tuberin. This is a critical step for the 
negative regulation of mTORC1, whose activity controls anabolic processes. Another important 
downregulation of Akt phosphorylation is towards BAD, while MDM2 activity is enhanced, 
promoting the degradation of the tumor-suppressor p53, which also plays a part in the 
P300-mediated cell apoptosis. Cell cycle regulation occurs by means of cyclins A and D stimulation 
and GSK3 inhibition. The latter event is also responsible for increased glucose metabolism. PTEN is 
intimately involved in the regulation of these mechanisms through its substrate PIP3. Of note, the 
activity of PTEN in the cell nucleus that leads to cell survival control is related to the upregulation of 
key mediators, such as RAD51, CDNPC, and P300. RTK, receptor tyrosine kinase; CKR, chemokine 
receptor; GPCR, G protein-coupled receptor; IRS-1, insulin receptor substrate 1; PI3K, 
phosphatidylinositol 3-kinase; JAK1, Janus kinase 1; PIP3, phosphatidylinositol (3,4,5)-trisphosphate; 
PDK1, pyruvate dehydrogenase lipoamide kinase isozyme 1; TSC, tuberous sclerosis complex; 
mTORC1, mammalian target of rapamycin complex 1; MDM2, mouse double minute 2 homolog; 
BAD, BCL2 associated agonist of cell death; GSK3, glycogen synthase kinase-3; CDK2, 
cyclin-dependent kinase 2; CDNPC, centromere protein C. 

2.2. Nuclear PTEN and Modulation of the DNA Damage Response 

Once considered a strictly cytoplasmic protein, PTEN is now known to be present and active in 
the nucleus, mitochondria, endoplasmic reticulum, and extracellular space [27,28]. In particular, 
PTEN activity in the nucleus is critical for tumor suppression, independently of PTEN phosphatase 
activity [28–30]. However, there is an understanding gap between tumorigenesis and the 
dysregulation of PTEN nuclear functions. PTEN is localized within the centromere where it 
physically interacts with proteins that are essential for centromere formation and stabilization, such 
as centromere-specific binding protein C (CENP-C) [31]. The stability of the centromere is a result of 
RAD51 expression by PTEN modulation (Figure 2). Given that RAD51 is a key component of the 
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double-strand breaks (DSB) homologous recombination (HR) DNA repair systems, PTEN is 
currently viewed as a DNA-damage response regulator [32,33]. Importantly, PTEN loss may lead to 
DSB also through increased Akt-mediated cytoplasmic sequestration of the checkpoint kinase 1 
(CHK1), resulting in altered G2/S arrest in response to DNA damage [34]. In addition, PTEN plays a 
key role in regulating and maintaining the integrity of several checkpoints during the G1-S and 
G2-M cell cycle transitions [35,36]. Specifically, the intra-S checkpoint is an important DNA damage 
stage which stops cell cycle progression to allow repair of DNA damage [37]. Hence, 
radiation-induced DNA damage in the presence of an impaired PTEN activity has been associated 
with an accelerated transition from G2/M to G1 while PTEN phosphorylation leads to accelerated 
G2-M transition [36]. An additional nuclear function of PTEN is related to its interaction with p53 
which subsequently leads to G1 arrest [38]. Another mediator of PTEN-related cell cycle control is 
represented by histone acetyltransferase (HAT) [39]. The interaction between PTEN and HAT is 
particularly noticeable in the control of chromatin dynamics and global gene expression [40]. 
Through its C-terminal domain, PTEN is able to bind histone H1 and to maintain a normal 
chromatin condensation [29,39]. The multiple functions of PTEN, the contribution across different 
cellular processes, and the interactions with numerous cellular components highlight the essential 
role that leads scientists to nominate it as a novel guardian of the genome [41]. 

