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With the increase of social media usage, a huge new source of data has become available.
Despite the enthusiasm linked to this revolution, one of the main outstanding criticisms in
using these data is selection bias. Indeed, the reference population is unknown. Nevertheless,
many studies show evidence that these data constitute a valuable source because they are more
timely and possess higher space granularity. We propose to adjust statistics based on Twitter
data by anchoring them to reliable official statistics through a weighted, space-time, small
area estimation model. As a by-product, the proposed method also stabilizes the social media
indicators, which is a welcome property required for official statistics. The method can be
adapted anytime official statistics exists at the proper level of granularity and for which social
media usage within the population is known. As an example, we adjust a subjective well-
being indicator of “working conditions” in Italy, and combine it with relevant official
statistics. The weights depend on broadband coverage and the Twitter rate at province level,
while the analysis is performed at regional level. The resulting statistics are then compared
with survey statistics on the “quality of job” at macro-economic regional level, showing
evidence of similar paths.
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1. Introduction

Nowadays, researchers have potentially more data than ever before which has led to new

progress in many fields of academia, government, industry, and commerce. However,

although institutions and academics once had access to all the data produced because they

collected or created it, have access to a smaller fraction of the data, since these data now

locked up inside private companies. This information gap between the public and private

sector requires further attention, but this discussion is outside of the scope of the present

work. Social Networking Sites (SNS, or “social media”) represent a special case for which a

vast amount of data could be potentially accessible to public research.

Especially in the context of well-being measurement, the dramatic lack of timely data

may be compensated by also considering alternative sources of data. SNS are a source

of large and continuous flow of information, opinions, emotions, feelings and some

researchers (Kwong et al. 2012; Hofacker et al. 2016) have considered them to be the

largest available focus group in the world. The opinions expressed on SNS cover a large
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spectrum of topics and interests, engage people from different social strata and usually do

not suffer from censorship, although some exceptions have been investigated in King et al.

(2013, 2014, 2017) .

Of course, these alternative sources of data are not, by design, intended to be used for

the calculation of official statistics and in most cases, they are affected by different types

of bias (Couper 2013). For example, in order to appear in the SNS data collections,

individuals have to take some steps or satisfy some constraints like: have internet access

(only 57% of the world population are in this set), open an account on the particular SNS

targeted by the researchers for their analyses, and actively use it (about 45% of the world

population are active users of SNS, see Table 1).

Other limitations come from the SNS themselves. No one can guarantee that these

data will always exist in the future (we have seen the rise and fall of several platforms in

recent years, changes of data structures and access policies). The use of public API

(Application Programming Interface) or, even worse, web-scraping to obtain the data

implies some lack of knowledge about the amount and quality of the data exposed by

the SNS.

Despite the limitations that will be discussed in detail also in Section 3, there is a

growing literature on social media as a source of data for preparing official statistics or

composite indicators (see, e.g., Struijs et al. 2014; Culotta 2014; Daas et al. 2015;

Alajajian et al. 2017; Tam and Clarke 2015; Kitchin 2015; Braaksma and Zeelenberg

2015; Severo et al. 2016; Van den Brakel et al. 2017) because nontraditional data are

available at higher granularity, in time and space, compared to the data collected to

produce official statistics.

In this article, we propose to extract emotions from social networks (Iacus et al. 2015,

2017) with the aim of building alternative subjective/perceived well-being indicators

without directly surveying social network users, but only by interpreting their

conversations on the internet. This approach of “listening” rather than “asking” has the

potential advantage of getting rid of the nonresponse bias typical of surveys. The high-

frequency rate of the data also allows taking into account that well-being is a mix of short-

term, seasonal and long-term components.

Last, but not least, this article also proposes to address the selection bias problem of

SNS indicators by anchoring them to official statistics and through the application of a

space-time small area estimation (SAE) model (Rao 2005; Marhuenda et al. 2013) coupled

with a weighting scheme.

The article is structured as follows: Section 2 introduces a multidimensional indicator of

subjective well-being drawn from Twitter data: the Subjective Well-Being Index (SWBI).

Section 3 discusses our proposal to control for sampling bias in Twitter-based indicators,

Table 1. Penetration data from the We Are Social and Hootsuite’s report: “Digital in 2019” (Jan 2019),

available at http://wearesocial.com; Annual digital growth from January 2018 to January 2019 in brackets.

