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Università di Pisa, Italy
anna.bernasconi@unipi.it

Valentina Ciriani
Department of Computer Science “Giovanni Degli Antoni”
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Abstract—Bi-decomposition is a design technique widely used
to realize logic functions by the composition of simpler com-
ponents. It can be seen as a form of Boolean division, where
a given function is split into a divisor and quotient (and a
remainder, if needed). The key questions are how to find a
good divisor and then how to compute the quotient. In this
paper we choose as divisor an approximation of the given
function, and characterize the incompletely specified function
which describes the full flexibility for the quotient. We report
at the end preliminary experiments for bi-decomposition based
on two AND-like operators with a divisor approximation from
1 to 0, and discuss the impact of the approximation error rate
on the final area of the components in the case of synthesis by
three-level XOR-AND-OR forms.

I. INTRODUCTION

Decomposition is a design paradigm to partition logic
functions into a composition of simpler components. Bi-
decomposition [6], [8], [11] is a well-known form of de-
composition, where a Boolean function f is rewritten as
f = g op h, and op is a two-input binary operator. When
the operator is conjunction, bi-decomposition can be seen as
a form of Boolean division [10]: f = g · h, where f, g, h
are respectively the dividend, divisor and quotient function
(a reminder function r may be introduced to compensate the
two sides). Given f , in general the problem is to find a
good divisor g and then to determine the quotient h, where
f ⊆ g and f ⊆ h are necessary conditions on g and h.
In the case of conjunctive decomposition, it was pointed out
in [6] that one could choose as divisors over-approximations
g of f , and derive the associated conjuncts h by Boolean
minimization using the don’t care set (dc-set) derived from
the divisors g. Therefore, one could obtain a sequence of
decompositions f = gi · hi, i = 0, . . . , n, by pairs of divisors
and quotients, in which the logic is shifted between gi and hi,
from g0 = f, h0 = 1 to gn = 1, hn = f , choosing the best
trade-off according to some objective function.

In this paper, we address the general case of bi-
decomposition by approximation, f = g op h, where g
is an approximation of f . The binary operation op used

in the decomposition determines whether we can use over-
approximations or under-approximations of f as divisors g.
In fact, depending on op, g must be an approximation for f
or for its complement f , and it can introduce only one kind
of errors: only 0 to 1 complementations of the output bits,
or only 1 to 0 complementations. Both kinds of errors can
be introduced only in bi-decompositions based on the XOR
operation.

Given a function f , an operator op and a divisor g which is
an approximation of f , here we solve the question to find the
complete flexibility of the quotient function h, by expressing
it as an incompletely specified function h with the smallest
on-set and the largest dc-set such that f = g op h.

Depending on the operation used in the bi-decomposition
of f , the on-set or the off-set of g become the dc-set for the
function h, together with the dc-set of f , giving a flexibility
that could be exploited to get a more compact representation
of f . The larger is the on (or off)-set of g, the higher is the
flexibility in the implementation of h. We could say that we
use h to correct the errors introduced by the approximation g,
so that g op h is an exact alternative representation of f .

This result can be used in optimization frameworks whose
objective is to explore different realizations of a function f
by bi-decomposition when the divisor is an under (or over)-
approximation of f . Moreover, it could be used also when
the original f could be implemented approximately within a
tolerable error rate (as mentioned in the conclusions). As a
proof-of-concept, we report preliminary experiments for bi-
decomposition based on two AND-like operators with a divisor
approximation from 1 to 0, and discuss the impact of the
approximation error rate on the final area of the components
in the case of synthesis by three-level XOR-AND-OR forms.

In Section II we introduce some basic notation, in Sec-
tion III we state and prove the key results on the full quotient
flexibility for all 10 non-trivial two-input Boolean operators
(divided in three classes: AND-like, OR-like, XOR-like). We
discuss the preliminary experiments in Section IV, and sum
up conclusions and future work in Section V.
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TABLE I
THE TEN BINARY OPERATION DEPENDING ON BOTH INPUT VARIABLES.

