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Abstract: Barley (Hordeum vulgare) has been widely used as a model crop for studying molecular
and physiological processes such as chloroplast development and photosynthesis. During the
second half of the 20th century, mutants such as albostrians led to the discovery of the
nuclear-encoded, plastid-localized RNA polymerase and the retrograde (chloroplast-to-nucleus)
signalling communication pathway, while chlorina-f2 and xantha mutants helped to shed light on
the chlorophyll biosynthetic pathway, on the light-harvesting proteins and on the organization of
the photosynthetic apparatus. However, during the last 30 years, a large fraction of chloroplast
research has switched to the more “user-friendly” model species Arabidopsis thaliana, the first
plant species whose genome was sequenced and published at the end of 2000. Despite its many
advantages, Arabidopsis has some important limitations compared to barley, including the lack
of a real canopy and the absence of the proplastid-to-chloroplast developmental gradient across
the leaf blade. These features, together with the availability of large collections of natural genetic
diversity and mutant populations for barley, a complete genome assembly and protocols for genetic
transformation and gene editing, have relaunched barley as an ideal model species for chloroplast
research. In this review, we provide an update on the genomics tools now available for barley, and
review the biotechnological strategies reported to increase photosynthesis efficiency in model species,
which deserve to be validated in barley.

Keywords: Barley; genome; functional genomics; chloroplast biogenesis; photosynthesis
improvement

1. barley, the Crop and the Model Species

Barley (Hordeum vulgare) is a self-pollinating monocotyledonous plant species that belongs
to the Poaceae, a grass family that includes several major crops exploited in modern agriculture.
Its domestication dates back to 10,000 BC, took place in the Fertile Crescent and began with the wild
species Hordeum vulgare ssp. spontaneum [1]. Barley ranks fourth in terms of annual grain tonnage after
maize, wheat and rice, with a worldwide production level (2018/2019) of 141 million tons. The primary
role of cultivated barley (Hordeum vulgare ssp. vulgare) is as a source of animal feed (about 75% of the
global production), with subsidiary uses in alcoholic and non-alcoholic beverages (20%), and in human
nutrition (5%)—partly due to its high content of beta-glucan, a beneficial fibre that can reduce levels of
cholesterol in the blood. During the 20th century, barley was widely exploited as a model species for
crop studies. As a self-pollinating species with a diploid (2n) genome and a haploid complement of
only seven chromosomes, barley proved to be an excellent model organism for both basic and applied
research. Furthermore, due to the fact that wild barley (Hordeum vulgare ssp. spontaneum) can grow in a
wide range of environments and climates, from the Arctic Circle to the equatorial highlands, barley is
cultivated more widely than any other major crop. This resilience relies on a wealth of natural genetic
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diversity which enables the plant to adapt effectively to various environmental challenges such as cold
temperatures, drought, alkalinity and salinity, and makes it a perfect model species for investigating
crop adaptation to abiotic stresses [2].

1.1. A Brief History of Genome Manipulation in Barley

Hordeum vulgare was one of the very first crops used in cereal improvement programs based
on different induced mutation strategies. In 1930, Stadler studied the mutagenic effects of different
types of radiation on maize and barley, describing chlorophyll-deficient and virescent phenotypes in
seedlings [3]. In 1938, Nilsson-Ehle and Gustafsson tested X-rays and UV light on the barley cultivar (cv.)
‘Gull’ and isolated several mutants, which were named albina, xantha, alboviridis, viridis, tigrina, striata
and maculata, categorizing them by their carotenoid and chlorophyll contents and distribution within
the leaf blade [4]. The characteristics of several mutated lines were recognized as being very valuable for
potential use in agriculture, since they exhibited alterations in grain yield, straw stiffness, straw length
and tillering capacity, as well as changes in spike firmness, kernel maturation and pigmentation [5].
Later on, two varieties of barley ‘Trebi’ and ‘Moister’ were exposed to the radiation generated by
the first aerial atomic explosion at Bikini atoll in 1946 [6]. Meanwhile, Gustafsson and Mackey
applied mustard gas to barley to observe the effect of chemical mutagenesis [7], whereas Ehrenberg
and collaborators tested various mutagenic compounds on barley and evaluated their impact on
chlorophyll accumulation [8]. After these pioneering experiments, a broad range of chemical and
physical mutagens were tested systematically. During this phase, alkylating agents able to generate
G/C to A/T transitions in DNA, such as EMS (Ethyl Methane Sulfonate), ENU (N-nitroso-N-ethylurea),
MNU (N-nitroso-N-methylurea), DES (diEthyl Sulfate) and sodium azide (NaN3), were widely used
for the mutagenesis of barley. The first chemically induced barley variety, ‘Luther’, was released in the
US in 1966. ‘Luther’ was obtained by exposing the variety ‘Alpine’ to DES. In 1965, in Czechoslovakia,
the variety ‘Diamant’ was obtained after gamma-ray irradiation. This new variety was ~ 15 cm shorter
than the parental ‘Valticky’ and displayed an increase in grain yield amounting to about 12% [9].
At around the same time, in the UK, ‘Golden Promise’ was registered. This semi-dwarf cultivar
originated from exposure of the salt-sensitive variety ‘Maythorpe’ to gamma rays [10]. The generation
of ‘Golden Promise’ represented an important step towards the development of tissue culture and
barley transformation techniques (see below).

1.2. Early Studies and Milestones in Understanding of Chloroplast Biogenesis and Physiology in Barley

Genetic studies of barley have not been restricted to breeding programs. The plant has also
been used as a model species to dissect the molecular mechanisms that underlie plant development
and physiology and, for a large part of the 20th century, it served as a major experimental system
for the investigation of chloroplast biogenesis and photosynthesis. In particular, several studies
during the 1970s characterized different aspects of plastid structure and development, such as plastid
growth, replication and differentiation. Dark-grown barley seedlings were used to determine the
protochlorophyll content and structure of the etioplasts. Exposure to different light conditions
allowed chloroplast development to be characterised from both structural and biochemical points of
view [11–14].

The organization of chloroplast membranes was analysed in chloroplast preparations solubilised
with digitonin and fractionated by electrophoresis, proving the existence of distinct sets of
membranes [15]. The functionality and structural organization of thylakoids were also studied in barley
mutants altered in chlorophyll biosynthesis [16] and revealed the impact of such changes on thylakoid
membrane organization. For instance, the chlorina-f2 mutant, which is impaired in chlorophyll b
accumulation, led to the discovery of light-harvesting chlorophyll-binding proteins [17–20]. Chlorina-f2
was also used to assess the impact of protein-chlorophyll complexes on the ultrastructure of thylakoid
membranes, shedding light on the organisation of the photosynthetic apparatus [17,21]. In addition,
the tigrina-d mutant [22], originally suggested to be involved in the early steps of tetrapyrrole
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biosynthesis prior to ALA formation, was recently identified as the barley orthologue [23] of the
FLU gene of Arabidopsis thaliana, a nuclear-encoded, plastid-localized protein that plays a key role
in the negative-feedback control of chlorophyll biosynthesis, with an essential role during the
dark-to-light switch [24]. Moreover, the barley xantha mutants helped to elucidate key steps in
chlorophyll biosynthesis [25]: xantha-l was shown to code for a mutated form of Mg-protoporphyrin IX
monomethyl ester cyclase, while xantha-f, -g, and -h carry genetic lesions at three distinct loci encoding
the three Mg-chelatase subunits [26,27].

From a physiological point of view, Smith et al. [28] documented changes in chloroplast activity
during de-etiolation of barley seedlings by measuring the Hill reaction in relation to chlorophyll
accumulation. The correlation between plastid ultrastructure, chlorophyll synthesis and development
of photosynthetic activity was also evaluated by measuring O2 evolution [29].

Besides the characterization of the photosynthetic apparatus, barley played an important part in the
dissection of the chloroplast’s gene expression machinery. Indeed, evidence for a fully nuclear-encoded
transcriptional activity in plastids, later named the Nuclear-Encoded RNA Polymerase (NEP; [30]),
was first reported in barley, based on analysis of the albostrians mutant. In particular, the synthesis
of RNA was reported in the white sectors of albostrians leaves, which harbor plastids that are devoid
of ribosomes. These data provided initial evidence for the existence of a nuclear-encoded and
plastid-localized RNA polymerase [31]. In addition, ribosome-free plastids of albostrians were helpful
in distinguishing between the set of plastid genes preferentially transcribed by NEP, such as rRNA,
rpo and rps15, and the set transcribed by the Plastid-Encoded RNA polymerase (PEP), which is
enriched in photosynthesis-related genes such as psbA, rbcL, atpI-H [31,32]. Furthermore, the barley
albostrians mutant was essential to the initial detection of communication between organellar and
nuclear genomes. By analyzing albostrians, which is characterized by reduced amounts and/or activities
of nucleus-encoded chloroplast proteins including the small subunit of ribulose-1,5-bisphosphate
carboxylase⁄oxygenase (Rubisco), ferredoxin NADP+ reductase, and enzymes of the Calvin cycle,
Börner provided the first evidence for plastid signals that control nuclear gene expression, leading to
the discovery of chloroplast-to-nucleus retrograde communication [33–35].

2. Arabidopsis thaliana as the Model Plant of Modern Times

In the 1990s, crop models lost their dominant position in basic research on plants to Arabidopsis
thaliana, which has now reigned supreme for three decades. Its small size, short life cycle, ability
to produce thousands of seeds from a single plant and simple growth requirements were perfectly
compatible with lab facilities and research workflows. Moreover, its small diploid nuclear genome
(~135 Mb on 5 chromosomes) and the Agrobacterium tumefaciens-based transformation protocol made
Arabidopsis ideal for use in basic research [36]. The Arabidopsis Genome Project was initiated in
1990, and led to the publication of the first sequenced plant genome in 2000 [37]. This, together with
large collections of insertional mutants (SIGnAL, http://signal.salk.edu/cgi-bin/tdnaexpress), permitted
the functional characterization of large numbers of genes and biological processes, thus laying the
foundations for the modern age of plant biology.