Area Internet users Active social medial users

Global 57%(þ9.1%) 45%(þ9%)
European 86%(þ7.6%) 55%(þ3.2%)
Italian 92%(þ27%) 59%(þ2.9%)
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combining a weighting scheme with a times-space SAE model. Section 4 restricts the

focus to the component of the SWBI aimed at measuring the “quality of job/at work” and

presents the results of an application of the method proposed in Section 3. Finally,

Section 5 summarizes the conclusions of this work.

2. The SWBI: a Subjective Well-Being Index from Twitter Data

Since 2009, driven by the work of the Stiglitz Commission (Stiglitz et al. 2009), a large

number of well-being indices have been developed – as alternatives or complements to

traditional economic indicators, such as the GDP – with different structures, considering a

great variety of dimensions, and for many purposes (Fleurbaey 2009). Generally, these

new indicators come from survey data that, despite all efforts (Schwarz 1999; Schwarz and

Strack 1999; Kahneman and Krueger 2006), still have some methodological drawbacks

(Deaton 2011; Feddersen et al. 2016).

In particular, as Deaton (2011) pointed out, surveys are a potentially biased source of

information; reports of well-being coming as answers to explicit questions may be

influenced by contextual elements, such as the order of the questions or simply the fact that

someone is asking for a personal well-being evaluation. The result is that information from

surveys, as exemplified, is often subject to response error, in addition to the well-known

nonresponse bias. Furthermore, surveys are costly and this makes it difficult to obtain data

with a high time frequency or an adequate space granularity.

2.1. Sentiment Analysis and Twitter Data

As described in the introduction, SNS offer a large amount of data (Pentland 2014) that

can be used for research purposes, enabling a new dimension of social dynamics study, as

never before. Thanks to the progress of statistical methods for big data, social scientists are

now able to manage and analyze data that are large in terms of dimensionality, size and

time frequency (Lazer et al. 2009; King 2011). SNS like Twitter and Facebook, to mention

a couple of them, have disclosed huge amounts of textual data and science shifted from

traditional text mining to modern sentiment/opinion analysis with the aim of extracting

semantic content from these types of data (Iacus 2014; King 2016).

The Integrated Sentiment Analysis (iSA) algorithm (Ceron et al. 2016) has been used

in this work to construct a composite index of subjective well-being that attempts to

capture various aspects of individual and collective life (Curini et al. 2015; Iacus et al.

2015). iSA is a human supervised machine learning method, in which a sample of texts

(training set) is then first read and manually classified by human coders, and the rest of

the corpus (test set) is automatically classified by the algorithm. The supervised part is

essential, in that this is the step where qualitative information can be extracted from a text

without relying on dictionaries or special semantic rules, but rather on cultural,

psychological and emotional interpretation. Other approaches based on user-defined

dictionaries exist, but mainly focus on the concept of happiness (Bollen et al. 2011; Zhao

et al. 2018). The advantage of iSA over other machine learning techniques is that it is

designed to directly estimate directly the aggregated distribution of the opinions (e.g.,

positive, negative, neutral) without passing through the individual classification of posts

in the test set. This approach vastly reduces the estimation error. Moreover, as iSA is a

Iacus et al.: Well-being, Social Media Data and Sampling Bias 317



sequential method, in this context of highly noised data, the size of the training set

needed to reach the same accuracy of other methods is usually smaller by a factor of 10

or 20 times. The reader can refer to Ceron et al. (2016) for the technical explanation of

the method and its statistical properties.

It is important to note that the Twitter posts do not belong to individuals randomly chosen

from a physical population (Baker et al. 2013; Murphy et al. 2014). The reference population

is the population of posts of all Twitter accounts selected in the analysis. Moreover, Twitter

accounts cannot be uniquely associated with individuals and some accounts are more active

than others. For these reasons, the focus of our analysis is on the total volume of the posts

collected (in Italy, during the reference period) through the public Twitter “search” and

“streaming” API. These API are supposed to return a random sampling of the whole Twitter

database, although by combining different strategies it is possible to get more. Comparing

the volumes of the tweets we analyzed with the volumes obtained through a commercial

provider, we could claim an almost similar coverage. However, for an institutional player, a

commercial agreement should be considered as an alternative to our approach to data

collection. A further restriction applies to our data set: only geo-referenced posts, about

1–5% of all tweets, have been collected. This further selection depends on individual Twitter

users’ privacy settings and hence may introduce additional bias. In our experience, if the

analysis is based on geo-localized tweets at province level and the estimates are then

aggregated at country level, the results are similar to those obtained on the whole set of tweets

(with or without geo-reference information). From this personal and limited evidence, we can

speculate, without any proof, that if this bias exists, it has a limited effect when data are

aggregated at country level, but this is worth a further systematic investigation. To

summarize, these data are clearly subject to selection bias arising in different ways: access to

the internet,Twitter usage (not all people open and write on a Twitter account), Twitter

platform API subsampling, and user specific privacy settings for geo-reference information.