Another important observation that corroborates the role of PTEN in regulating the DNA 
damage response is represented by its expression in endometrial tumors. Of note, loss of PTEN 
expression and microsatellite instability (MSI) are two of the more common molecular alterations in 
endometrial carcinoma [42]. Indeed, in the MSI hypermutated molecular subgroup, PTEN shows 
high mutation rates and decreased protein expression [43]. These alterations co-occur with those in 
phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit, alpha isoform (PIK3CA), both in 
the mismatch repair (MMR) deficient/MSI and the copy number-low subgroups. It has been 
hypothesized that the 5’-polyadenosine tracts in PTEN might be a target for mutations in 
MMR-deficient tumors. Hence, several studies have reported that many PTEN mutations associated 
with MSI-high (MSI-H) status occur with higher frequency in the poly(A6) regions compared to 
PTEN mutations found in microsatellite stable (MSS) tumors, particularly in endometrial cancer and 
colorectal cancer [44,45]. In an elegant study, Djordjevic and collaborators observed that in 
non-endometrioid endometrial carcinomas, a PTEN-retained and/or wild-type status significantly 
co-occur with a retained positive expression of the MMR proteins [46]. Similarly, significant 
correlations between MMR proficiency, PTEN wild-type expression, and a better outcome have been 
recently reported in breast cancers [47]. These observations can be of clinical value not only for 
Lynch syndrome screening (e.g., endometrial cancer, colorectal cancer) but also for prognostication 
and immunotherapy prediction (e.g., breast cancer). Indeed, the Food and Drug Administration 
(FDA) has approved in the recent past an immune checkpoint inhibitor compound (i.e., 
pembrolizumab) in MMR deficient solid tumors, irrespective of the tumor origin [48]. Regrettably, 
information on the specific biology of MMR deficiency in breast cancer is extremely limited in the 
literature. Genomic scars in the MMR system are relatively rare in breast cancer, being reported in 
~2% of cases [49]. However, this subject is controversial in literature given the lack of companion 
diagnostics and/or tumor-specific guidelines for MMR analysis [47,49–54]. Unlike in endometrial 
and colorectal cancers, MSI is restricted to a minority of breast cancers showing MMR protein loss 
[54]. Of note, MMR but not PTEN proteins expression by immunohistochemistry (IHC) show a 
remarkable degree of intra-tumor heterogeneity, resulting in a possible diagnostic algorithm to 
overcome this issue, as shown in Figure 3.  
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Figure 3. Diagnostic algorithm for the evaluation of mismatch repair status in breast cancer using 
PTEN immunohistochemistry as a complementary test. In this proposed workflow, PTEN can be 
profiled before the execution of other tests in order to pre-screen patients for MMR proficiency. 
Tumors showing HER2 overexpression and/or amplification and those with a triple-negative 
phenotype should be considered mismatch repair proficient if PTEN expression is retained, with a 
positive predictive value of 95% and 100%, respectively. TNBC, triple-negative breast cancer; ER, 
estrogen receptor; MMR, mismatch repair; pMMR, mismatch repair proficient. 