Although Arabidopsis has been considered the “golden” model species in plant science, it does
have some limitations in terms of the extent to which lessons on development and physiology learnt
from this model species can be extrapolated to monocots, including barley. This is particularly true
for processes such as chloroplast biogenesis and photosynthesis. For instance, Arabidopsis does
not produce an overhead canopy, and therefore cannot be employed in studies of plant architecture
and optimization of photosynthesis under field conditions [38,39]. Moreover, the biogenesis of the
multisubunit photosynthetic complexes, and indeed the chloroplast more generally, appear to differ
significantly between monocotyledonous and dicotyledonous plants [40]. In monocots, the process of
chloroplast development from the proplastid to functional chloroplasts can be observed as a gradient
along the leaf blade, since leaves have a basal meristem and, as a consequence, the youngest cells
carrying proplastids are found at the leaf base, while the leaf tip consists of the oldest cells with
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mature chloroplasts [29,41,42]. In contrast, in dicots like Arabidopsis thaliana chloroplast development
varies between plant organs—i.e., between cotyledons and leaves—and with respect to the leaves,
most of the events take place inside the shoot apex, which constitutes a major limitation for functional
studies [43,44]. In light of these limitations, the widely accepted knowledge transfer route from
Arabidopsis to crops is not always the most convenient and effective strategy, especially in the era of
next-generation sequencing technologies and gene-editing approaches that make functional genomics
studies feasible in species with complex genomes.

3. The Genomes of Barley

3.1. The Nuclear Genome

For a long time, the absence of a reference genome has been the major obstacle to the exploitation
of barley genomic resources in both research and breeding programs. The relatively large size of
the barley genome (5.3 Gb), together with its high proportion of repetitive DNA (more than 80%),
has severely compromised the assembly of the whole-genome shotgun sequence and the generation
of a reference genome (Figure 1). However, in 2012 the International Barley Sequencing Consortium
circumvented these problems by integrating several different strategies. This involved coupling a
detailed physical map of the barley cv. ‘Morex’ (a US spring six-row malting barley) with high-density
genetic maps, superimposing deep short-read whole-genome shotgun assemblies, and annotating
the resulting linear genomic sequence with dense-coverage RNA-derived, i.e., full-length cDNA and
RNA-seq, data. This strategy allowed approximately 4 Gb (80%) of the genome to be delineated,
including more than 90% of the expressed genes, together with their physical distribution and patterns
of expression [45]. This partially ordered sequence assembly has since been substantially improved by
Mascher and collaborators [46] through the release of a map-based reference sequence of the barley
cv. ‘Morex’ genome that included the first comprehensively ordered assembly of the pericentromeric
regions. The final genome sequence covered 4.79 Gb (approximately 95% of the total genome size),
of which 4.54 Gb were assigned to precise chromosomal locations. Mapping of transcriptome data
and reference protein sequences from other plant species to the assembly identified 39,734 high-
and 41,949 low-confidence genes, representing 98% of the Morex gene complement. Furthermore,
homology-guided repeat annotation identified 3.7 Gb (80.8%) of the assembled sequence as derived
from transposable elements, most of which were present as truncated and degenerated copies, with
only 10% of mobile elements being intact and potentially active. A second improved version of the
barley cv. ‘Morex’ reference genome has recently been released [47]. This is based on the use of TRITEX,
an open-source computational workflow, whose output is available on the IPK Barley BLAST server
(https://webblast.ipk-gatersleben.de/barley_ibsc/, see Table 1). The need for an improved assembly
arose from large sequence gaps and local mis-assemblies present in the first reference sequence. A total
of 32,787 high- and 30,871 low-confidence gene models were annotated in the second version of the
barley genome. The smaller number of high-confidence gene models described in the second version
of the genome (32,787 vs 39,734) is certainly due to the more precise annotation process, making the
TRITEX-based assembly a greatly improved version of the reference genome. More recently, a reference
genome assembly for the barley cv. Golden Promise has been reported [48]. The assembled genome
of seven chromosomes comprising 4.13 Gb contains 95.2% of complete and single-copy genes and
will prove particularly useful for functional genomics studies, given that Golden Promise is the most
readily transformable barley genotype.

https://webblast.ipk-gatersleben.de/barley_ibsc/
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Figure 1. Overview of the genetic characteristics and genomics tools available for barley. These features,
together with its canopy architecture and developmental properties, make barley an optimal model for
chloroplast research.

Table 1. List of databases, genome browsers and bioinformatics tools available for barley
genome analyses.

Tool Description/Application URL Reference

BARLEX

The Barley Genome Explorer
permits visual inspection of BAC

overlaps, and comparisons of
BACs and provides useful

information on genes and markers

http://barlex.barleysequence.org [49]

EnsemblPlants

A genome browser that
incorporates genomic data from

diverse organisms, including
numerous plant species. It enables

users to compare genome-scale
datasets with the aid of a single

collection of interfaces

http://plants.ensembl.org [50]

IPK Barley BLAST
Server

Barley BLAST server for
genome-scale homology-based

searches
http://webblast.ipk-gatersleben.de/barley [51]

http://barlex.barleysequence.org
http://plants.ensembl.org
http://webblast.ipk-gatersleben.de/barley
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Table 1. Cont.

Tool Description/Application URL Reference

Golden Promise
Genome

GMAP and BLAST server for
barley (cv. Golden Promise)

genome comparisons, including
mapping of transcripts

https://ics.hutton.ac.uk/gmapper/ [48]

Gramene
Integrated data resource for

comparative functional genomics
in crops and model plant species

http://www.gramene.org [52]

PlantsDB

Provides data and information
resources for individual plant

species and a platform for
integrative and comparative plant

genome research.

http://pgsb.helmholtz-muenchen.de/plant/ [53]

BaRTv1.0

Barley Reference Transcript
Dataset provides access to 177,240

barley-expressed transcripts
covering 60,444 genes

https://ics.hutton.ac.uk/barleyrtd/ [54]

3.2. The Exomes

A broader knowledge of the genetic diversity of barley is an essential prerequisite for
the development of new varieties with increased yields and greater environmental robustness.
A comprehensive genotyping of germplasm based on exome sequencing currently offers the best route
to this goal. Sequencing of the coding DNA alone dramatically decreases the complexity of the task,
and reduces the computational effort and associated costs compared with whole-genome approaches.
This makes it highly suitable for crops like barley, which contain very high proportions of transposon
DNA [46]. The application of the exome approach to barley was initially reported in Mascher et al. [55],
and was first applied to examine the crop’s adaptive responses in an analysis of 267 geo-referenced
landraces and wild accessions [56]. This analysis combined exome capture and sequencing with field
trials, bioclimatic data and various statistical approaches to investigate the genomic signatures that
underlie barley’s adaptive responses to various environmental stresses. A total of 1,688,807 SNPs and
143,872 short InDels were identified in 59.5 Mb of genomic sequence. The study yielded a large pool of
genetic variation to be exploited in future breeding programs, as many of the SNPs identified were rare,
showing an overall allele frequency below 5% and being more highly represented in wild accessions.
A similar strategy based on exome capture sequencing [57] explored the genetics of barley adaptation
to multiple contrasting environments in 371 domesticated lines, comprising cultivars and landraces
of both two- and six-rowed types. The identification of 435,431 SNPs uncovered significant genetic
diversity—including a well-defined subset of spring-growth-habit barleys, made up of 111 cultivars
and 63 landraces—as well as revealing strong differentiation at specific chromosome positions between
two- and six-row barley lines, and high adaptation and heritability of phenotypes such as days to
heading, plant height, 1000-grain weight and awn length.

4. Barley Genetic Resources: Natural and Induced Genetic Diversity

4.1. Natural Genetic Diversity

Crop improvement through crossing of high-performance cultivars has resulted in the loss
of genetic diversity across cultivated genomes, a phenomenon known as the “domestication
bottleneck” [58]. Therefore, landraces and wild accessions of barley are a precious pristine source of
natural allelic variability that can be exploited in barley breeding programs, as has now been verified
by exome sequencing assays (see above). Over the years, several research institutes around the world
have collected barley accessions with the aim of preserving this genetic variability and making it
accessible to breeders through the adoption of advanced methods that are better able to discover, dissect
and deploy useful variations [46,59]. The major collections are maintained in institutions around the

https://ics.hutton.ac.uk/gmapper/
http://www.gramene.org
http://pgsb.helmholtz-muenchen.de/plant/
https://ics.hutton.ac.uk/barleyrtd/
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world, and the most representative are listed in Table 2. Among them, the ICARDA Collection hosts
222,704 barley accessions. Most of these are advanced materials, such as released cultivars and research
lines, while 22% are geo-referenced wild barley relatives and landraces. The International Barley
Core Collection (BCC) is a research collection that aims to represent the fullest possible range of the
extant diversity of wild and cultivated barley. About 1300 accessions are currently available. Of these,
some 300 varieties and landraces are held in the IPK Gatersleben Genebank. Of special relevance is
the WHEALBI collection (http://www.whealbi.eu/), which comprises 511 accessions. This source of
material represents a worldwide selection of barley’s genetic diversity, including landraces, cultivars
and progenitors. In particular, the WHEALBI panel includes accessions originating from a wide range
of locations covering key crop production regions in Europe, Africa, the Middle East and Asia. A subset
of 371 domesticated lines chosen from the entire WHEALBI germplasm has been subjected to exome
sequencing in order to correlate genomic and phenotypic data [57]. Various online platforms have
been developed to facilitate searches of germplasm collections and provide detailed information on
their origins and characteristics. Some of these are listed in Table 2.

Table 2. List of representative collections of natural variants of barley available at different institutions
worldwide, together with online platforms that provide information about barley genetic resources.