Operator Bi-decomposed form
AND f = g · h
6⇐ f = g · h
6⇒ f = g · h

NOR f = g + h = g · h
OR f = g + h
⇒ f = g + h

⇐ f = g + h

NAND f = g · h = g + h
XOR f = g ⊕ h

XNOR f = g ⊕ h = g⊕h

II. PRELIMINARIES

Let f be an incompletely specified function, depending
on n binary variables, and let g be a completely specified
approximation of f . We can classify the approximation g
depending on the errors introduced, as follows.

Definition 1: The function g is a 0 → 1 approximation
(over-approximation) of f if it is derived by a 0 to 1 comple-
mentation of some output bits of f , i.e., by moving some off-
set minterms of f to the on-set, while there are no restrictions
on the don’t cares of f . In this case, it holds that f on ⊆ gon.

Definition 2: The function g is a 1 → 0 approximation
(under-approximation) of f , if it is derived by a 1 to 0
complementation of some output bits of f , i.e., by moving
some on-set minterms of f to the off-set, while there are
no restrictions on the don’t cares of f . In this case, it holds
gon ⊆ f on.

Definition 3: The function g is a 0 ↔ 1 approximation of
f , if it is derived by both 0 to 1 and 1 to 0 complementations
of some output bits of f .

III. BI-DECOMPOSITION WITH APPROXIMATION

Let f : {0, 1}n → {0, 1,−} be the function that must be
synthesized. Let g be a (completely specified) approximation
of f or of its complement f . Given f and g, and a two-input
Boolean operator op, we want to compute an incompletely
specified Boolean function h such that f can be represented
in bi-decomposed form as f = g op h.

In our analysis, we only consider the ten (out of sixteen)
binary operations depending on both input variables, described
in Table I. Thus, we will not consider the two constant
operations, as well as the four degenerate operations depending
on only one input.

Applying the De Morgan’s laws as shown in the table, we
can note how the ten operations can be naturally divided into
three sets:

– the set of the four operations based on the binary AND
applied to g, h or to their complements (AND, 6⇐, 6⇒,
NOR);

– the set of the four operations based on the binary OR
applied to g, h or to their complements (OR, ⇒, ⇐,
NAND);

– the set containing the two operations based on the exclu-
sive OR (XOR, XNOR).

We now describe how to approximate f with g, and how to
derive the quotient function h for each set of operations.

In the following exposition, we use f on, gon, and hon to
denote the on-sets of the three functions f , g, and h, f off, goff,
and hoff to denote their off-sets, and f dc and hdc to denote
the dc-sets of the incompletely specified functions f and h
(observe that g is completely specified).

A. Decompositions based on AND, 6⇐, 6⇒, NOR

Let us first consider the AND binary operation. In order to
represent f as g · h it is necessary that

• f ⊆ g,
• f ⊆ h ⊆ f + g .

In fact, both g and h must be equal to 1 on the on-set minterms
of f . Moreover, h can be equal to 1 on all off-set minterms
of g, while it must get the value 0 where f evaluates to 0 and
g to 1. Finally, h can get any value on the dc-set minterms of
f , independently of the value of g. This, in turns, implies that

(i) g must be a 0→ 1 approximation of f , so that f on ⊆ gon,
while there are no restrictions on the don’t cares of f .

(ii) h is the incompletely specified function whose on-set is
equal to the on-set of f , while the dc-set contains all
off-set minterms of g and all dc-set minterms of f , i.e.,

hon = f on

hdc = goff ∪ f dc

hoff = gon ∩ f off = gon \ (f on ∪ f dc) .

Note that hoff coincides precisely with the set of minterms on
which f on and gon differ, i.e., it describes the error introduced
by the approximation. This implies that the more accurate is
the approximation g, the smaller is the off-set of the function h
and the largest is hdc, thus providing a high flexibility that can
be exploited to get a compact representation for the function
h, and consequently, for the target function f .

We prove the correctness of our analysis in the following
lemma.

Lemma 1: Let f be an incompletely specified function de-
pending on n binary variables, let g be a completely specified
0 → 1 approximation of f , and let h be an incompletely
specified function satisfying hon = f on and hdc = goff ∪ f dc.
Then f = g · h.
Proof. We first show that for any minterm w ∈ f on,
g(w) · h(w) = 1. Observe that f on ⊆ gon, as g is a 0 → 1
approximation of f . Moreover hon = f on by hypothesis.
Thus, w ∈ gon and w ∈ hon, and we immediately have
g(w) · h(w) = 1.