2.3. The Interplay between PTEN and the Tumor Immune Microenvironment 

The overall anti-tumor immunosuppressive activity relies in part on PTEN regulation [9]. 
Several studies have demonstrated that PTEN acts as downstream of T- and B-cell receptors, as well 
as in negatively regulating the expression of the immunosuppressive cytokine (e.g., interleukin 
(IL)-10) and vascular endothelial growth factor (VEGF) [55]. Additionally, PTEN can affect 
cytokine-induced responses of the IL-2 receptor through the Akt signaling [56]. This is a critical step 
in the modulation of regulatory T cells (Tregs) activity [56]. In B-cells, this negative regulation 
influences the proliferation, activation, and survival [55]. Given these considerations, it is not 
surprising that loss of PTEN activity is associated with cellular and humoral immune dysfunction 
and autoimmunity [9,34]. The cancer secretome, which is composed of macromolecules secreted by 
tumor cells, may stimulate the expression of immunosuppressive cytokines (e.g., IL-6 and IL-10) 
[57]. It has been observed that the lack of PTEN leads to the expression of chemoattractant cytokines, 
such as chemokine (C-X-C motif) ligand 1 (CXCL1), granulocyte colony-stimulating factor (G-CSF), 
and IL-23. [58]. Along with their activity in suppressing anti-tumor immunity, cytokines can affect 
the activation of both infiltrating inflammatory cells and stromal cells [57]. In this scenario, several 
growth factors are also produced to enhance PI3K pathway harvest in PTEN deficient cells, thus 
sustaining tumor growth [58]. In summary, different tumor microenvironments could be a result of 
different patterns of PTEN loss in different molecular scenarios. This was noted by Bezzi et al. as 
they found out that combined deletion of PTEN and Zinc Finger BTB Domain Containing 7A 
(Zbtb7a) gene in prostate cancer results in tumor progression, while combined PTEN and p53 loss 
are related to immunosuppression [59]. Genetic inactivation of PTEN facilitates the initiation, 
progression, and malignant transformation of epithelial tumors. Tumor growth and invasiveness are 
inhibited by normal fibroblasts, in contrast, reprogrammed fibroblasts which co-evolve with 
epithelial tumor cells are thought to induce tumor initiation and progression [60–62]. In PTEN low 
breast cancers, both mRNA and microRNA (miR) expression can be reprogramed in normal 
fibroblasts, leading to a tumor-associated fibroblast phenotype. Moreover, PTEN loss may lead to 
gene expression reprogramming in the mammary gland microenvironment by activated oncogenic 
secretome. miR-320 as a target of PTEN in stromal fibroblasts leads tumor microenvironment 
towards defeating aggressive phenotypes of breast cancer. Downregulation of this micro RNA in 
PTEN-deleted stromal fibroblasts in the oncogenic secretome stimulates tumor invasiveness and the 
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creation of angiogenic networks [60]. The interactions between PTEN and tumor immune 
microenvironment are outlined in Figure 4. 

 
Figure 4. Role of PTEN in the regulation of the tumor immune microenvironment. PTEN in tumor 
cells may regulate the cancer cell secretome to prevent the secretion of immunosuppressive 
chemokines and, consequently, favoring the establishment of an immune-permissive tumor 
microenvironment, which would improve antitumor immune responses. PTEN may also prevent the 
formation of reactive stroma with pro-tumorigenic activity, whereas in stromal cells may suppress 
tumorigenesis through inhibition of a pro-oncogenic secretome that reprogrammes cancer cells. Cells 
in the tumor microenvironment may produce exosomes that contain PTEN-targeting microRNA 
(miRNA) to downregulate the expression of PTEN in cancer cells, thereby counteracting the 
tumor-suppressive effects of PTEN. 

3. PTEN Molecular Aberrations Clinical Roles  

3.1. Biomarker in Molecular Epidemiology 

PTEN altered function occurs in approximately 13.5% of human cancers through inframe, 
missense, and truncating mutations, gene fusions, amplifications, deletions, epigenetic silencing, 
and transcriptional modifications (Figure 5) [1]. 
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Figure 5. Oncoprint visualization of PTEN somatic molecular alterations overall mutational burden 
across PTEN-altered solid tumors. Types of alterations and tumors are color-coded on the basis of the 
legends on the bottom. Each column represents a sample and was sorted to appreciate the magnitude 
of alteration types. The bar plot on the top represents the mutation count, as reported on the green 
scale. The 19 main tumor types included in this analysis from cbioportal.org are melanoma, head and 
neck squamous cell carcinoma, non-small cell lung cancer (i.e., squamous cell and adenocarcinoma), 
mesothelioma, esophageal cancer, stomach cancer, colorectal cancer, cholangiocarcinoma, pancreatic 
cancer, liver cancer, renal cell carcinoma, bladder cancer, prostate adenocarcinoma, uterine cancer 
(i.e., endometrioid, serous, and carcinosarcoma), cervical cancer, ovarian cancer, and invasive breast 
cancer (samples n = 1068/7888; 13.5%). ADC, adenocarcinoma; SCC, squamous cell carcinoma. 