Collections of natural genetic diversity

Gene Bank Country URL

PGRC
Plant Gene Resources of Canada,

Saskatoon Research Centre, Agriculture
and Agri-Food Canada)

Canada https://pgrc.agr.gc.ca/index_e.html

NSGC
The National Small Grains Collection is
part of the National Plant Germplasm

System (NPGS) of the United States
Department of Agriculture - Agricultural

Research Service (USDA-ARS)

USA

https://www.ars.usda.gov/pacific-west-
area/aberdeen-id/small-grains-and-

potato-germplasm-research/docs/barley-
wheat-genetic-stocks-collections-1/

ICARDA
International Centre for Agricultural

Research in the Dry Areas
Global https://grs.icarda.org/

IPK
Leibniz Institute of Plant Genetics and

Crop Plant Research
Germany http://gbis.ipk-gatersleben.de

WHEALBI
WHEAt and barley Legacy for Breeding

Improvement
France http://wheat-urgi.versailles.inra.fr/

Projects/Achieved-projects/Whealbi

NORDGEN
Nordic Genetic Resources Centre Sweden https://www.nordgen.org/bgs/

GRU
Germplasm Resource Unit, John Innes

Centre
UK https://www.seedstor.ac.uk/

NARO
NIAS, National Institute of Agrobiological

Sciences
Japan https:

//www.gene.affrc.go.jp/databases_en.php

Online platforms for barley germplasm searches

Name Description URL

GENESIS

An online platform containing
information about plant genetic resources

for food and agriculture, conserved in
gene banks worldwide

https://www.genesys-pgr.org/

SINGER (The system-wide Information
Network for Genetic Resources)

An online catalogue of crop collections
together with their locations

https://www.gbif.org/dataset/85818aea-
f762-11e1-a439-00145eb45e9a

EURISCO (The European Search
Catalogue for Plant Genetic Resources)

Information on more than 2 million crop
plant accessions and their wild relatives,
preserved ex situ by almost 400 institutes

in Europe and beyond

https://www.ecpgr.cgiar.org/resources/
germplasm-databases/eurisco-catalogue/

http://www.whealbi.eu/
https://pgrc.agr.gc.ca/index_e.html
https://www.ars.usda.gov/pacific-west-area/aberdeen-id/small-grains-and-potato-germplasm-research/docs/barley-wheat-genetic-stocks-collections-1/
https://www.ars.usda.gov/pacific-west-area/aberdeen-id/small-grains-and-potato-germplasm-research/docs/barley-wheat-genetic-stocks-collections-1/
https://www.ars.usda.gov/pacific-west-area/aberdeen-id/small-grains-and-potato-germplasm-research/docs/barley-wheat-genetic-stocks-collections-1/
https://www.ars.usda.gov/pacific-west-area/aberdeen-id/small-grains-and-potato-germplasm-research/docs/barley-wheat-genetic-stocks-collections-1/
https://grs.icarda.org/
http://gbis.ipk-gatersleben.de
http://wheat-urgi.versailles.inra.fr/Projects/Achieved-projects/Whealbi
http://wheat-urgi.versailles.inra.fr/Projects/Achieved-projects/Whealbi
https://www.nordgen.org/bgs/
https://www.seedstor.ac.uk/
https://www.gene.affrc.go.jp/databases_en.php
https://www.gene.affrc.go.jp/databases_en.php
https://www.genesys-pgr.org/
https://www.gbif.org/dataset/85818aea-f762-11e1-a439-00145eb45e9a
https://www.gbif.org/dataset/85818aea-f762-11e1-a439-00145eb45e9a
https://www.ecpgr.cgiar.org/resources/germplasm-databases/eurisco-catalogue/
https://www.ecpgr.cgiar.org/resources/germplasm-databases/eurisco-catalogue/
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4.2. Induced Genetic Diversity: Random Chemical and Physical Mutagenesis

Besides natural genetic diversity, the availability of barley mutants is very important for
understanding gene functions and their links with phenotypical traits (Figure 1). As described
above (see Section 1.1), chemical and physical agents have been used to generate random mutagenized
barley populations by several research groups. A few of these populations, derived from diverse genetic
backgrounds, are listed in Table 3. Two large-scale EMS mutant populations from the cv. Optic, for
instance, have been developed [60] and comprise approximately 20,000 M2 plants. TILLMore, a sodium
azide-mutagenized population of cv. Morex, has also been created [61] and consists of 4906 M3 families.
More recently, the HorTILLUS (Hordeum—TILLING—University of Silesia) population, derived from
the spring barley cultivar Sebastian following treatment of seeds with two chemical mutagens (NaN3

and MNU) and consisting of more than 9600 M2 plants, was reported [62]. However, one limitation
of the available resources is that the parental cultivars used for mutant population development
are all recalcitrant to genetic transformation. Consequently, gene-specific complementation assays,
which are essential for phenotype-to-genotype association, are generally not possible. To mitigate this
drawback, a heavily mutagenized EMS population of cv. Golden Promise (the reference variety used
across the barley research community for genetic transformation and functional genomics) has been
developed [63]. This population permits direct complementation of candidate mutations, opening up
new possibilities for efficient functional genomics studies.

Table 3. List of representative barley mutant populations obtained by either chemical or physical
mutagenesis in different genetic backgrounds, i.e., cultivars.

Induced Mutant Populations

Cultivar Mutagen Reference

Optic EMS [60]

Barke EMS [64]

Morex NaN3 [61]

Lux NaN3 [65]

DH-930-36 MNU [66]

DH-930-36 Gamma rays [66]

Sebastian NaN3+MNU [62]

Golden Promise EMS [63]

During the last 15 years, mutagenized populations have emerged as a key resource for gene
discovery [67]. Using forward genetics approaches, many genes, especially those that confer
morphological or developmental phenotypes, have now been isolated [68–71]. In addition, Targeting
Induced Local Lesions in Genomes (TILLING; [72]) has become particularly powerful for gene validation
studies, and for exploring the roles of genes for which no obvious visual phenotype can be predicted,
i.e., the reverse genetics approach [73]. Moreover, the TILLING approach produces allelic series, which
are important for genes whose knock-out would be lethal, but also in cases where proteins/enzymes
with novel properties are needed. Identification of the DNA sequence changes responsible for
mutant phenotypes has been performed, so far, through heteroduplex analysis [74]. This involves
amplification of the gene of interest from a DNA pool, enzymatic cleavage of heteroduplexes formed
by allelic mismatches, and detection of the cleaved strands in polyacrylamide gels, followed by
sequencing for confirmation of the variation. However, with the advent of Next Generation Sequencing
(NGS) technologies and the availability of reference genomes, the use of exome capture sequencing
and/or pooled amplicon sequencing of multiple target genes appears to be more effective in the case
of barley [63,75]. Moreover, it is worth mentioning that these mutagenized barley plants are not
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considered as Genetically Modified (GM), and can be used in field trials to evaluate their performance,
even in countries in which the cultivation of GM organisms is forbidden.

4.3. Induced Genetic Diversity: Genome Transformation and Insertional Mutagenesis

The need for complete sequencing of the barley genome, the range of genetic diversity and the
numerous mutant populations all underline the importance of developing an efficient and versatile
transformation protocol for functional genomics studies. In barley, many types of explant tissues
have been used for tissue culture and plant regeneration, and immature embryos have proven to
be the most suitable for barley transformation. Immature embryos were first used as explants for
barley transformation in 1986 [76], and gradually became the most popular system. However, plant
regeneration from immature embryo-derived callus is influenced by genotype, with the highest rates
of success having been obtained in the cv. Golden Promise [77]. Up to now, a variety of DNA delivery
methods, which involve biological, chemical, mechanical and/or physical treatment, have proven
effective in barley. However, Agrobacterium-mediated transformation seems to be the best strategy, since
it is characterised by low cost, high efficiency, simple integration, stable inheritance and expression of
the transgene over generations. Indeed, the current transformation protocol integrates Agrobacterium
and immature embryos, yielding an average transformation efficiency of 25% [78]. This protocol is
widely used for overexpression, RNAi (RNA interference) applications and, more recently, CRISPR/Cas
9-mediated gene editing, as discussed below. Transgenic approaches have been employed to control
pathogens such as Barley Yellow Dwarf Virus (BYDV; [79]), Fusarium graminearum [80], leaf stripe
disease (Pyrenophora graminea; [81]), powdery mildew (Blumeria graminis f. sp. Hordei; [82]) and stem
rust (Puccinia graminis f. sp. Tritici; [83]). Moreover, the transgenic technology has also been used to
increase tolerance to environmental stresses, such as drought [84,85] and frost [86–88], and to modify
enzymes, such as α-amylase, β-amylase, β-glucanase and (1,3;1,4)-β-D-glucan endohydrolase [89–93],
which have an influence on the brewing process. The transgenic technology is also essential for
mutagenesis. In barley, insertional mutagenesis has been used to produce loss-of-function mutations
based on transposable elements such as the Ac/Ds-based tagging system [94–96], and gain-of-function
mutations using the activation tagging strategy that promotes or enhances, through random genomic
insertion, the expression of neighbouring regions [95]. However, unlike the case in Arabidopsis, no
large-scale T-DNA insertional populations are currently available for barley.