An attempt to deal with this overall bias will be presented in Section 3.

On the other hand, the advantage of using Twitter data is that the collection of data can

be done in (almost) continuous time and in a wide range of sub-regional areas (in our case

the Italian provinces). Finally, instead of asking something through a web form, thanks to

the human supervised qualitative analysis, it is possible to capture expressions of well-

being directly from the texts.

2.2. The Construction of the SBWI Index

The SWBI index (Iacus et al. 2015) is a multidimensional well-being indicator whose

components were inspired by the dimensions adopted by the New Economic Foundation

think-tank for its Happy Planet Index (New Economics Foundation 2012).

In summary, the SWBI consists of eight dimensions that concern three different well-being

areas: personal well-being, social well-being, and well-being at work. More specifically,

1. Personal well-being is defined as:

† emotional well-being: the overall balance between the frequency of

experiencing positive and negative emotions, with higher scores showing

that positive feelings are felt more often than negative ones (emo);
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† satisfying life: having a positive assessment of one’s life overall (sat);

† vitality: having energy, feeling well-rested and healthy while also being

physically active (vit);

† resilience and self-esteem: a measure of individual psychological resources,

of optimism and of the ability to deal with life stress (res); and

† positive functioning: feeling free to choose and having the opportunity to do

it; being able to make use of personal skills while feeling absorbed and

gratified in daily activities (fun).

2. Social well-being is defined as:

† trust and belonging: trusting other people, feeling treated fairly and

respectfully while experiencing sentiments of belonging (tru); and

† relationships: the degree and quality of interactions in close relationships with

family, friends and others who provide support (rel).

3. Well-being at work is defined as:

† quality of job: feeling satished with a job, experiencing satisfaction with

work-life balance, evaluating the emotional experiences of work and work

conditions (wor).

The tweets written in the Italian language and posted from Italy constitute the SWBI’s

data source, and they were acquired via the public Twitter API. As mentioned, a share of

the data (around 1% to 5%) includes geo-referenced information, which allows the

estimation of the SWBI at a local level. As an experiment, in Iacus et al. (2019), the SWBI

index has been estimated for the Italian provinces from 2012 to 2016 and compared to the

“Il Sole 24 Ore” Quality of Life index (an indicator of life quality that is yearly evaluated

and published by the “Il Sole 24 Ore” economic-financial newspaper in Italy).

Please note that, as SWBI does not use individual microdata, but is based on the

aggregated sentiment analysis, it should be interpreted only as an aggregate measure of the

level of well-being of a society.

3. A Proposal to Control for Bias in Social Media Estimates

In this section, we propose a method that makes use of official statistics to control the

selection bias induced by the use of big social network data. In addition to a brief preamble

to the basic SAE models, our approach, which is based on a weighted method and the SAE

model, is discussed in what follows.

3.1. General SAE Models

SAE models play an important role in sampling theory and are employed when one needs

to produce estimates in areas that are smaller than those for which the survey was planned.

A direct estimator (ŷd), based only on the data coming from a limited-size sample from

the small area, might be very unreliable; SAE indirect estimators are traditionally used to

overcome this issue. Among indirect estimators, the model-based estimators are obtained

by an explicit regression model, where a relationship between the target variable and some

covariates is assumed. Model-based estimators can be classified as unit-level models, when
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covariates are available at the unit level, and area-level models, when data are available

only as area aggregates. In our case, as SWBI and official statistics exist only at province or

regional level, the only option available is the area-level model.

The basic area-level model is the Fay-Herriot (FH) model (Fay and Herriot 1979),

which is obtained as a linear mixed model in two stages consisting of a “sampling model”

and a “linking model”. Let ŷd be a direct estimator of md, a target unknown measure in area

d ¼ 1, : : : , D: in the first stage, the “sampling model” (1) represents the uncertainty due to

the fact that the target measure md is unobservable and instead of it, only its measure on the

sample ŷd is available.