In particular, PTEN gene alterations are more frequent in endometrial cancer (35%), glial 
tumors (32%), prostate cancer (17%), melanoma (13%), non-small small-cell lung cancer (NSCLC) 
(12%), and breast cancer (9%) [63–68]. Of note, PTEN protein loss is a more frequent event in cancer, 
compared to PTEN genetic alterations, particularly in lung cancer and breast cancer [42,47,69]. 
Hence, only 9% of lung squamous cell carcinoma harbor PTEN somatic mutations, while up to 44% 
showed decreased protein levels [69]. Similarly, PTEN protein loss or low expression occurs in 46% 
of invasive breast cancers, with particularly higher frequency in ductal and estrogen receptor 
(ER)POS/HER2NEG breast cancers [47]. On the other hand, mutation, loss of heterozygosity (LOH), and 
methylation account for 5%, 40%, and 50% of cases respectively [29,70]. Functional PTEN loss in 
endometrial carcinoma can be also mediated by a number of other mechanisms, including PTEN 
gene regulation by miRNAs, and alterations of protein stability [46,64]. Loss of PTEN expression 
recurs with high frequency in gliomas and glioblastomas. Furthermore, inactivation of PTEN both 
by mutations and by epigenetic silencing plays an important role in the development of cutaneous 
melanoma [29,71]. PTEN loss or inactivating mutations are found in a variable proportion (5–30%) of 
sporadic colorectal cancers [72–74]. Up to 18% of colorectal cancer harbors PTEN point mutations 
and up to 19% LOH, depending on tumor type, and concomitant promoter hypermethylation 
[29,75].  
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In sporadic tumors, PTEN LOH occurs at a higher frequency than biallelic inactivation [76].  
However, it is still not clear whether haploinsufficiency provides a selective growth advantage in 
tumors lacking a second hit in the remaining PTEN allele [77]. The observation that PTEN loss alone 
is sufficient to cause tumorigenesis in some tissue types but not in others, making the role of PTEN 
more ambiguous [29,78]. In addition to genetic loss or mutations, alterations in RNA expression are 
frequent in solid tumors, albeit heterogeneous (Figure 6).  

 

Figure 6. RNA expression levels and copy-number alterations of PTEN across PTEN-altered solid 
tumors. Each column represents a tumor type from cbioportal.org datasets. Types of alterations are 
color-coded on the basis of the legend on the bottom. ADC, adenocarcinoma; SCC, squamous cell 
carcinoma. 

Overexpression of PTEN has been a matter of interest both in terms of biologic and clinical 
significance. Studies conducted in NSCLC cell lines have reported that overexpression of PTEN was 
associated with inhibition of tumor growth [79] and an increase in levels of cleaved caspase-3 and 
cell arrest in G0/G1 phase, suggesting its role as a potential target [80]. In these patients, 
improvement in the efficacy of pemetrexed, a first-line chemotherapy drug, have been observed [81]. 
Several studies using different types of cancer cell lines have shown that PTEN overexpression can 
increase apoptosis in glioblastoma [82], inhibit proliferation and promote apoptosis of hepatocytes 
[83], improve cisplatin-resistance of ovarian cancer by upregulating a downstream molecule named 
as keratin, type I cytoskeletal 10 (KRT10) [84], and having a cooperative role with lithium for 
reducing colorectal cancer, suggesting their potential combination as a novel treatment [85]. In this 
respect, many mechanisms are capable of transcriptional and post-transcriptional regulation of 
PTEN expression, including epigenetic silencing, transcriptional repression, regulation by miRNAs, 
and disruption of competitive endogenous RNA (ceRNA) networks, which have all been shown to 
contribute to regulating PTEN levels [5]. Moreover, PTEN is subject to a wide range of 
post-translational modifications that ultimately governs its protein levels, activity, and function, 
including overexpression of PTEN-interacting proteins, dimerization, and secretion [5]. Because 
insulin-mediated metabolic responses are primarily achieved through PI3K, PTEN 
haploinsufficiency has been demonstrated to be a monogenic cause of profound constitutive insulin 
sensitization that is apparently obesogenic [86]. Patients who are heterozygous carriers of PTEN 
mutations, seem to have an increased risk of obesity and cancer, but a decreased risk of diabetes due 
to enhanced insulin sensitivity [29,86]. 
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3.2. Phenotypic Variability in PTEN Germline Mutation Carriers and Genotype-Phenotype Relationship 