4.4. Induced Genetic Diversity: Gene Editing

The availability of the whole genome sequence, together with the recently developed gene-editing
strategies, makes targeted mutagenesis possible in barley [97]. Among the various customized
endonucleases used in plant research, the type II Clustered Regularly Interspaced Short Palindromic
repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system has proven to be the best tool for gene
editing [98]. The CRISPR/Cas9 gene-editing technology is easy to design and very precise. It requires
the synthesis of oligonucleotides which, once transcribed into RNA, guide the Cas9 enzyme to the
desired target. Being based on RNA–DNA interaction, the method is quite specific. The CRISPR/Cas9
technology can be used to create null alleles (i.e., gene knock-outs), and by adding a designed DNA
template to the CRISPR/Cas9 system, it is possible to replace the target sequence via the error-free
homology-directed repair pathway [99]. Furthermore, the system can be used to modulate gene
expression [100]. In the past few years, the CRISPR/Cas9 technique has been increasingly applied
to barley. In particular, a simple and efficient CRISPR/Cas9 platform for the induction of single and
multiple, heritable mutations has been introduced [101]. The CRISPR/Cas9 technique has also been
utilised to study genes involved in responses to pathogens, such as HvMORC1, whose protein product
is one of the seven MORC members encoded by the barley genome [102]. Knock-out alleles of HvCKX1
or HvCKX3, which are involved in the regulation of cytokinin metabolism and root morphology [103],
as well as mutants in the D-hordein gene, which participates in the control of grain size and grain
composition in barley [104], were also generated with the aid of CRISPR/Cas9.
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5. Barley is Ready for a New Age of Functional Genomics Studies and Genetic Improvements

With the aid of the recently acquired collection of functional genomics tools, in a large part
described above, the unique potential of barley as an ideal system for functional genomics studies can
now be fully exploited. These new methods can elucidate, for instance, the molecular mechanisms
behind chloroplast-to-nucleus communication, which is essential for chloroplast biogenesis and leaf
emergence, leaf senescence and adaptation to environmental stresses. They can also be used to test—in
an established crop plant—strategies intended to increase photosynthesis efficiency and biomass
production, which have been shown to work in model species (Figure 2).
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5.1. Plastid-to-Nucleus Retrograde Signalling

The chloroplast genome in barley encodes only 78 of the 3000 proteins that compose the plastid
proteome [105,106]. The rest now reside in the nuclear DNA. Hence, signalling pathways that allow
plastid and nuclear genomes to communicate with each other are essential for proper chloroplast
development and functionality. The plastid-to-nucleus component of this circuit is often referred as
“retrograde signalling” and it was first discovered in the barley mutant albostrians (see Section 1.2),
which lacks plastid ribosomes and, concomitantly, shows reduced amounts and/or activities of
nuclear-encoded plastidic proteins [33–35]. This channel is used to keep the nucleus informed of
the developmental state of plastids (known as biogenic control), but it also signals changes in the
functional status of fully developed chloroplasts in response to environmental factors, a process
termed operational control [107]. Thus, chloroplast-to-nucleus communication is vital for chloroplast
biogenesis and leaf emergence, as well as for the transition from chloroplast to gerontoplast during leaf
senescence. Since the modulation of early leaf emergence and leaf senescence extends the proportion
of the photosynthetically active radiation (PAR) that is intercepted by the crop over the growing season
(the interception efficiency), both aspects of this communication are likely to be important determinants
of crop yield. In addition, leaf senescence is a central process in maximising the efficiency of nutrient
use, i.e., the ability of the plant to mobilise and translocate nutrients from leaves to grains. This is
particularly true for small-grained cereals like barley, where up to 90% of the nitrogen is mobilised to
the grains, mainly from the photosynthetic apparatus present in the leaves, and including Rubisco.

During the last 15 years, studies performed mainly in Arabidopsis thaliana have revealed a
complex network of signals that allows chloroplasts to communicate their functional status to the
nucleus. Singlet oxygen [108], H2O2 [109], the redox state of the photosynthetic electron transport
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chain [110], 3′-phosphoadenosine 5′-phosphate [111], the isoprenoid precursor methylerythritol
cyclodiphosphate [112], β-cyclocitral [113,114] and other potential candidates [115–119] have been
added to the list of operational control signals [107]. Understanding the degree to which these
pathways are operative in monocot species like barley, together with a deeper knowledge of the
regulatory, biochemical and redox networks that control the stability, functionality and disassembly of
the photosynthetic apparatus under stress conditions and during induced senescence is pivotal for the
identification of novel genes and favourable allelic variants for use in breeding programs.

Chloroplast biogenesis during leaf emergence is initiated upon light perception and is also
dependent on plastid retrograde signals. Over the past two decades, many publications have explored
the role of plastid gene expression and tetrapyrrole biosynthesis as sources of biogenic signals.
This system is disrupted in ‘genomes uncoupled’ mutants (gun; [120]). Five of the six GUN proteins
(GUN2-6) are enzymes of the tetrapyrrole biosynthesis pathway and control the branched pathways
downstream of Protoporphyrin IX (for a review see [121]). GUN1, however, does not take part
in tetrapyrrole biosynthesis, but is required for the generation of retrograde signals triggered by
the accumulation of tetrapyrrole precursors and inhibition of plastid gene expression (PGE) [122].
More recently, GUN1 has been reported to play a prominent role in the maintenance of chloroplast
protein homeostasis by modulating plastid protein synthesis through its interaction with the plastid
ribosomal protein S1 [123], and to control the activity of the plastid protein import machinery [124,125],
suggesting that unimported preproteins in the cytosol could act as messenger molecules. Although most
of the information on biogenic retrograde signalling has been obtained in Arabidopsis, the barley
mutant albostrians has proved to be a valuable system for studying the regulation of tetrapyrrole
biosynthesis and the involvement of these compounds in communication between plastids and the
nucleus. Due to the lack of plastid-encoded proteins in this mutant, low levels of tRNAGlu, which serves
as a substrate activator in tetrapyrrole biosynthesis, are observed in bleached albostrians leaves, and this
might be one reason for the much lower chlorophyll content in albostrians plastids [126–128]. In the
mutant, the common precursors of all tetrapyrroles are channelled in the direction of heme synthesis,
while the formation of chlorophylls is repressed [127]. This, in turn, suggests that excess heme might
leave the chloroplast and act as a signalling molecule, as has been observed in Arabidopsis [129].
Recently, the mutation responsible for the albostrians phenotype has been identified. It lies in the
barley gene HvCMF7, which codes for a putative plastid protein that belongs to the CCT motif family
(CMF), which includes CONSTANS, CO-like and TOC1 [130]. This gene is likely to play a crucial
role in plastid ribosome formation during early embryo development and hence for chloroplast
development. The identification of the gene defect that causes the albostrians phenotype represents
a major step forward in the understanding of the molecular mechanisms that mediate chloroplast
biogenesis in barley. In this context, it would be interesting to determine whether a GUN1-like protein
exists in barley. Furthermore, the gradient in chloroplast biogenesis observed in the barley leaf blade
provides access to leaf sectors that contain cells of the same developmental stage, which facilitates
the use of RNA-seq and proteomics approaches to investigate the molecular network at the basis of
proplastid-to-chloroplast differentiation.

5.2. Photosynthesis and Yield

Doubling agricultural production by 2050 is essential if the demands of a constantly growing
population for food and biomass are to be satisfied. Among cereals, barley straw is characterised by the
highest content of carbohydrates [131]. Barley is therefore an ideal feedstock for the bio-based economy,
since it can be used for the production of food/feed/spirits from grains, and renewable resources,
including biofuel, from straw. It is worth mentioning here that none of the huge improvements in
agricultural production made during the ‘Green Revolution’ were directly related to manipulations
of photosynthesis. Hence, the process remains an unexplored target with a high potential for crop
improvement. Indeed, the theoretical maximum efficiency of the conversion of solar energy into
biomass in a C3 crop like barley is around 4.6% and this value decreases to 2.4% under field conditions
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across the entire growing season. Therefore, the conversion efficiency of visible solar energy is
considerably below its theoretical maximum, and several promising targets for its improvement have
been identified in model species, some of which are described below (Figure 2 and Table 4).

5.3. Optimization of Antenna Size in Crop Canopies

One of the main reasons for the lower conversion efficiency of solar radiation is the saturation of
the photosynthetic machinery with light. Indeed, it has been demonstrated that the photosynthetic
apparatus operates with near maximum efficiency when light levels are low. For instance,
the photosynthetic process in a C3 plant is already saturated at approximately 25% of maximum
sunlight [153]. As light absorption increases, photosynthetic efficiency declines. In fact, the antennal
apparatus of photosystems is larger than optimal, since under competitive natural conditions,
shading of neighbouring plants confers an important selective advantage on the upper storey [154].
However, this behaviour is clearly disadvantageous for cultivated crops. Reducing the size of the
antenna systems in the leaves of the upper canopy can offer important advantages, saving the metabolic
resources required for the production of the antenna complex and the activity of photoprotective
mechanisms, while increasing the amount and quality of light able to reach the lower leaves [155].
Several studies have provided evidence that the reduction of antenna size can improve photosynthetic
efficiency. For instance, cell suspensions of Synechocystis PCC6714 and Chlorella pyrenoidosa with
reduced contents of light-harvesting pigments showed a photosynthetic activity 20–30% higher than
the wild type [156]. An engineered Chlamydomonas reinhardtii strain with a small PSII antenna size
exhibited about a 50% increase in photosynthetic efficiency under saturating levels of light [157]. In the
same alga, a partial reduction in chlorophyll b levels resulted in a two-fold increase in photosynthetic
rate at high light intensities [158]. The hypothesis that a constitutively smaller antenna size should
improve canopy photosynthetic efficiency by minimizing the over-absorption of the incident sunlight,
and improving canopy light penetration, has also been tested in higher plants. A decrease in antenna
size in tobacco, for instance, led to an increase of about 25% in plant–canopy biomass accumulation
under high-density cultivation conditions [39]. Similarly, beneficial effects were observed in a rice
genotype with pale green leaves cultivated under high light conditions [132].

5.4. Increased Photosynthetic Electron Transport

The modification of the thylakoid electron transport chain has also been reported to contribute to the
improvement of photosynthetic performance and biomass accumulation. For instance, Chida et al. [133]
showed that the expression of the algal Porphyra yezoensis cytochrome c6 in the chloroplasts of
Arabidopsis led to an increase of CO2 assimilation, and biomass production [133]. The overexpression
of cytochrome c6 from Ulva fasciata in tobacco gave similar results [134]. Moreover, overexpression of
plastocyanin in Arabidopsis resulted in 1.6-fold increase in leaf area [135]. A large increase in biomass
and seed yield was also obtained in Arabidopsis upon overexpression of its endogenous Rieske FeS
protein, a subunit of the cytochrome b6/f [136].
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Table 4. Brief summary of biotechnological strategies that are being employed for photosynthesis improvement in barley.