Now suppose that w ∈ f off. If w ∈ gon, then w belongs
to the off-set of h by construction (as it can be neither in
hon nor in hdc), and we have g(w) · h(w) = 0. Otherwise, if
w ∈ goff, then, independently of the value of h on w, we have
g(w) · h(w) = 0, and the thesis follows.

From the proof of this lemma it follows that h is the
quotient function that guarantees the maximum flexibility in
the decomposition:

Corollary 1: The function h with on-set hon = f on and dc-
set hdc = goff ∪ f dc is the quotient function with the smallest
on-set and the biggest dc-set satisfying f = g · h.
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Fig. 1. Karnough map for the function f = x1x2x4 + x2x3x4 (a); for its
approximation g = x2x4 (b); and for the function h = x1 + x3 such that
f = g · h.

Example 1: To provide more intuition for the proposed
approach, we discuss a simple example for the AND bi-
decomposition f = g · h of the function f represented by the
Karnaugh map in Figure 1 (a). A minimal SOP representation
of f is given by fSOP = x1x2x4 + x2x3x4, that has 6
literals. A 0 → 1 approximation of f can be obtained by
simply adding the minterm x1x2x3x4 to the on-set of f . In
this way we obtain the function g depicted in Figure 1 (b),
that has a SOP representation gSOP = x2x4 containing only
two literals. Applying Lemma 1, we then derive the function
h, described in Figure 1 (c). Thanks to the large dc-set of h,
we can obtain a very compact SOP representation for h, with
only two literals: hSOP = x1+x3. The overall bi-decomposed
form is given by f = g · h = x2x4 · (x1 + x3), with 4 literals.

The function h for the bi-decomposition of f with respect
to the 6⇐, 6⇒, and NOR operations can be derived in a similar
way, applying the previous considerations to g and h, g and h,
and to g and h, respectively. The definitions of the on-, off-,
and dc-set of the function h for all three cases are reported
in Table II, and their correctness is proved in the following
lemma.

Lemma 2: Let f be an incompletely specified function
depending on n binary variables, and let g be a completely
specified approximation of f .

1) If g is a 1 → 0 approximation of f and h is an
incompletely specified function satisfying hon = f on and
hdc = gon ∪ f dc, then f = g · h, i.e., f = (g 6⇐ h).

2) If g is a 0 → 1 approximation of f and h is an
incompletely specified function satisfying hon = f off \goff

and hdc = goff ∪ f dc, then f = g · h, i.e., f = (g 6⇒ h).
3) If g is a 0 → 1 approximation of f and h is an

incompletely specified function satisfying hon = f off \gon

and hdc = gon ∪ f dc, then f = g · h, i.e., f = g NOR h.
Proof. We only prove the correctness of the decomposition
based on 6⇐. The correctness of the other two decompositions
can be proved in a similar way.

First, suppose that w ∈ f on. The fact that g is a 1 → 0
approximation of f implies that some on-set minterms of f
have been moved to its off-set, so that gon ⊆ f

on
, i.e., gon ⊆

f off. This in turns implies that w 6∈ gon. Moreover, since hon =
f on, we have that w ∈ hon, and we immediately derive that
g(w) · h(w) = 1.

Now suppose that w ∈ f off. Since gon ⊆ f off, w might
belong either to gon or to goff. In the first case, we immediately

have that g(w) · h(w) = 0, independently of the value of
h on w. Otherwise, if w ∈ goff, then w belongs to hoff by
construction. In fact, w can be neither in hon, which is equal
to f on, nor in hdc, which is equal to gon ∪ f dc. Thus, we have
g(w) · h(w) = 0, and the thesis follows.

As before, the functions h used in the bi-decompositions
guarantee the maximum flexibility thanks to the definition of
their dc-sets:

Corollary 2: The functions h defined as in Lemma 2 are
the functions with the smallest on-set and the biggest dc-set
satisfying the bi-decompositions with respect to the 6⇐, 6⇒,
and NOR operations.