PTEN germline mutations have been extensively studied in patients affected by Cowden 
disease, an autosomal dominant condition characterized by hamartomas and increased lifetime risk 
of several types of cancers (e.g., breast, thyroid, endometrium) [87]. Since then, several other 
PTEN-related hamartoma tumor syndromes (PHTS) have been identified [88]. These patients show 
multiple hamartomas in a variety of anatomic sites and have characteristic cutaneous 
manifestations, such as trichilemmomas, oral fibromas, and punctate palmoplantar keratoses [89]. 
According to Tan et al. and Bubien et al., these patients present an increased estimated lifetime risk 
of breast cancer of around 80%, while the lifetime risk for thyroid cancer is approximately 30% 
[90,91]. The lifetime risks for endometrial cancer, colorectal cancer, and renal cell carcinoma were 
28%, 9%, and 34% respectively [91]. A more recent study showed that the frequency of PTEN 
germline mutations in breast cancer ranges between 0.05% and 0.2% [92]. Interestingly, breast 
cancers in patients carrying a PTEN germline mutation have been found to be mostly of ductal 
histotype, with the presence of apocrine differentiation [93]. Bannayan–Riley–Ruvalcaba syndrome 
is another rare PHTS which is clinically characterized by multiple subcutaneous lipomas, 
macrocephaly, and penile lentigines [87]. In this condition, an increased risk for malignant tumors 
has not been demonstrated yet. Similar mutation patterns in PTEN can be observed in both Cowden 
and Bannayan–Riley–Ruvalcaba syndromes, suggesting that these two autosomal dominant 
disorders are related to allelic disorders [89]. Lhermitte–Duclos disease is characterized by 
hamartomatous outgrowths of the cerebellum (cerebellar dysplastic gangliocytoma) [94,95]. This 
PHTS may also arise in conjunction with Cowden syndrome [91]. Two other conditions have been 
associated with PTEN mutations and, although they lack hamartomas, some argue that they should 
be incorporated into the definition of PHTS [29]. The first condition is a Proteus-like syndrome with 
a distinct type of epidermal nevus (also referred to as segmental overgrowth, lipomatosis, 
arteriovenous malformation, and epidermal nevus (SOLAMEN) syndrome or type 2 segmental 
Cowden syndrome) that likely relates to the early LOH at the PTEN allele in the affected tissues in 
patients with underlying germline PTEN mutation [96–98]. The second condition is an autism 
spectrum disorder with microcephaly [99]. Published data on clinical manifestations come mainly 
from small case series or compilations of published cases, most of which predated the development 
of consensus criteria for diagnosis and genetic testing for Cowden syndrome [100]. As a result, the 
true frequencies of the clinical features of Cowden syndrome are not known and, as a consequence, 
it is difficult to perfectly describe genotype-phenotype correlations [89]. Some phenotypic analyses 
of small clinical cohorts of PTEN mutation carriers, combined with laboratory studies of the 
consequences of these mutations imply that stable catalytically inactive PTEN mutants may lead to 
the most severe phenotypes and to a higher number of lesions and, conversely, that mutants 
retaining partial function or with truncating mutations associate more frequently with a 
milder phenotype, with autism spectrum disorder often being diagnosed [87,101]. Albeit debated, 
genetic screening is currently available for other genes that have been associated with a Cowden-like 
presentation, including RAC-alpha serine/threonine-protein kinase (AKT1), killin (KLLN), PIK3CA, 
and succinate dehydrogenase complex (SDH) (subunits B and D) [87].  