Target Efficiency Gain Strategy Outcome References

Retrograde signalling

1. Investigating the existence of a
GUN1-dependent retrograde
signalling pathway in barley

Not expected
Knock-out of the

HORVU.MOREX.r2.5HG0366860.1 gene
through gene editing

Molecular details of the retrograde
signalling pathway involved in

chloroplast biogenesis with possible
repercussions for the control of leaf

life-cycle

[122]

Light phase of photosynthesis

1. Optimisation of the antenna size 20–50%

Reduction of photosystem antenna size
obtained by either reducing chlorophyll
production or decreasing levels of the
photosystem antenna proteins by gene

editing or introgression of induced
mutations. Identification of allelic variants

by allele mining and TILLING.

More uniform photosynthetic
performance throughout the crop canopy

and prevention of photo-oxidative
damage in the upper layers of the canopy.
Increases in land–surface reflectivity to

offset greenhouse gas warming.

[39,132]

2. Increased photosynthetic electron
transport 30–70%

Increased accumulation of electron carriers,
such as cytochrome c6, plastocyanin and

Rieske proteins, by transgenic approaches.
Identification of allelic variants by allele

mining and TILLING.

Increased electron transport rate through
the thylakoid membranes [133–136]

3. Fine-Tuning of NPQ 30%

Increased accumulation of VDE, ZEP and
PsbS by transgenic approaches.

Identification of allelic variants by allele
mining and TILLING.

More rapid induction and relaxation of
heat dissipation at PSII. [137]

Dark phase of photosynthesis

1. Increasing the abundance of
different enzymes of the

Calvin–Benson cycle
>30%

Increased accumulation of SBPase and FBPA
enzymes by transgenic approaches.

Identification of allelic variants by allele
mining and TILLING.

Optimization of ribulose
1,5-bisphosphate (RuBP) regeneration. [138–142]

2. Increasing the efficiency of light
activation of Calvin–Benson enzymes >20%

Increased accumulation of Rubisco activase,
TRX f and NTRC by transgenic approaches.

Identification of allelic variants by allele
mining and TILLING.

More efficient light-dependent activation
of Calvin–Benson enzyme optimises CO2

fixation.
[143–147]

Photorespiration

1. Increasing the photorespiration
flow of intermediates >15% Increased accumulation of H- and L-proteins

by transgenic approaches.

Reduced accumulation of
photorespiration intermediates and

increased CO2 assimilation rate
[148–150]

2. Synthetic bypasses to
photorespiration >20%

Introduction of natural and synthetic
glycolate catabolic pathways in the

chloroplast
Increased CO2 assimilation rates [151,152]
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5.5. Improving the Adaptation to Fluctuating Light: Dissipation of Excess Energy through
Non-Photochemical Quenching

Non-Photochemical Quenching (NPQ) serves as photoprotective mechanism in leaves, and is
responsible for the dissipation of excess absorbed light energy as heat, thus preventing oxidative damage.
Dissipation takes place in photosystem II (PSII) and involves the enzymes violaxanthin de-epoxidase
(VDE) and zeaxanthin epoxidase (ZEP) [159], together with PsbS, a PSII protein subunit [160].
Activation and relaxation of NPQ take place over timescales of seconds to minutes, which are rather
slow with respect to the instantaneous changes in light intensities observable within plant canopies
in field settings. This leads to loss of photosynthetic efficiency, as heat dissipation continues even
when light does not exceed the photosynthetic capacity [161]. Recently, the overexpression of PsbS,
ZEP and VDE genes was reported in tobacco plants. These plants displayed an improved kinetics
of NPQ, resulting in about 20% increase in biomass accumulation under both greenhouse and field
conditions [137].

5.6. Transgenic Manipulation of the Calvin–Benson Cycle

Attempts to improve photosynthetic efficiency through transgenic manipulations have also
focused on the overexpression of single enzymes of the Calvin–Benson cycle (Table 4). For example,
overexpression of sedoheptulose-1,7-bisphosphatase (SBPase) in Arabidopsis [139], tobacco [138,140]
and tomato [141] has shown that an increased SBPase activity results in a 30-40% increase in biomass
yield, depending on the species. More recently it was shown that significant increases in photosynthetic
rates, biomass and grain yield can be achieved by augmenting SBPase activity in wheat [162]. In 2012,
the overexpression of the fructose 1,6-bisphosphate aldolase (FBPA) enzyme in tobacco also resulted in
an increase in biomass production of 10-30% [142]. Overall, these findings demonstrated that SBPase
and FBPA are enzymes that can exert control over the flow of carbon in the Calvin–Benson cycle in
a number of different species, and proved that their manipulation also benefits grain yield. Efforts
to increase the light activation rate of the Calvin–Benson cycle have also yielded very promising
results. For instance, the overexpression of maize Rubisco activase in rice increased the rate of Rubisco
activation by light and at high temperature (40 ◦C; [143]). Increased levels of thioredoxin f (TRX f ),
which is known to reductively activate enzymes of the Calvin–Benson cycle, have also increased leaf
weight and sugar content under both ambient and increased CO2 conditions [144,145]. Overexpression
of the chloroplast NADPH-dependent thioredoxin reductase (NTRC), also reported to interact with
several Calvin–Benson enzymes, has also been shown to be beneficial for productivity in Arabidopsis.
Indeed, the biomass increases in the NTRC-overexpressing Arabidopsis plants were between 2- and
2.5-fold in plants grown under long- and short-day conditions, respectively, at fluence levels of
600 µmol m−2 s−1 light [146,147]. Additionally, overexpression of NTRC has been reported to enhance
tolerance to oxidative and drought stresses. These are traits of great significance for improvement of
crop productivity under field conditions [163].

5.7. Photorespiration and Photorespiratory Bypasses

Photorespiration is also an important target to improve photosynthesis. For instance, the reversible
conversion of glycine into serine that takes place in mitochondria is crucial for plants [164–169].
These reactions involve the pyridoxal phosphate-dependent enzyme glycine decarboxylase (P-protein),
the THF-dependent enzyme aminomethyltransferase (T-protein), the NAD+-dependent enzyme
dihydrolipoyl dehydrogenase (L-protein) and the lipoic acid-containing H-protein. In Arabidopsis,
overexpression of the H- or L-protein resulted in an improvement in photosynthetic efficiency and
larger biomass accumulation [148,149]. Similar results were also obtained with the mesophyll-specific
overexpression of the H-protein in tobacco [150]. Besides increasing photorespiration flow and
reducing accumulation of photorespiratory intermediates, the most promising strategies for enhancing
productivity are based on photorespiratory bypasses, i.e., the introduction of alternative pathways
to metabolize 2PG, thus liberating CO2 in the chloroplast stroma for Rubisco fixation [151,152].
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In particular, Kebeish et al. introduced the Escherichia coli glycolate catabolic pathway into Arabidopsis.
In these transgenic plants, the glycolate derived from the dephosphorylation of 2-phosphoglycolate
was converted into glycerate in the chloroplast without the release of ammonia, which can make
nitrogen use more efficient. Moreover, CO2 release was shifted from mitochondria to chloroplasts,
based on the idea that CO2 should have a better chance to be re-fixed by Rubisco if it is released in
the chloroplast rather than in the mitochondria. As a result of the increased concentration of CO2 in
the chloroplasts and the reduced energy demand for photorespiration, transgenic plants grew faster
and produced more biomass, indicating that the bypass effectively reduced photorespiration and
enhanced photosynthesis. Inspired by this work, another group [152] introduced synthetic glycolate
metabolic pathways that are more efficient than the endogenous pathway into tobacco chloroplasts.
Flux through the synthetic pathways was maximized by inhibiting glycolate export from the chloroplast.
These synthetic pathways were able to improve photosynthetic quantum yield by 20% and biomass
productivity by >40% in replicated field trials.

It is reasonable to expect that the various transgenic approaches described above will result
in increased photosynthetic quantum yield, biomass and, eventually, grain yield also in barley,
although species-dependent effects were observed in the multigene manipulation of the Calvin–Benson
cycle [138,139]. In addition to that, the large genetic diversity readily available in barley also allows the
exploitation of natural and/or induced allelic variants of enzymes involved in defining the antenna size
of photosystems, in thylakoid electron transport, NPQ, the Calvin–Benson cycle, and photorespiration,
which could ameliorate barley yield (Table 4). These allelic variants can be identified either by
allele mining of exome sequences of barley cultivars, landraces and wild varieties (see Table 2),
or through TILLING of mutant populations (Table 3). As mentioned above, the latter approaches
enable one to obtain new barley varieties by using the classical breeding approach based on crosses.
Thus, the performance of the new varieties can be verified under field conditions and they could be
grown even in countries that have banned the cultivation of genetically modified plants.

6. Conclusions

Its genetic diversity and the availability of a large collection of molecular tools make barley an
ideal model crop for functional genomics studies related to chloroplast biogenesis and retrograde
communication. Such studies will reveal to what extent retrograde signalling mechanisms are
conserved between Arabidopsis and barley, and permit us to learn more about aspects of chloroplast
biogenesis that are specific to monocots. The recent identification of the genetic factor responsible for
the albostrians phenotype demonstrates that this type of analysis can now be effectively conducted
in barley. The fact that the gene concerned, HvCMF7, encodes a protein that is apparently located
exclusively in plastids highlights the need for systematic investigation of barley mutants with defects in
chloroplast biogenesis. Furthermore, novel approaches to the screening of barley mutant populations
are required to elucidate the molecular details of the chloroplast-to-nucleus communication. The genes
and allelic variants identified in future studies could have an important impact in breeding programs,
since retrograde communication controls the leaf life cycle.

