Supplementary information

Two novel fish paralogs provide insights into the Rid family of imine deaminases active in pre-empting enamine/imine metabolic damage

Stefania Digiovanni^{1,#}, Cristina Visentin¹, Genny Degani¹, Alberto Barbiroli², Matteo Chiara¹, Luca Regazzoni³, Flavio Di Pisa¹, Andrew J. Borchert^{4,‡}, Diana M. Downs⁴, Stefano Ricagno¹, Maria Antonietta Vanoni^{1,§} and Laura Popolo^{1,*}

¹Department of Biosciences, ² Department of Food, Environmental and Nutritional Sciences and ³ Department of Pharmaceutical Sciences, University of Milan, Italy; ⁴Department of Microbiology, University of Georgia, Athens, GA

[§]Co-corresponding author

*Corresponding author

Figure S1

Table S1

- Figure S2
- Table S2
- Figure S3
- Table S3
- Figure S4
- Table S4
- Table S5

Figure S1

WebLogo of the RidA sequences of the multiple alignment shown in **Fig. 2**. Amino acids are color coded according to the WebLogo standard settings as follows: G, S, T, Y, C, Q, N are green, K, R, H are blue, D, E red and A, V, L, I, P, W, F, M are black. To align the essential Arg105 of prokaryotes with the essential Arg107 of eukaryotes, three not conserved amino acids at position104-106 (HQA in *E. coli* and HNA in *S. typhimurium*) were removed to generate the WebLogo, which requires sequences of identical length. The numbering is that of eukaryotic RidA.

	Genotype	Plasmid	Notes	Source
E. coli				Lab stock
Rosetta (DE3)				
SD1	pRARE (Cm ^R)	pSD1	Production of _{Ss} RidA-1	This work
	pET15b- _{Ss} RidA-1 (Amp ^R)			
SD2	pRARE (Cm ^R)	pSD2	Production of _{Ss} RidA-2	This work
	$pET15b-s_sRidA-2$ (Amp ^R)			
GD1	pRARE (Cm ^R)	pGD1	Production of ChRidA	(25)
	$pET15b{Ch}RidA-2 (Amp^{R})$			
S. enterica				
DM14829	<i>ridA1::Tn10d</i> (Tc)	None		Lab stock
DM16362	ridA1::Tn10d (Tc)	pCV1	BspQI-modified pBAD24	(47)
DM16360	<i>ridA1::Tn10d</i> (Tc)	pDM1439	pCV1-ridA	(23)
DM16978	<i>ridA1::Tn10d</i> (Tc)	pDM1616	pCV1-ssRidA-1	This work
DM16979	ridA1::Tn10d (Tc)	pDM1617	pCV1-ssRidA-2	This work

Table S1. Bacterial strains and plasmids

Figure S2. Specificity of _{Cb}RidA, _{Ss}RidA-1 and _{Ss}RidA-2. *Left panels*: L-Ala (open squares, blue), L-Leu (open circles, red), L-Met (open triangles, green), L-Gln (open diamonds, orange), L-His (stars, fuchsia). Middle panels: L-Leu (open circles, red), L-Phe (inverted triangles, purple), L-Tyr (open hexagons, light blue), L-Trp (open squares, black), L-DOPA (open circles, grey). Right panels: L-Leu (open circles, red), L-Glu (closed squares, black), L-Asp (closed diamonds, black). L-Leu is reported in all panels as an internal reference. For the _{Ch}RidA, D-Leu (closed circles, red), which was reported in the previous study in which also D-amino acid oxidase was used (25), is also shown as an internal reference. The experimental points represent the initial velocity of semicarbazone production measured in the presence of RidA (v_{RidA} expressed as percent of that measured in the absence of RidA (v_0), i.e. [$v_{RidA}/v_0 \ge 100$]. The amount of L-amino acid oxidases used to generate the imino acid substrate of RidA from different amino acids was adjusted in order to obtain similar v_0 values in the range 0.2-03 ΔA_{248} /min. Data were fitted to Equation 1, obtaining the values of the concentration of RidA proteins that halves the velocity of semicarbazone formation (K_{50}), from which the 100/ K_{50} values summarized in Table S2 were obtained. The data obtained with L-Phe were fitted with a straight line. In this case $100/K_{50}$ is the absolute value of the slope of the line.