3.3. Inactivating Mutations of PTEN in Non-Familial Solid Tumors 

According to the Catalogue of Somatic Mutations in Cancer (COSMIC), 1.993 unique somatic 
PTEN mutations have been found in human cancers [5]. Both germline and somatic PTEN mutations 
have been identified in the promoter and all nine exons of PTEN (Figure 7), including missense, 
nonsense, splice site variants, intragenic deletions and insertions and large deletions [5].  
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Figure 7. Type of mutations, frequency, and affected PTEN domains across selected solid tumors. 
The 19  tumor types included in this analysis from cbioportal.org are melanoma, head and neck 
squamous cell carcinoma, non-small cell lung cancer (i.e., squamous cell and adenocarcinoma), 
mesothelioma, esophageal cancer, stomach cancer, colorectal cancer, cholangiocarcinoma, pancreatic 
cancer, liver cancer, bladder cancer, prostate adenocarcinoma, uterine cancer (i.e., endometrioid, 
serous, and carcinosarcoma), ovarian cancer, and invasive breast cancer. Green, missense; black, 
truncating; brown, inframe; purple, other types of genetic alteration. 

These genetic aberrations lead to unstable truncated proteins that are almost undetectable and 
thus functionally comparable to the PTEN monoallelic loss [5]. The diversity of tumor-associated 
mutations occurring in all domains of PTEN strongly suggests that these different domains are 
physiologically relevant to PTEN-related tumorigenesis [76]. The majority of the missense mutations 
occur in the phosphatase domain and affect the catalytic activity of PTEN [102]. However, a broad 
spectrum of mutations in PTEN that are associated with primary tumors occurs outside the 
phosphatase domain, confirming additional activities of PTEN function in tumor suppression [103]. 
For example, nonsense and frameshift mutations yield truncated PTEN proteins lacking the 
C-terminal tail and the PDZ-interaction motif [76]. Among the hotspot mutations, the most frequent 
are those at position 130, in the phosphatase domain of the protein. In the MSK-IMPACT Clinical 
Sequencing Cohort, they occurred 71 times, including 3 duplicate mutations in patients with 
multiple samples. 33 mutations appeared to cause R130Q substitutions (c.389G>A), 15 alterations 
determined R130G substitutions (c.388C>G), 19 mutations identified (c.388C>T) originated R130* 
amino acids loss due to the introduction of a premature stop codon, 2 changes caused R130P 
substitutions and 2 alterations were R130Qfs*4 (c.389delG), thus resulting in a frameshifting change 
with Arginine-130 as the first affected amino acid, replacing it for a Glutamine and creating a new 
reading frame ending at a stop at position 4 (counting starts with the Glutamine as amino acid 1). 
The C2-domain is involved especially in truncating mutations and the most frequent ones are 
located at positions 233, 267, and 319–323. Of note, codons 321–323 in exon 8 are characterized by a 
poly(A6) stretch. A pioneering study found out that PTEN mutations, besides being frequent in 
endometrial carcinomas (21/38, 55%), are associated with MSI. Hence, 14/18 (78%) of MSI-H tumor 
were PTEN mutated versus 7/20 (35%) of MSS cases. Interestingly, 6 tumors, 4 of which were MSI-H, 
had either an insertion or a deletion within a poly(A6) stretch in codons 321–323 [104]. PTEN 
deficiency could be a result of germline or somatic mutations, epigenetic silencing, abnormal 
transcriptional regulation, post-translational modifications, and protein-protein interactions 
[105,106]. The most frequently mutated genes in PTEN-defective solid tumors are well-known 
cancer genes, such as TP53, adenomatous polyposis coli (APC), titin (TTN), mucin 16 (MUC16), 
PIK3CA, axonemal central pair apparatus (HYDIN), BRAF, cadherin-1 (CDH1), and histone-lysine 
N-methyltransferase 2D (KMT2D), irrespective of the tumor type (Figure 8). 
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Figure 8. Frequency of mutations targeting the highly recurrent mutated genes in PTEN-defective 
solid tumors. Each tumor type is color-coded on the basis of the legend on the bottom. ADC, 
adenocarcinoma; SCC, squamous cell carcinoma. 