Barley can also make a significant contribution to the testing of novel biotechnological strategies
for improving photosynthesis, and the validation of their effects on biomass accumulation and grain
yield. In recent decades, our knowledge of the photosynthetic process has increased substantially,
and improvements in its efficiency have been demonstrated in different model species. The high
level of conservation of the photosynthetic process strongly argues that similar enhancements can be
achieved in barley. Thanks to the high content of sugars in the straw, barley could be transformed
into a dual-purpose crop suitable for the production of biofuel from the straw, and food, feed and
spirits from the grain. Furthermore, the use of barley varieties characterised by high photosynthetic
efficiency and reduced antenna size of photosystems is a promising strategy for boosting productivity
and water use efficiency, while increasing land–surface reflectivity to offset greenhouse gas warming.
In light of the foreseeable rise in the demand for food by the middle of this century, and the fact that
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the development and commercialization of a new plant variety with improved quality takes 10 to
15 years, concerted efforts to increase agricultural yields through manipulation of photosynthesis must
be initiated immediately. The “redesign” of photosynthesis must represent one of the main pillars of
the next “Green Revolution”.
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101. Gasparis, S.; Kała, M.; Przyborowski, M.; Łyżnik, L.A.; Orczyk, W.; Nadolska-Orczyk, A. A simple and
efficient CRISPR/Cas9 platform for induction of single and multiple, heritable mutations in barley (Hordeum
vulgare L.). Plant Methods 2018, 14, 111. [CrossRef]

102. Kumar, N.; Galli, M.; Ordon, J.; Stuttmann, J.; Kogel, K.H.; Imani, J. Further analysis of barley MORC1 using
a highly efficient RNA-guided Cas9 gene-editing system. Plant Biotechnol. J. 2018, 16, 1892–1903. [CrossRef]

103. Gasparis, S.; Przyborowski, M.; Kała, M.; Nadolska-Orczyk, A. Knockout of the HvCKX1 or HvCKX3 Gene in
Barley (Hordeum vulgare L.) by RNA-Guided Cas9 Nuclease Affects the Regulation of Cytokinin Metabolism
and Root Morphology. Cells 2019, 8, 782. [CrossRef]

104. Yang, Q.; Zhong, X.; Li, Q.; Lan, J.; Tang, H.; Qi, P.; Ma, J.; Wang, J.; Chen, G.; Pu, Z.; et al. Mutation
of the D-hordein gene by RNA-guided Cas9 targeted editing reducing the grain size and changing grain
compositions in barley. Food Chem. 2020, 311, 125892. [CrossRef] [PubMed]

105. Saski, C.; Tomkins, J.; Lee, S.-B.; Daniell, H.; Fjellheim, S.; Rognli, O.A.; Guda, C.; Jansen, R.K.; Luo, H.;
Clarke, J.L. Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis
stolonifera, and comparative analyses with other grass genomes. Theor. Appl. Genet. 2007, 115, 571–590.
[CrossRef] [PubMed]

106. Petersen, J.; Rogowska-Wrzesinska, A.; Jensen, O.N. Functional proteomics of barley and barley
chloroplasts-strategies, methods and perspectives. Front. Plant Sci. 2013, 4, 52. [CrossRef] [PubMed]

107. Pogson, B.J.; Woo, N.S.; Förster, B.; Small, I.D. Plastid signalling to the nucleus and beyond. Trends Plant Sci.
2008, 3, 602–609. [CrossRef]

108. Wagner, D.; Przybyla, D.; Op Den Camp, R.; Kim, C.; Landgraf, F.; Keun, P.L.; Würsch, M.; Laloi, C.; Nater, M.;
Hideg, E.; et al. The genetic basis of singlet oxygen-induced stress response of Arabidopsis thaliana. Science
2004, 306, 1183–1185. [CrossRef]

109. Maruta, T.; Noshi, M.; Tanouchi, A.; Tamoi, M.; Yabuta, Y.; Yoshimura, K.; Ishikawa, T.; Shigeoka, S.
H2O2-triggered retrograde signaling from chloroplasts to nucleus plays specific role in response to stress. J.
Biol. Chem. 2012, 287, 11717–11729. [CrossRef]

110. Pfalz, J.; Liebers, M.; Hirth, M.; Grübler, B.; Holtzegel, U.; Schröter, Y.; Dietzel, L.; Pfannschmidt, T.
Environmental control of plant nuclear gene expression by chloroplast redox signals. Front. Plant Sci. 2012,
3, 257. [CrossRef]

111. Estavillo, G.M.; Crisp, P.A.; Pornsiriwong, W.; Wirtz, M.; Collinge, D.; Carrie, C.; Giraud, E.; Whelan, J.;
David, P.; Javot, H.; et al. Evidence for a SAL1-PAP chloroplast retrograde pathway that functions in drought
and high light signaling in Arabidopsis. Plant Cell 2011, 23, 3992–4012. [CrossRef]

112. Xiao, Y.; Savchenko, T.; Baidoo, E.E.K.; Chehab, W.E.; Hayden, D.M.; Tolstikov, V.; Corwin, J.A.;
Kliebenstein, D.J.; Keasling, J.D.; Dehesh, K. Retrograde signaling by the plastidial metabolite MEcPP
regulates expression of nuclear stress-response genes. Cell 2012, 149, 1525–1535. [CrossRef]

113. Ramel, F.; Birtic, S.; Ginies, C.; Soubigou-Taconnat, L.; Triantaphylidès, C.; Havaux, M. Carotenoid oxidation
products are stress signals that mediate gene responses to singlet oxygen in plants. Proc. Natl. Acad. Sci.
USA 2012, 109, 5535–5540. [CrossRef]

114. D’Alessandro, S.; Havaux, M. Sensing β-carotene oxidation in photosystem II to master plant stress tolerance.
New Phytol. 2019, 223, 1776–1783. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s11103-007-9157-8
http://www.ncbi.nlm.nih.gov/pubmed/17429742
http://dx.doi.org/10.1186/1471-2164-10-55
http://www.ncbi.nlm.nih.gov/pubmed/19178688
http://dx.doi.org/10.1007/s00299-017-2125-0
http://www.ncbi.nlm.nih.gov/pubmed/28289885
http://dx.doi.org/10.1126/science.1225829
http://dx.doi.org/10.1186/s13059-015-0826-7
http://dx.doi.org/10.1007/s11103-017-0640-6
http://dx.doi.org/10.1186/s13007-018-0382-8
http://dx.doi.org/10.1111/pbi.12924
http://dx.doi.org/10.3390/cells8080782
http://dx.doi.org/10.1016/j.foodchem.2019.125892
http://www.ncbi.nlm.nih.gov/pubmed/31791724
http://dx.doi.org/10.1007/s00122-007-0567-4
http://www.ncbi.nlm.nih.gov/pubmed/17534593
http://dx.doi.org/10.3389/fpls.2013.00052
http://www.ncbi.nlm.nih.gov/pubmed/23515231
http://dx.doi.org/10.1016/j.tplants.2008.08.008
http://dx.doi.org/10.1126/science.1103178
http://dx.doi.org/10.1074/jbc.M111.292847
http://dx.doi.org/10.3389/fpls.2012.00257
http://dx.doi.org/10.1105/tpc.111.091033
http://dx.doi.org/10.1016/j.cell.2012.04.038
http://dx.doi.org/10.1073/pnas.1115982109
http://dx.doi.org/10.1111/nph.15924
http://www.ncbi.nlm.nih.gov/pubmed/31090944


Plants 2020, 9, 803 22 of 24

115. Chi, W.; Feng, P.; Ma, J.; Zhang, L. Metabolites and chloroplast retrograde signaling. Curr. Opin. Plant Biol.
2015, 25, 32–38. [CrossRef] [PubMed]

116. Tian, L. Recent advances in understanding carotenoid-derived signaling molecules in regulating plant
growth and development. Front. Plant Sci. 2015, 6, 790. [CrossRef] [PubMed]

117. Chan, K.X.; Phua, S.Y.; Crisp, P.; McQuinn, R.; Pogson, B.J. Learning the Languages of the Chloroplast:
Retrograde Signaling and Beyond. Annu. Rev. Plant Biol. 2016, 67, 25–53. [CrossRef] [PubMed]

118. Kleine, T.; Leister, D. Retrograde signaling: Organelles go networking. Biochim. Biophys. Acta Bioenerg. 2016,
1857, 1313–1325. [CrossRef] [PubMed]

119. de Souza, A.; Wang, J.-Z.; Dehesh, K. Retrograde Signals: Integrators of Interorganellar Communication and
Orchestrators of Plant Development. Annu. Rev. Plant Biol. 2017, 68, 85–108. [CrossRef]

120. Susek, R.E.; Ausubel, F.M.; Chory, J. Signal transduction mutants of arabidopsis uncouple nuclear CAB and
RBCS gene expression from chloroplast development. Cell 1993, 74, 787–799. [CrossRef]

121. Larkin, R.M.; Stefano, G.; Ruckle, M.E.; Stavoe, A.K.; Sinkler, C.A.; Brandizzi, F.; Malmstrom, C.M.;
Osteryoung, K.W.; Chory, J. REDUCED CHLOROPLAST COVERAGE genes from Arabidopsis thaliana help
to establish the size of the chloroplast compartment. Proc. Natl. Acad. Sci. USA 2016, 113, E1116–E1125.
[CrossRef]

122. Koussevitzky, S.; Nott, A.; Mockler, T.C.; Hong, F.; Sachetto-Martins, G.; Surpin, M.; Lim, J.; Mittler, R.;
Chory, J. Signals from Chloroplasts Converge to Regulate Nuclear Gene Expression. Science 2007, 316,
715–719. [CrossRef]

123. Tadini, L.; Pesaresi, P.; Kleine, T.; Rossi, F.; Guljamow, A.; Sommer, F.; Mühlhaus, T.; Schroda, M.; Masiero, S.;
Pribil, M.; et al. Gun1 controls accumulation of the plastid ribosomal protein S1 at the protein level
and interacts with proteins involved in plastid protein homeostasis. Plant Physiol. 2016, 170, 1817–1830.
[CrossRef]

124. Tadini, L.; Peracchio, C.; Trotta, A.; Colombo, M.; Mancini, I.; Jeran, N.; Costa, A.; Faoro, F.; Marsoni, M.;
Vannini, C.; et al. GUN1 influences the accumulation of NEP-dependent transcripts and chloroplast protein
import in Arabidopsis cotyledons upon perturbation of chloroplast protein homeostasis. Plant J. 2020, 101,
1198–1220. [CrossRef]

125. Wu, G.Z.; Meyer, E.H.; Richter, A.S.; Schuster, M.; Ling, Q.; Schöttler, M.A.; Walther, D.; Zoschke, R.;
Grimm, B.; Jarvis, R.P.; et al. Control of retrograde signalling by protein import and cytosolic folding stress.
Nat. Plants 2019, 5, 525–538. [CrossRef] [PubMed]

126. Börner, T.; Meister, A. Chlorophyll and carotenoid content of ribosome-deficient plastids. Photosynthetica
1980, 14, 589–593.