$100/K_{50}^{a}$, μM^{-1}						
Amino acid ^a	_{Ch} RidA	_{Ss} RidA-1	ssRidA-2			
L-Leu	172.0±9.4	112 ± 9	1.90±0.15 ^b			
L-Ala	348±24	489±23	38.9±2.2			
L-Met	245±16	146±14	13.6±1.1			
L-Gln	37.9±2.7	39.0±1.3	8.7±0.6			
L-His	1.9±1 ^b	NA	0.98±0.1 ^c			
L-Tyr	9.6±0.6	1.2±0.2 ^b	27.7±2.2			
L-Phe	2.50±0.16 ^b	1.4±0.2 ^b	8.7±0.9			
L-DOPA	10.6±0.5	2.8±0.3 ^b	21.6±1.2			
L-Trp	41±2.2	17.2±0.9	17.4±1.5			
L-Arg	1.0±0.5 ^d	ND ^c	ND			
L-Asp	ND	ND	ND			
L-Glu	5.9±0.5	40.4±3.3	210±25			

Table S2. Specificity of salmon RidA proteins compared to goat RidA

^a The values were obtained by fitting three or more independent measurements of reaction velocity v with Equation (1) \pm standard deviation (see "Assay of RidA imine deaminase activity" under Methods).

^bThe amino acid concentration was 5 mM except for L-aromatic amino acids (0.5 mM) but the amount of the L-amino acid oxidase was adjusted to obtain similar initial velocities of imino acid formation starting from the different amino acids.

^cData were fitted with a straight line in which the absolute value of the slope corresponds to $100/K_{50}$ ^dNo detectable RidA activity up to 20 μ M RidA.

Figure S3. Far-UV CD spectra of the indicated proteins. Spectra were acquired at 20 °C in 0.1 cm path length cuvette, at 0.2 mg/mL protein concentration.

	Predicted secondary structure content (%)				
	_{Ss} RidA-1	_{Ss} RidA-2	ChRidA		
Helix	17.1	18.8	17.2		
Antiparallel	23.2	22.4	21.9		
Parallel	5.8	6.0	5.6		
Beta-Turn	17.6	16.6	18.5		
Random Coil	33.5	32.9	33.8		

Table S3. Predicted secondary structure content of salmon and goat Rid proteins

Estimate of the secondary structure composition was obtained by running CDNN CD deconvolution software, version 2.1 (Copyright © Gerald Böhm, Institut für Biotechnologie, Martin-Luther Universität Halle-Wittenberg) on spectra reported in **Fig. S3**, in the 200-260 nm region.

A

Туре	Sequences	CAI	ENc	%GC	% AT
Query	ATGTCTTCGATCATCAGGAAGATAATTAACACCAGTAAAGCGCCAGCAGCTATCGGGCCG TACAGCCAGGCGGTGGTGGTGGACAGGACCATGTACGTGTCAGGCCAGCTGGGGATGGAC CCTGCCTCTGGTCAGCTGGTGGAAGGAGGAGTCCAGGCTCAGACCAAACAGGCTCTGGTG AACATGGGGGAGATCCTGAAAGAAGCAGGGTGTGGATATGACAGTGTCGTGAAAACTACG GTTCTTTTGGCTGACATGAATGACTTCGCCAGTGTAAATGACGTCTATAAAACATTTTTC AGCAGTAGCTTCCCAGCGAGGGCTGCCTACCAGGTCGCTGCTCTGCCCAGGGGTGGGCTT GTAGAGATTGAAGCTGTGGCTGTTCTAGGCCCTCTGACTGA	0.404	47	53.8	46.2
Optimized	ATGTCCTCCATCATCCGTAAAATCATCAACACCTCCAAAGCGCCGGCGGCGATCGGCCCG TACTCCCAGGCGGTGGTGGTGGACCGTACCATGTACGTGTCCGGCCAGCTGGGCATGGAC CCGGCGTCCGGCCAGCTGGTGGAAGGCGGCGTGCAGGCGAGACCAAACAGGCGCTGGTG AACATGGGCGAAATCCTGAAAGAAGCGGGCTGCGGCGCACACGACGTGTGAAAACCACC GTGCTGCTGGCGGACATGAACGACTTCGCGTCCGTGAACGACGTGTACAAAACCTTCTTC TCCTCCTCCTTCCCGGCGCGTGCGGCGTACCAGGTGGCGGCGCGCGC	1.000	20	64.5	35.5

Β

Туре	Sequences	CAI	ENc	%GC	%AT
Query	ATGGCTGCTGTTCAGAAACTCTTTCCTTATACTCCTAGAGCACCTATAAGGCAGGGGATT TACAGCCAGGCGGTGGTGGTGGATCGGACGATGTACATCTCCGGCCAGCTGGGGCTGGAC GTGGCCTCAGGGAAGCTGGTGGAGGGGGGGGGG	0.379	47	53.7	46.3
Optimized	ATGGCGGCGGTGCAGAAACTGTTCCCGTACACCCCGCGTGCGCCCGATCCGTCAGGGCATC TACTCCCAGGCGGTGGTGGTGGACCGTACCATGTACATCTCCGGCCAGCTGGGCCTGGAC GTGGCGTCCGGCAAACTGGTGGAAGCGGCGGCGTGCAGGCGCGCGC	1.000	20	64.2	35.8