4. Clinical Actionability of PTEN Alterations 

Prior to the massively parallel sequencing era, PTEN has been one of the most deeply 
sequenced tumor genes, with a vast amount of data to identify connections between carcinogens and 
tumorigenesis generated. However, since its first discovery by two independent research groups 
more than 20 years ago, PTEN has been extensively studied but not exhaustively. In the precision 
medicine era, huge efforts have been made to characterize tumors and tailor treatments according to 
genetic, epigenetic, or proteomic alterations. The integration between translational and clinical 
research is crucial in understanding tumor biology and, accordingly, identifying potential 
biomarkers of drug response or resistance. Several studies investigating mechanisms of resistance in 
breast cancer patients treated with PI3K inhibitors or CDK4/6 inhibitors have found interesting 
results regarding the implication of PTEN in the development of resistance. In one of these studies, 
patients who received PI3Kα inhibitors due to PIK3CA mutations and developed resistance after an 
initial response [107]. Convergent loss of PTEN expression was observed in the post-treatment 
metastatic samples when compared to the pre-treatment tumor, suggesting the potential role of 
PTEN in the development of resistance. The authors conclude that loss of PTEN expression might be 
due to selective therapeutic pressure [107]. A recent study conducted on ERPOS advanced breast 
cancer patients treated with a combination of the CDK4/6 inhibitor ribociclib and letrozole showed 
that loss of PTEN expression due to AKT activation could lead to the development of resistance to 
CDK4/6 inhibition [108]. Along with the observation that PTEN loss promotes resistance to PI3Kα 
inhibitors, the authors highlight the possibility that one genetic event might prove sufficient for the 
same patient to develop clinical cross-resistance to multiple targeted therapies [108]. The potential 
use of PTEN loss in predicting resistance to the PI3Kα inhibitor alpelisib has also been studied on 
liquid biopsies, with encouraging results [109].  

PTEN is one of the most frequently altered genes in human cancer. The analysis of publicly 
available genomic datasets confirms that the overall mutational loads in cancers parallel those that 
can be found in PTEN itself. Thus, translational studies on PTEN alterations are still needed to 
broaden our understanding of the gene-environment interactions in cancer. In terms of clinical 
applications, PTEN alterations are extremely complex biomarkers. On the other hand, PTEN clinical 
studies have not led to a deep impact on cancer management and therapy yet. The complexity that 
underpins PTEN alterations and its interactions with other genes, pathways, biological systems and 
tumor microenvironment may have been responsible for the somehow nihilistic view of our ability 
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to successfully generate clinically relevant biomarkers. Available evidence suggests an association 
between PTEN functional status and both clinical outcome and response to several therapies. 
However, its real prognostic and/or predictive role in cancer is still unknown. This can be, at least 
partially, due to the fact that PTEN assessment lacks consistency and reproducibility across different 
studies in terms of the type of assay, antibodies used for immunohistochemistry testing, scoring 
system, cutoffs for PTEN-loss/low definition, and source of tumor samples (primary versus 
metastatic). Moreover, the remarkably heterogeneous cohorts of patients in which the clinical utility 
of PTEN loss has been explored makes the interpretation of available results even more complex. 
Finally, it has been recently observed that PTEN might be implicated in the control of tumor 
microenvironment and immune system, thus fostering future potential development for an 
immunotherapy-based approach. 

5. Concluding Remarks 

Translating PTEN genomic scars into the clinics has begun but it is still not ready for prime 
time. When clinical studies will be designed considering PTEN as a biomarker, in particular as a 
predictive biomarker for oncologic patients’ therapy selection, the identification of the specific 
alteration assessed will be crucial. From this fascinating perspective, it will be really important 
considering that PTEN, like MET and other complex genes, can be targeted by a constellation of 
various alterations, at different biological levels (i.e., DNA, RNA, and protein). To fully exploit the 
role of the different types of gene alterations in terms of patient selection, it would be required to 
implement a new 3D biology approach, aim to simultaneously analyze the presence and the clinical–
biological function of PTEN DNA, RNA and protein alterations. Large, multicentric clinical trials 
coupled with companion and/or complementary diagnostic tests, in which patients are thoroughly 
profiled for their PTEN status, would lead us a step closer to the full implementation of PTEN 
analysis in clinical practice. Albeit currently unrealized, the potential of PTEN as a biomarker in 
cancer remains promising and deserves further investigation.  
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