127. Yaronskaya, E.; Ziemann, V.; Walter, G.; Averina, N.; Börner, T.; Grimm, B. Metabolic control of the tetrapyrrole
biosynthetic pathway for porphyrin distribution in the barley mutant albostrians. Plant J. 2003, 35, 512–522.
[CrossRef] [PubMed]

128. Feierabend, J.; Mikus, M. Occurrence of a High Temperature Sensitivity of Chloroplast Ribosome Formation
in Several Higher Plants. Plant Physiol. 1977, 59, 863–867. [CrossRef]

129. Woodson, J.D.; Perez-Ruiz, J.M.; Chory, J. Heme synthesis by plastid ferrochelatase i regulates nuclear gene
expression in plants. Curr. Biol. 2011, 21, 897–903. [CrossRef]

130. Li, M.; Hensel, G.; Mascher, M.; Melzer, M.; Budhagatapalli, N.; Rutten, T.; Himmelbach, A.; Beier, S.;
Korzun, V.; Kumlehn, J.; et al. Leaf variegation and impaired chloroplast development caused by a truncated
CCT domain gene in albostrians barley. Plant Cell 2019, 31, 1430–1445. [CrossRef]

131. Kim, S.; Dale, B.E. Global potential bioethanol production from wasted crops and crop residues. Biomass
Bioenergy 2004, 26, 361–375. [CrossRef]

132. Gu, J.; Zhou, Z.; Li, Z.; Chen, Y.; Wang, Z.; Zhang, H.; Yang, J. Photosynthetic properties and potentials for
improvement of photosynthesis in pale green leaf rice under high light conditions. Front. Plant Sci. 2017, 8,
1082. [CrossRef]

133. Chida, H.; Nakazawa, A.; Akazaki, H.; Hirano, T.; Suruga, K.; Ogawa, M.; Satoh, T.; Kadokura, K.; Yamada, S.;
Hakamata, W.; et al. Expression of the algal cytochrome c6 gene in Arabidopsis enhances photosynthesis
and growth. Plant Cell Physiol. 2007, 48, 948–957. [CrossRef]

134. Yadav, S.K.; Khatri, K.; Rathore, M.S.; Jha, B. Introgression of UfCyt c 6, a thylakoid lumen protein from a
green seaweed Ulva fasciata Delile enhanced photosynthesis and growth in tobacco. Mol. Biol. Rep. 2018, 45,
1745–1758. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.pbi.2015.04.006
http://www.ncbi.nlm.nih.gov/pubmed/25912815
http://dx.doi.org/10.3389/fpls.2015.00790
http://www.ncbi.nlm.nih.gov/pubmed/26442092
http://dx.doi.org/10.1146/annurev-arplant-043015-111854
http://www.ncbi.nlm.nih.gov/pubmed/26735063
http://dx.doi.org/10.1016/j.bbabio.2016.03.017
http://www.ncbi.nlm.nih.gov/pubmed/26997501
http://dx.doi.org/10.1146/annurev-arplant-042916-041007
http://dx.doi.org/10.1016/0092-8674(93)90459-4
http://dx.doi.org/10.1073/pnas.1515741113
http://dx.doi.org/10.1126/science.1140516
http://dx.doi.org/10.1104/pp.15.02033
http://dx.doi.org/10.1111/tpj.14585
http://dx.doi.org/10.1038/s41477-019-0415-y
http://www.ncbi.nlm.nih.gov/pubmed/31061535
http://dx.doi.org/10.1046/j.1365-313X.2003.01825.x
http://www.ncbi.nlm.nih.gov/pubmed/12904213
http://dx.doi.org/10.1104/pp.59.5.863
http://dx.doi.org/10.1016/j.cub.2011.04.004
http://dx.doi.org/10.1105/tpc.19.00132
http://dx.doi.org/10.1016/j.biombioe.2003.08.002
http://dx.doi.org/10.3389/fpls.2017.01082
http://dx.doi.org/10.1093/pcp/pcm064
http://dx.doi.org/10.1007/s11033-018-4318-1
http://www.ncbi.nlm.nih.gov/pubmed/30159639


Plants 2020, 9, 803 23 of 24

135. Pesaresi, P.; Hertle, A.; Pribil, M.; Kleine, T.; Wagner, R.; Strissel, H.; Lhnatowicz, A.; Bonardi, V.;
Scharfenberg, M.; Schneider, A.; et al. Arabidopsis STN7 kinase provides a link between short- and
long-term photosynthetic acclimation. Plant Cell 2009, 21, 2402–2423. [CrossRef]

136. Simkin, A.J.; McAusland, L.; Lawson, T.; Raines, C.A. Overexpression of the rieskeFeS protein increases
electron transport rates and biomass yield. Plant Physiol. 2017, 175, 134–145. [CrossRef]

137. Kromdijk, J.; Głowacka, K.; Leonelli, L.; Gabilly, S.T.; Iwai, M.; Niyogi, K.K.; Long, S.P. Improving
photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 2016, 354,
857–861. [CrossRef] [PubMed]

138. Simkin, A.J.; McAusland, L.; Headland, L.R.; Lawson, T.; Raines, C.A. Multigene manipulation of
photosynthetic carbon assimilation increases CO2 fixation and biomass yield in tobacco. J. Exp. Bot.
2015, 66, 4075–4090. [CrossRef] [PubMed]

139. Simkin, A.J.; Lopez-Calcagno, P.E.; Davey, P.A.; Headland, L.R.; Lawson, T.; Timm, S.; Bauwe, H.; Raines, C.A.
Simultaneous stimulation of sedoheptulose 1,7-bisphosphatase, fructose 1,6-bisphophate aldolase and the
photorespiratory glycine decarboxylase-H protein increases CO2 assimilation, vegetative biomass and seed
yield in Arabidopsis. Plant Biotechnol. J. 2017, 15, 805–816. [CrossRef]

140. Lefebvre, S.; Lawson, T.; Zakhleniuk, O.V.; Lloyd, J.C.; Raines, C.A. Increased sedoheptulose-1,7-
bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early
stage in development. Plant Physiol. 2005, 138, 451–460. [CrossRef]

141. Ding, F.; Wang, M.; Zhang, S.; Ai, X. Changes in SBPase activity influence photosynthetic capacity, growth,
and tolerance to chilling stress in transgenic tomato plants. Sci. Rep. 2016, 6, 32741. [CrossRef] [PubMed]

142. Uematsu, K.; Suzuki, N.; Iwamae, T.; Inui, M.; Yukawa, H. Increased fructose 1,6-bisphosphate aldolase in
plastids enhances growth and photosynthesis of tobacco plants. J. Exp. Bot. 2012, 63, 3001–3009. [CrossRef]

143. Yamori, W.; Masumoto, C.; Fukayama, H.; Makino, A. Rubisco activase is a key regulator of non-steady-state
photosynthesis at any leaf temperature and, to a lesser extent, of steady-state photosynthesis at high
temperature. Plant J. 2012, 71, 871–880. [CrossRef]

144. Sanz-Barrio, R.; Corral-Martinez, P.; Ancin, M.; Segui-Simarro, J.M.; Farran, I. Overexpression of plastidial
thioredoxin f leads to enhanced starch accumulation in tobacco leaves. Plant Biotechnol. J. 2013, 11, 618–627.
[CrossRef]

145. Farran, I.; Fernandez-San Millan, A.; Ancin, M.; Larraya, L.; Veramendi, J. Increased bioethanol production
from commercial tobacco cultivars overexpressing thioredoxin f grown under field conditions. Mol. Breed.
2014, 34, 457–469. [CrossRef]

146. Toivola, J.; Nikkanen, L.; Dahlström, K.M.; Salminen, T.A.; Lepistö, A.; Vignols, F.; Rintamäki, E.
Overexpression of chloroplast NADPH-dependent thioredoxin reductase in Arabidopsis enhances leaf
growth and elucidates in vivo function of reductase and thioredoxin domains. Front. Plant Sci. 2013, 4, 389.
[CrossRef] [PubMed]

147. Nikkanen, L.; Toivola, J.; Rintamäki, E. Crosstalk between chloroplast thioredoxin systems in regulation of
photosynthesis. Plant Cell Environ. 2016, 39, 1691–1705. [CrossRef] [PubMed]

148. Timm, S.; Florian, A.; Arrivault, S.; Stitt, M.; Fernie, A.R.; Bauwe, H. Glycine decarboxylase controls
photosynthesis and plant growth. FEBS Lett. 2012, 586, 3692–3697. [CrossRef] [PubMed]

149. Timm, S.; Wittmiß, M.; Gamlien, S.; Ewald, R.; Florian, A.; Frank, M.; Wirtz, M.; Hell, R.; Fernie, A.R.;
Bauwe, H. Mitochondrial dihydrolipoyl dehydrogenase activity shapes photosynthesis and photorespiration
of Arabidopsis Thaliana. Plant Cell 2015, 27, 1968–1984. [CrossRef] [PubMed]