From Table II we can observe that, depending on the specific
operation used in the decomposition, hon or hoff describe the
differences between f or f and their approximation g. Thus,
the more accurate is the approximation g, the smaller will be
hon or hoff.

B. Decompositions based on OR, ⇒, ⇐, NAND
We first consider the OR binary operation. In order to repre-

sent f as g+h it is necessary that g ⊆ f and f \g ⊆ h ⊆ f . In
fact, both g and h must be equal to 0 on the off-set minterms
of f , otherwise g + h would be equal to 1. Moreover, h
must be equal to 1 on all on-set minterms of f where the
approximation g is equal to 0, while it can get any value on
the dc-set minterms of f , independently of the value of g. This
implies that

(i) g is a 1 → 0 approximation of f , so that gon ⊆ f on. As
before, g can take either the value 0 or the value 1 on
the don’t cares of f .

(ii) h is the incompletely specified function whose on-set is
equal to set difference between the on-sets of f and g,
while the dc-set contains all on-set minterms of g and all
dc-set minterms of f , i.e.,

hon = f on \ gon

hdc = gon ∪ f dc

hoff = f off .

Observe that, in this case, hon describes the error introduced
by the approximation g, while hoff coincides with the off-set
of the target function f . So, if the quality of the approximation
is good, h will have a limited number of on-set minterms, and
a dc-set bigger than f dc.

We prove the correctness of our analysis in the following
lemma.

Lemma 3: Let f be an incompletely specified function
depending on n binary variables, let g be a completely
specified 1 → 0 approximation of f , and let h be an
incompletely specified function satisfying hon = f on \ gon and
hdc = gon ∪ f dc. Then f = g + h.
Proof. The proof is similar to the proof of correctness of the
decomposition with the AND operator. A complete proof will
be added in the extended version of the paper.

Even in this case, from the proof of the lemma it follows
that h is the function that guarantees the maximum flexibility
in the decomposition:



TABLE II
FUNCTIONS g AND h OCCURRING IN THE BI-DECOMPOSED FORMS BASED ON THE TEN BINARY OPERATIONS DEPENDING ON BOTH INPUTS.

Operator Bi-decomposed form Approximation function g hon hdc hoff

AND f = g · h 0→ 1 approximation of f (i.e., fon ⊆ gon) fon goff ∪ fdc gon \ fon

6⇐ f = g · h 1→ 0 approximation of f (i.e., gon ⊆ foff) fon gon ∪ fdc goff \ fon

6⇒ f = g · h 0→ 1 approximation of f (i.e., fon ⊆ gon) foff \ goff goff ∪ fdc fon

NOR f = g · h 1→ 0 approximation of f (i.e., gon ⊆ foff) foff \ gon gon ∪ fdc fon

OR f = g + h 1→ 0 approximation of f (i.e., gon ⊆ fon) fon \ gon gon ∪ fdc foff

⇒ f = g + h 0→ 1 approximation of f (i.e., foff ⊆ gon) fon \ goff goff ∪ fdc foff

⇐ f = g + h 1→ 0 approximation of f (i.e., gon ⊆ fon) foff gon ∪ fdc fon \ gon

NAND f = g + h 0→ 1 approximation of f (i.e., foff ⊆ gon) foff goff ∪ fdc gon \ foff

XOR f = g ⊕ h 0↔ 1 approximation of f fon ⊕ gon fdc fon ⊕ goff

XNOR f = g⊕h 0↔ 1 approximation of f foff ⊕ gon fdc foff ⊕ goff

Corollary 3: The function h with on-set hon = f on and dc-
set hdc = goff∪f dc is the function with the smallest on-set and
the biggest dc-set satisfying f = g · h.

The function h for the bi-decomposition of f with respect
to the⇒,⇐, and NAND operators can be derived in a similar
way, applying the previous considerations to g and h, g and
h, and to g and h, respectively. The definitions of the on-,
off-, and dc-set of the function h for these cases are shown in
Table II, and the correctness is proved in the following lemma.

Lemma 4: Let f be an incompletely specified function
depending on n binary variables, and let g be a completely
specified approximation of f .