ŷd ¼ md þ ed ð1Þ

ŷd is unbiased, but unreliable, due to the small observed sample; and ed are the sampling

errors, which, given the characteristic of interest in d-th area, are assumed, for model

convenience, to be independent and identically distributed (i.i.d.) with known variances,

N 0;s 2
d

� �
:

In the second stage, the “linking model” (2) the area target measures md are linearly

related with a vector of area-level covariates x.

md ¼ x 0dbþ ud ð2Þ

where b is the common regression coefficients vector, and ud are the model errors,

un-observed and typically assumed i.i.d. from N 0;s 2
u

� �
. Combining the two model

components (1) and (2), the hnal linear mixed model is dehned as follow:

ŷd ¼ x 0dbþ ud þ ed ð3Þ

Several extensions of this basic area model have been proposed (Rao and Yu 1994; Ghosh

et al. 1996; Singh et al. 2005; Marhuenda et al. 2013). Recently, these models have also

been used with big data (Porter et al. 2014; Marchetti et al. 2015; Marchetti et al. 2016;

Falorsi et al. 2017), which has been suggested for use as covariates when official statistics

are either missing or poor. In particular, big data are used as covariates in area-level FH

models, because these data are often unit level at the unit-level due to technical problems

or legal restrictions. This is the case with social media search loads, remote sensing images

or human mobility tracking.

Porter et al. (2014) used Google Trends searches as covariates in a spatial FH model,

while in Falorsi et al. (2017), the time series query share from Google Trends was adopted

as an auxiliary variable to improve the SAE model-based estimates for regional Italian

youth unemployment. Marchetti et al. (2015) and Marchetti et al. (2016) have shown that

big data improve the precision of small area estimates when used together with traditional

covariates (i.e., official statistics or administrative data). More specifically, Marchetti et al.

(2015) used big data as covariates in an FH model to estimate poverty indicators,

accounting for the presence of measurement error, due to the availability of big data on

mobility, using the Ybarra and Lohr (2008) approach. It is worth mentioning that

Marchetti et al. (2015) suggested making use of survey data in some way to take into

account the selection bias caused by the use of big data, but did not pursue this goal. This

work is an attempt to implement their idea in a systematic way.

Journal of Official Statistics320



Marchetti et al. (2016) instead, used data coming from Twitter (Curini et al. 2015) as an

instrumental covariate to estimate the Italian household share of food consumption

expenditures at a provincial level, that is, they exploit the correlation between the official

statistics indicator and social media data at regional level to reconstruct the official

statistics at sub-regional level, thanks to the granularity of the Twitter data.

Conversely to the scholars cited above, in our proposal we do not use social media data

(SWBI) as a covariate in a SAE model, but as a direct measure of the target unknown

variable (well-being), and adopt official statistics as covariates in the area model.

Following this goal, because social media data are biased, before applying the model we

endorse a weighting procedure, as discussed in the next section.

3.2. Weighting Strategy

Usually, the methods adopted in the literature used to address the selection bias problem

when using non-representative samples (e.g., the propensity score weighting

(Rosembaum and Rubin 1983) or the Heckman correction (Heckman 1979)) are based

on the use of unit level data (Cooper and Greenaway 2015). This also happens with

social media data when individual characteristics of social media users are available.

However, in light of the recently established privacy rules (GDPR) this is an increasingly

remote eventuality. Note that, for Twitter data, the individual characteristics of every

single account are not accurate or even unavailable and that SWBI is calculated as an

aggregated estimate at province level. Unfortunately, as we will see later on, as the

official statistics are available only at regional level, we adopt a hierarchical aggregation

of the data at regional level, weighted by the characteristics of provincial macro-

variables. As it will be explained via an application in Section 4, the macro-variables

consist of the broadband coverage and the Twitter rate at provincial level. The aim is to

take into account the selection bias that comes from the fact that not all people use or can

use the internet and, among those who use the internet, not all of them make use of

Twitter. The Twitter rate also compensates for the difference in Twitter volumes that we

observe through the different geographical areas.