150. López-Calcagno, P.E.; Fisk, S.; Brown, K.L.; Bull, S.E.; South, P.F.; Raines, C.A. Overexpressing the H-protein
of the glycine cleavage system increases biomass yield in glasshouse and field-grown transgenic tobacco
plants. Plant Biotechnol. J. 2019, 7, 141–151. [CrossRef]

151. Kebeish, R.; Niessen, M.; Thiruveedhi, K.; Bari, R.; Hirsch, H.J.; Rosenkranz, R.; Stäbler, N.; Schönfeld, B.;
Kreuzaler, F.; Peterhänsel, C. Chloroplastic photorespiratory bypass increases photosynthesis and biomass
production in Arabidopsis thaliana. Nat. Biotechnol. 2007, 25, 593–599. [CrossRef]

152. South, P.F.; Cavanagh, A.P.; Liu, H.W.; Ort, D.R. Synthetic glycolate metabolism pathways stimulate crop
growth and productivity in the field. Science 2019, 367, 45. [CrossRef]

153. Jansson, C.; Wullschleger, S.D.; Kalluri, U.C.; Tuskan, G.A. Phytosequestration: Carbon Biosequestration by
Plants and the Prospects of Genetic Engineering. Bioscience 2010, 60, 685–696. [CrossRef]

http://dx.doi.org/10.1105/tpc.108.064964
http://dx.doi.org/10.1104/pp.17.00622
http://dx.doi.org/10.1126/science.aai8878
http://www.ncbi.nlm.nih.gov/pubmed/27856901
http://dx.doi.org/10.1093/jxb/erv204
http://www.ncbi.nlm.nih.gov/pubmed/25956882
http://dx.doi.org/10.1111/pbi.12676
http://dx.doi.org/10.1104/pp.104.055046
http://dx.doi.org/10.1038/srep32741
http://www.ncbi.nlm.nih.gov/pubmed/27586456
http://dx.doi.org/10.1093/jxb/ers004
http://dx.doi.org/10.1111/j.1365-313X.2012.05041.x
http://dx.doi.org/10.1111/pbi.12052
http://dx.doi.org/10.1007/s11032-014-0047-x
http://dx.doi.org/10.3389/fpls.2013.00389
http://www.ncbi.nlm.nih.gov/pubmed/24115951
http://dx.doi.org/10.1111/pce.12718
http://www.ncbi.nlm.nih.gov/pubmed/26831830
http://dx.doi.org/10.1016/j.febslet.2012.08.027
http://www.ncbi.nlm.nih.gov/pubmed/22982108
http://dx.doi.org/10.1105/tpc.15.00105
http://www.ncbi.nlm.nih.gov/pubmed/26116608
http://dx.doi.org/10.1111/pbi.12953
http://dx.doi.org/10.1038/nbt1299
http://dx.doi.org/10.1126/science.aat9077
http://dx.doi.org/10.1525/bio.2010.60.9.6


Plants 2020, 9, 803 24 of 24

154. Zhu, X.-G.; Long, S.P.; Ort, D.R. Improving Photosynthetic Efficiency for Greater Yield. Annu. Rev. Plant Biol.
2010, 61, 235–261. [CrossRef] [PubMed]

155. Blankenship, R.E.; Chen, M. Spectral expansion and antenna reduction can enhance photosynthesis for
energy production. Curr. Opin. Chem. Biol. 2013, 17, 457–461. [CrossRef]

156. Nakajima, Y.; Ueda, R. Improvement of photosynthesis in dense microalgal suspension by reduction of light
harvesting pigments. J. Appl. Phycol. 1997, 9, 503–510. [CrossRef]

157. Beckmann, J.; Lehr, F.; Finazzi, G.; Hankamer, B.; Posten, C.; Wobbe, L.; Kruse, O. Improvement of light to
biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii.
J. Biotechnol. 2009, 142, 70–77. [CrossRef] [PubMed]

158. Perrine, Z.; Negi, S.; Sayre, R.T. Optimization of photosynthetic light energy utilization by microalgae. Algal
Res. 2012, 1, 134–142. [CrossRef]

159. Demmig-Adams, B.; Adams, W.W. Chlorophyll and carotenoid composition in leaves of Euonymus
kiautschovicus acclimated to different degrees of light stress in the field. Aust. J. Plant Physiol. 1996, 23,
649–659. [CrossRef]

160. Li, X.P.; Müller-Moulé, P.; Gilmore, A.M.; Niyogi, K.K. PsbS-dependent enhancement of feedback de-excitation
protects photosystem II from photoinhibition. Proc. Natl. Acad. Sci. USA 2002, 99, 15222–15227. [CrossRef]

161. Pérez-Bueno, M.L.; Johnson, M.P.; Zia, A.; Ruban, A.V.; Horton, P. The Lhcb protein and xanthophyll
composition of the light harvesting antenna controls the ∆pH-dependency of non-photochemical quenching
in Arabidopsis thaliana. FEBS Lett. 2008, 582, 1477–1482. [CrossRef]

162. Driever, S.M.; Simkin, A.J.; Alotaibi, S.; Fisk, S.J.; Madgwick, P.J.; Sparks, C.A.; Jones, H.D.; Lawson, T.;
Parry, M.A.J.; Raines, C.A. Increased sbpase activity improves photosynthesis and grain yield in wheat
grown in greenhouse conditions. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160384. [CrossRef]

163. Kim, M.R.; Khaleda, L.; Jung, I.J.; Kim, J.Y.; Lee, S.Y.; Cha, J.Y.; Kim, W.Y. Overexpression
of chloroplast-localized NADPH-dependent thioredoxin reductase C (NTRC) enhances tolerance to
photo-oxidative and drought stresses in Arabidopsis thaliana. J. Plant Biol. 2017, 60, 175–180. [CrossRef]

164. Kisaki, T.; Tolbert, N.E. Glycine as a substrate for photorespiration. Plant Cell Physiol. 1970, 11, 247–258.
[CrossRef]

165. Kisaki, T.; Imai, A.; Tolbert, N.E. Intracellular localization of enzymes related to photorespiration in green
leaves. Plant Cell Physiol. 1971, 12, 267–273. [CrossRef]

166. Eisenhut, M.; Ruth, W.; Haimovich, M.; Bauwe, H.; Kaplan, A.; Hagemann, M. The photorespiratory glycolate
metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants. Proc.
Natl. Acad. Sci. USA 2008, 105, 17199–17204. [CrossRef] [PubMed]

167. Kikuchi, G.; Motokawa, Y.; Yoshida, T.; Hiraga, K. Glycine cleavage system: Reaction mechanism,
physiological significance, and hyperglycinemia. Proc. Japan Acad. Ser. B Phys. Biol. Sci. 2008, 84,
246–263. [CrossRef] [PubMed]

168. Zelitch, I.; Schultes, N.P.; Peterson, R.B.; Brown, P.; Brutnell, T.P. High glycolate oxidase activity is required
for survival of maize in normal air. Plant Physiol. 2009, 149, 195–204. [CrossRef]

169. Hackenberg, C.; Kern, R.; Hüge, J.; Stal, L.J.; Tsuji, Y.; Kopka, J.; Shiraiwa, Y.; Bauwe, H.; Hagemann, M.
Cyanobacterial lactate oxidases serve as essential partners in N2 fixation and evolved into photorespiratory
glycolate oxidases in plants. Plant Cell 2011, 23, 2978–2990. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1146/annurev-arplant-042809-112206
http://www.ncbi.nlm.nih.gov/pubmed/20192734
http://dx.doi.org/10.1016/j.cbpa.2013.03.031
http://dx.doi.org/10.1023/A:1007920025419
http://dx.doi.org/10.1016/j.jbiotec.2009.02.015
http://www.ncbi.nlm.nih.gov/pubmed/19480949
http://dx.doi.org/10.1016/j.algal.2012.07.002
http://dx.doi.org/10.1071/PP9960649
http://dx.doi.org/10.1073/pnas.232447699
http://dx.doi.org/10.1016/j.febslet.2008.03.040
http://dx.doi.org/10.1098/rstb.2016.0384
http://dx.doi.org/10.1007/s12374-016-0464-y
http://dx.doi.org/10.1093/oxfordjournals.pcp.a074506
http://dx.doi.org/10.1093/oxfordjournals.pcp.a074620
http://dx.doi.org/10.1073/pnas.0807043105
http://www.ncbi.nlm.nih.gov/pubmed/18957552
http://dx.doi.org/10.2183/pjab.84.246
http://www.ncbi.nlm.nih.gov/pubmed/18941301
http://dx.doi.org/10.1104/pp.108.128439
http://dx.doi.org/10.1105/tpc.111.088070
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	barley, the Crop and the Model Species 
	A Brief History of Genome Manipulation in Barley 
	Early Studies and Milestones in Understanding of Chloroplast Biogenesis and Physiology in Barley 

	Arabidopsis thaliana as the Model Plant of Modern Times 
	The Genomes of Barley 
	The Nuclear Genome 
	The Exomes 

	Barley Genetic Resources: Natural and Induced Genetic Diversity 
	Natural Genetic Diversity 
	Induced Genetic Diversity: Random Chemical and Physical Mutagenesis 
	Induced Genetic Diversity: Genome Transformation and Insertional Mutagenesis 
	Induced Genetic Diversity: Gene Editing 

	Barley is Ready for a New Age of Functional Genomics Studies and Genetic Improvements 
	Plastid-to-Nucleus Retrograde Signalling 
	Photosynthesis and Yield 
	Optimization of Antenna Size in Crop Canopies
	Increased Photosynthetic Electron Transport 
	Improving the Adaptation to Fluctuating Light: Dissipation of Excess Energy through Non-Photochemical Quenching 
	Transgenic Manipulation of the Calvin–Benson Cycle 
	Photorespiration and Photorespiratory Bypasses 

	Conclusions 
	References