1) If g is a 0 → 1 approximation of f and h is an
incompletely specified function satisfying hon = f on \goff

and hdc = goff ∪ f dc, then f = g + h, i.e., f = (g ⇒ h).
2) If g is a 1 → 0 approximation of f and h is an

incompletely specified function satisfying hon = f off and
hdc = gon ∪ f dc, then f = g + h, i.e., f = (g ⇐ h).

3) If g is a 0 → 1 approximation of f and h is an
incompletely specified function satisfying hon = f off and
hdc = goff ∪ f dc, then f = g + h, i.e., f = g NAND h.

Proof. The proof is similar to the proof of correctness of
the AND-based decompositions. A complete proof will be
provided in the extended version of the paper.

As before, the functions h guarantee the maximum flexibil-
ity thanks to the definition of their dc-sets:

Corollary 4: The functions h defined as in Lemma 4 are
the functions with the smallest on-set and the biggest dc-set
satisfying the bi-decompositions with respect to the ⇒, ⇐,
and NAND operations.

C. Decompositions based on XOR and XNOR

If we want to represent f as the XOR between its approxi-
mation g and the function h, so that f = g⊕h, by the linearity
of the XOR operator we immediately derive that h must be
defined as h = f⊕g. Indeed, where f and g assume the same
(specified) value, h must evaluate to 0, while h must be equal
to 1 where f and g differs. Finally, h can get any value on
the dc-set set of f , independently of the value of g. Thus,

(i) g can be any approximation of f , derived by both 0→ 1
and 1→ 0 complementations of some output bits of f .

(ii) hon describes the error introduced by the approximation:

hon = f on ⊕ gon

hdc = f dc

hoff = f on ⊕ gon = f on ⊕ goff .

Analogously, we can observe that in order to represent f as
f XNOR g, it is necessary that

hon = f on ⊕ gon = f off ⊕ gon

hdc = f dc

hoff = f off ⊕ gon = f on ⊕ gon .

In this case, g is a 0↔ 1 approximation of f , whose errors
are described by hoff. We conclude proving the correctness of
our approach for these last two binary operations.

Lemma 5: Let f be an incompletely specified function
depending on n binary variables, and let g be a completely
specified approximation of f .

1) If g is a 0 ↔ 1 approximation of f , and h is an
incompletely specified function s.t. hon = f on ⊕ gon and
hdc = f dc, then f = g ⊕ h, i.e., f = g XOR h.

2) If g is a 0 ↔ 1 approximation of f , and h is an
incompletely specified function satisfying hon = f off⊕gon

and hdc = f dc, then f = g ⊕ h, i.e., f = g XNOR h.
Proof. The correctness of these decomposition follows imme-
diately from the linearity of the XOR and XNOR operations,
and from the hypothesis on h. Indeed, for any minterm w in
f on or in f off we have:

g(w)⊕ h(w) = g(w)⊕ (f(w)⊕ g(w)) = f(w)

g(w)⊕h(w) = g(w) ⊕ (f(w) ⊕ g(w)) = f(w) .

The overall results of this analysis, together with the def-
initions of the on-, off-, and dc-set of the function h are
summarized in Table II.

IV. EXPERIMENTAL RESULTS

The method described in the previous sections is very
general and can be applied to any approximation technique.
In order to experimentally study the proposed approach, we
discuss its application to a 0 → 1 known approximation
method [2]. Thus, in this section we discuss the experimental
results obtained by applying the techniques that require a
0→ 1 approximation of f (i.e., AND and 6⇒, see Table II).
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Fig. 2. Karnough maps for the function f = x1(x3⊕x4)+x2(x3⊕x4) (a),
its approximation g = (x3⊕x4) (b), and the quotient function h = x1+x2.
The pseudoproduct x1(x3⊕x4) in (a) and its expansion in (b) are represented
with a solid red line. The pseudoproduct x2(x3 ⊕ x4) is represented in (a)
with a dashed blue line. Finally, a cover for h is represented in (c) with a
solid green line.