Figure S4. Codon optimized sequences used for the synthesis of (A) *ridA-1* and (B) *ridA-2* salmon gene sequences by GenScript (Piscataway, NJ), as determined using the online application OPTIMIZER (<u>http://genomes.urv.es/OPTIMIZER/</u>). The *Salmonella enterica* subsp. *enterica* serovar Typhimurium str. LT2 was denoted as the reference, the codon usage of the most highly expressed genes (HEG) was selected, and the one AA-one codon function was employed for making changes, which substitutes every amino acid codon with the most frequent codon in *S. enterica* LT2 HEG usage table. Sequence inputs and outputs are provided along with their corresponding codon adaptation index (CAI), effective number of codons (ENc) value, % GC content of the sequence, and %AT content of the sequence. CAI (0-1) measures the similarity between codon usage of the gene and reference, where 1 represents perfect correlation, and ENc (20-61) measures codon usage bias where 20 means that only 20 of the possible 61 codons were used.

	_{Ss} RidA-1	_{Ss} RidA-2
	(PDB code 6TCC)	(PDB code 6TCD)
Crystal		
Space group	H 32	$P 2_1 2_1 2$
Cell dimensions a, b, c (Å)	52.19, 52.19, 242.56	100.89, 146.57, 53.68
Data collection		
Beamline		
Wavelength (Å)	DLS 103	DLS 104
Pagelution (Å)		<u>0.9795</u> <u>92 10 1 26(1 47 1 26)</u>
Total reflections	42.53-1.03 (1.11-1.03)	<u> </u>
Unique reflections	1169599 (164151)	1505301 (58528)
	60156 (8683)	114968(5748)
K _{merge}	0.057 (1.174)	0.079 (1.435)
κ _{meas} ,	0.059 (1.206)	0.082 (1.513)
Ι/σ(Ι)	21.1 (2.5)	16.5 (1.5)
<i>CC</i> _{1/2}	1.000 (0.860)	1.000 (0.628)
Completeness (%)	100.0 (100.0)	95.4 (67.2)
Redundancy	19.4 (18.9)	13.1 (10.2)
Wilson B-factor (A)	11.7	15.1
Refinement		
Resolution (Å)	33.07-1.05	43.97-1.36
No. reflections	60133	114898
$R_{\rm work}$ / $R_{\rm free}$	14.5/16.3	15.9/18.4
No. atoms		
Protein	1982	5830
Ligands	31	43
Water	94	809
<i>B</i> factors		
Protein	19.7	19.5
Ligands	52.6	28.3
Water	24.8	29.9
R.m.s. deviations		
Bond lengths (Å)	0.008	0.006
Bond angles (°)	1.061	0.800
Clash scores	1.95	1.52
Ramachandran		
Favored (%)	98.5	98.2
Allowed (%)	1.5	1.8

Table S4. Data collection and refinement statistics

^a Values in parentheses are for highest-resolution shell.

Table S5

	Genome	Resource	Annotation						
Species	assembly	accessed	source	Link					
H. sapiens	GRCh38/hg38	UCSC gb	Ncbi Refseq	https://hgdownload.soe.ucsc.edu/golder	nPath/hg38/big	gZips/genes/h	g38.ncbiRefSe	eq.gtf.gz	
C. hircus	CHIR_1.0	NCBI	Ncbi Refseq	https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Capra_hircus/102/					
G. gallus	galGal6	UCSC gb	Ncbi Refseq	https://hgdownload.soe.ucsc.edu/goldenPath/galGal6/bigZips/genes/galGal6.ncbiRefSeq.gtf.gz					
X. laevis	xenLae2	UCSC gb	Ncbi Refseq	https://hgdownload.soe.ucsc.edu/goldenPath/xenLae2/bigZips/genes/xenLae2.ncbiRefSeq.gtf.gz					
O. latypes	oryLat2	UCSC gb	Ncbi Refseq	https://hgdownload.soe.ucsc.edu/goldenPath/oryLat2/bigZips/genes/oryLat2.refGene.gtf.gz					
			Ensembl						
G. mohrua	gadMor1	UCSC gb	Gencode	https://hgdownload.soe.ucsc.edu/goldenPath/gadMor1/bigZips/genes/gadMor1.ensGene.gtf.gz					
S. salar	ICSASG_v2	NCBI	Ncbi Refseq	https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Salmo_salar/100/					
C. milii	calMil1	UCSC gb	Ncbi Refseq	https://hgdownload.soe.ucsc.edu/goldenPath/calMil1/bigZips/genes/calMil1.ncbiRefSeq.gtf.gz					

gb: genome browswer