A. Approximation method: computation of g

We applied our decomposition method to the synthesis
of Boolean functions in three-level Sum of Pseudoproducts
or SPP forms. SPP networks are three-level XOR-AND-OR
forms introduced in [7] as a direct generalization of SOP
forms. They are obtained generalizing cubes to pseudocubes
where literals in cubes may be replaced by XOR factors (i.e.,
exclusive or of literals) in pseudocubes. Since XOR gates are
sensitive to some structural regularities of Boolean functions
that are difficult to express using just AND and OR gates, they
help when minimizing to derive more compact expressions.
For technological reasons, SPP forms are further restricted to
XOR factors with at most k literals [4], [5]; in particular, the
approximation heuristic proposed in [2] and applied in this
paper refers to SPP forms with k = 2, called 2-SPP forms [5],
which exhibit a compact area, reduced delay (due to bounded
number of levels), and reasonable synthesis time [1]. As an
example, the function f represented by the Karnaugh map in
Figure 2 (a) has a minimal SOP fSOP = x1x3x4+x1x3x4+
x2x3x4+x2x3x4 with 4 products and 12 literals, vs. a minimal
2-SPP expression f2−SPP = x1(x3⊕x4)+x2(x3⊕x4), with
only 2 pseudoproducts and 6 literals.

2-SPP forms can be over-approximated, as studied in [2],
by expanding heuristically pseudoproducts by applying the
following two steps: (i) evaluate the cost (i.e., the number
of 0 → 1 complementations) and the gain of the expansion
of each pseudoproduct in an initial 2-SPP cover of f ; and (ii)
select the set of pseudoproducts whose expansion guarantees
the maximum gain within a given error rate. As a fact, the
expansion of pseudoproducts implies a reduction of literals in
the algebraic expression; moreover, expanded pseudoproducts
might cover some other pseudoproducts, which are removed
from the cover. Consider again the function f in Figure 2 (a),
and suppose to expand the first pseudoproduct x1(x3 ⊕ x4)
removing the literal x1. This introduces two 0 → 1 com-
plementations, as the two off-set minterms x1x2x3x4 and
x1x2x3x4 are moved to the on-set (see the red minterms in
Figure 2 (b)). The new pseudoproduct covers entirely the other
pseudoproduct x2(x3⊕x4) that can be then removed from the
initial cover. In this way, we derive an over-approximation g
of f whose 2-SPP form consists in just one pseudoproduct:
g2−SPP = x3 ⊕ x4.The quotient h has the same on-set of f ,

it is 0 on the minterms x1x2x3x4 and x1x2x3x4, and it is
don’t care otherwise, yielding h2−SPP = x1 + x2, as shown
in Figure 2 (c).

Since in the present study we use an approximation of f to
derive an exact bi-decomposed representation, we computed
g in a slightly different way. Instead of setting an error rate,
which is not crucial for our purposes, we allowed more free-
dom to the 2-SPP minimizer: we expanded all pseudoproducts
in an initial 2-SPP cover, moving off-set minterms involved
in the expansion to the dc-set. Then, we re-synthesized the
function with the extended dc-set. By so doing, the actual
error rate of the approximation g depends on the benchmark.

B. Computation of h and bi-decomposition’s analysis

We study the performance of the proposed approach by
comparing the 2-SPP form of the given function f to the
AND (and 6⇒) of the 2-SPP forms for g and h. We considered
several benchmarks with different error rates from the collec-
tion [12], described in Tables III and IV, where due to space
limits we report only a significant subset of the functions as
representative indicators of our experiments. The algorithms
were implemented in C, using the CUDD library for BDDs to
represent Boolean functions. The computational experiments
were performed on a Linux Intel Core i7-7700 CPU with 8
GB of RAM.

In the experiments, the bi-decomposition of f is derived
as follows: 1) The 2-SPP over-approximation (g) of f is
computed following the strategy described in Section IV-A,
then g is minimized in 2-SPP form; 2) the on-set and dc-set
of h are computed using f and g by the formulas in Table II
for AND (resp., 6⇒) with OBDD operations; 3) h is minimized
in 2-SPP form; 4) the bi-decomposition of f is computed as
AND (resp., 6⇒) of the two 2-SPP forms for g and h.

The theoretical results in Section III suggest that this
method should be applied when the approximation g of f
is particularly compact and the error rate is not too high.
The experimental results confirm this observation: in fact, we
obtained interesting results when the error rate is less than
10% as shown in Table III. Moreover, for another subset of
benchmarks, also very high error rates between 40% and 50%
yielded good results, reported in Table IV. In some cases the
resulting gain is high, probably due to the fact that the area
of g becomes very small, and the number of don’t cares of h
is enough to guarantee its compact representation.

The first column in Tables III and IV reports the name of the
instance and its input and output size. The following column
shows the time (in seconds) required for the construction of
g and h. The next two columns report the area of the 2-
SPP forms for f and g estimated with the SIS tool [9] after
technology mapping (mcnc.genlib). The following column
describes the effective error rate of the approximated function
g. The next column reports the gain in area of g with respect
to f . The following couples of columns report the area and
gain in area of (g AND h) and (g 6⇒ h), respectively. The area
of h can be directly inferred as the difference between the area
of the bi-decompositions and of g. Finally, we note that the



TABLE III
EXPERIMENTAL COMPARISON OF BENCHMARKS WITH ERROR RATE LESS THAN 10%.

Benchmark Time (s) Area f Area g %Errors %(Area f -Area g)/Area f AreaAND Gain AND (%) Area 6⇒ Gain 6⇒ (%)
bcb (26/39) 1.20 4662 4154 0.1 10.90 4855 -4.14 4800 -2.96
br1 (12/8) 0.04 384 356 0.35 7.29 370 3.65 370 3.65
br2 (12/8) 0.04 275 250 0.38 9.09 263 4.36 263 4.36
mp2d (14/14) 0.09 204 65 3.73 68.14 210 -2.94 210 -2.94
alcom (15/38) 0.19 210 140 4.93 33.33 210 0.00 210 0.00
spla (16/46) 0.39 1792 1394 5.01 22.21 1919 -7.09 1931 -7.76
al2 (16/47) 0.59 328 226 5.03 31.10 340 -3.66 342 -4.27
ex5 (8/63) 0.12 935 206 5.52 77.97 925 1.07 907 2.99
newtpla2 (10/4) 0.01 56 19 5.62 66.07 55 1.79 55 1.79
ts10 (22/16) 0.67 901 609 5.76 32.41 1153 -27.97 1173 -30.19
chkn (29/7) 0.25 744 370 5.78 50.27 995 -33.74 971 -30.51
opa (17/69) 0.49 1566 1482 8.09 5.36 1578 -0.77 1578 -0.77
b7 (8/31) 0.10 198 146 8.52 26.26 197 0.51 194 2.02
risc (8/31) 0.08 204 150 8.62 26.47 203 0.49 200 1.96

TABLE IV
EXPERIMENTAL COMPARISON OF BENCHMARKS WITH ERROR RATE MORE THAN 40%.

Benchmark Time (s) Area f Area g %Errors %(Area f -Area g)/Area f AreaAND Gain AND (%) Area 6⇒ Gain 6⇒ (%)
dist (8/5) 0.03 669 77 40.62 88.49 736 -10.01 718 -7.32
max512 (9/6) 0.01 817 3 43.23 99.63 769 5.88 745 8.81
ex7 (16/5) 0.05 192 32 43.51 83.33 338 -76.04 386 -101.04
z4 (7/4) 0.01 140 3 43.75 97.86 135 3.57 136 2.86
clip (9/5) 0.03 430 24 44.65 94.42 142 66.98 47 89.07
max1024 (10/6) 0.03 1362 48 44.79 96.48 946 30.54 838 38.47
adr4 (8/5) 0.02 180 27 45.00 85.00 223 -23.89 215 -19.44
radd (8/5) 0.00 119 3 45.62 97.48 144 -21.01 141 -18.49
add6 (12/7) 0.05 292 3 46.54 98.97 402 -37.67 401 -37.33
log8mod (8/5) 0.01 237 11 47.50 95.36 219 7.59 221 6.75
Z5xp1 (7/10) 0.01 273 10 48.91 96.34 271 0.73 265 2.93

behavior of the two considered bi-decomposed forms is quite
similar, i.e., we can observe how the gain in area occurs almost
always for the same benchmarks.

V. CONCLUSIONS

In this paper we described and analyzed an approach to
Boolean function exact bi-decomposition based on approxima-
tion, and we reported its application to a 0→ 1 known approx-
imation method, for the two operators AND and 6⇒. Future
work includes a wider experimental investigation, considering
all binary operators and all approximations: 0 → 1, 1 → 0,
and 0 ↔ 1; we plan also to extend it to other approximation
frameworks, e.g., approximated SOP forms.

We are also interested in the investigation of bi-
decomposition combined with approximation methods that de-
rive the closest approximate regular version of a given Boolean
function, as proposed for instance in [3]. Indeed, the approx-
imation toward regularity approach presents a drawback: it
may introduce an unbounded number of errors, producing
a low-quality approximation g. Our approach, however, can
overcome this problem, thanks to the presence of the function
h, whose aim is precisely to correct the errors introduced by
the function g. Moreover, we could derive h, and then exploit
it to correct partially instead than totally the errors introduced
by g. In other words, we could use h to correct the unbounded
’regular’ approximation g, and then approximate h, in any
bounded-error approximation framework, in order to derive
an overall compact approximation of the original function f ,
with a bounded number of errors.

REFERENCES

[1] A. Bernasconi, V. Ciriani, R. Drechsler, and T. Villa, “Logic Mini-
mization and Testability of 2-SPP Networks,” IEEE Trans. on CAD of
Integrated Circuits and Systems, vol. 27, no. 7, pp. 1190–1202, 2008.

[2] A. Bernasconi and V. Ciriani, “2-SPP Approximate Synthesis for Error
Tolerant Applications,” in 17th Euromicro Conference on Digital System
Design, DSD 2014, Verona, Italy, August 27-29, 2014, 2014, pp. 411–
418.

[3] A. Bernasconi, V. Ciriani, and T. Villa, “Approximate logic synthesis by
symmetrization,” in Design, Automation & Test in Europe Conference
& Exhibition, DATE 2019, Florence, Italy, March 25-29, 2019, 2019,
pp. 1655–1660.

[4] V. Ciriani, “Synthesis of SPP Three-Level Logic Networks using Affine
Spaces,” IEEE Trans. on CAD of Integrated Circuits and Systems,
vol. 22, no. 10, pp. 1310–1323, 2003.

[5] V. Ciriani and A. Bernasconi, “2-SPP: a Practical Trade-Off between SP
and SPP Synthesis,” in 5th International Workshop on Boolean Problems
(IWSBP2002), 2002, pp. 133–140.

[6] J. Cortadella, “Timing-Driven Logic Bi-Decomposition,” IEEE Trans. on
CAD of Integrated Circuits and Systems, vol. 22, no. 6, pp. 675–685,
2003.

[7] F. Luccio and L. Pagli, “On a New Boolean Function with Applications,”
IEEE Transactions on Computers, vol. 48, no. 3, pp. 296–310, 1999.

[8] A. Mishchenko, B. Steinbach, and M. Perkowski, “An Algorithm for
Bi-Decomposition of Logic Functions,” in ACM/IEEE 38th Design
Automation Conference (DAC), 2001, pp. 103–108.

[9] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,
H. Savoj, P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli, “SIS:
A System for Sequential Circuit Synthesis,” Tech. Rep. No. UCB/ERL
M92/41, Berkeley, CA, Tech. Rep., 1992.

[10] T. Villa, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, “Synthesis
of Multi-Level Boolean Networks,” in Boolean Methods and Models
in Mathematics, Computer Science and Engineering, Encyclopedia of
Mathematics and its Applications 134, Y. Crama and P. L. Hammer,
Eds. Cambridge University Press, 2010, pp. 675–722.

[11] S. Yamashita, H. Sawada, and A. Nagoya, “New methods to find optimal
non-disjoint bi-decompositions,” in Proc. of 1998 Asia and South Pacific
Design Automation Conference, Feb 1998, pp. 59–68.

[12] S. Yang, “Logic Synthesis and Optimization Benchmarks User Guide
Version 3.0,” Microelectronic Center, User Guide, 1991.