In particular, in Section 4, we consider ŷw
dt as the regional sampling mean, where the

regional units are the weighted means of province level units, in order to overcome the

nonrandom sampling structure of the data:

ŷw
dt ¼

1
Xndt

i¼1
widt

Xndt

i¼1

yidtwidt; ð4Þ

where ndt is the number of provinces in region d at time t, and widt are the weights. The

choice of the actual weights depends on the application at hand. In Section 4, we will give

a practical example. As an estimator of the variance of Equation (4), we adopt the plug-in

estimator for weighted means:

s 2
ŷw

dt
¼

1

ndt

1
Xndt

i¼1
widt

Xndt

i¼1

y2
idtwidt 2 ŷw

dt

� �2

" #

: ð5Þ
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3.3. The Space-Time SAE Model with Weights

Since SWBI data are available for several periods of time T and domains D, we have

chosen a particular SAE model, the spatio-temporal Fay-Herriot (STFH) model proposed

by Marhuenda et al. (2013), to account for time and space correlations. This extension

considers the spatial correlation between neighboring areas, while simultaneously

including random effects for the time periods nested within areas. Thus, for domains

d ¼ 1, 2, : : : , D and time periods t ¼ 1, 2, : : : , T, let mdt be the target unknown measure

(well-being) in area d at time t. The STFH model, just as any FH model, is composed of

two stages. In the first stage, the “sampling model” is defined as:

ŷw
dt ¼ mdt þ edt; edt

ind, N 0;s 2
ŷw

dt

� �
; d ¼ 1; 2; : : : ;D; t ¼ 1; 2; : : : ; T; ð6Þ

where edt are the sampling errors that are assumed to be independent and normally

distributed, and s 2
ŷw

dt
is an estimator of the variance as defined in Equation (5).

In the second stage of the STFH model, the “linking model” is as follows:

mdt þ x 0dtbþ ud þ y dt ud
ind, N 0;s 2

1

� �
; y dt

ind, N 0;s 2
2

� �
; ð7Þ

where xdt is the column vector with the aggregated values of k covariates for the d-th area

in t-th period of time and b is the vector of regression coefficients; ud are the area effects

that follow a first-order spatial autocorrelation process, SAR(1), with variance s 2
1 , spatial

autocorrelation parameter r1 and a (d £ d) proximity matrix W. Specifically, W is a row-

standardized matrix obtained from an initial proximity matrix W I whose diagonal

elements are equal to zero and residual entries are equal to one, when the two domains are

neighbours, and zero otherwise. Normality of ud is required for the mean squared error, but

not for point estimation. Furthermore, ydt represents the area-time random effects that are

assumed i.i.d. for each area d; these effects follow a first-order autoregressive process,

AR(1), with the autocorrelation parameter r2 and variance equal to s 2
2 . Accordingly, the

final proposed linear mixed model is:

ŷw
dt ¼ x0dtbþ ud þ y dt þ edt: ð8Þ

Therefore, u ¼ r1;s
2
1 ; r 2;s

2
2

� �
is the vector of unknown parameters characterizing the

spatio-temporal STFH model. Following Marhuenda et al. (2013), who provided b̂, the

empirical best linear unbiased estimator (EBLUE) of b, and ûd and ŷ dt, the empirical best

linear unbiased predictors (EBLUPs) of ud and ydt, are both obtained by replacing a

consistent estimator û in the respective BLUE and BLUPs introduced by Henderson

(1975). The empirical estimation m̂dt under the STFH model is given by:

m̂dt ¼ x 0dtb̂þ ûd þ ŷ dt: ð9Þ

As in Marhuenda et al. (2013), we use parametric bootstrap to estimate the mean

squared error (MSE) of the EBLUPs. The MSE is calculated as follows:

MSE m̂dt

� �
¼

1

B

XB

b¼1

ûb
dt 2 mb

dt

� �2
ð10Þ
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where, “b” remarks that these estimation is performed with the bootstrap procedure. And

mb
dt ¼ x 0dtb̂þ ûb

d þ ŷ b
dt: ð11Þ

is the empirical estimation obtained in the first step of the bootstrap procedure using the

bootstrap area and time effects: ûb
d and ŷ b

dt:

In this way, the point estimate m̂dt (indirect measure of well-being) of mdt (unknown

well-being) can be supplemented with Equation (10) as a measure of uncertainty.

4. An Application to the Study of Well-Being at Work

The opportunity to integrate existing information on well-being with more information

with a strong subjective and perceived trait, as those provided by social networks or

specifically by SWBI, is a very interesting goal. In this section, with an application to

Italian context we chose to use SWBI index and official statistics to guide our proposal. In

particular, in Subsection 4.1, we describe the data that we use to implement the weighted

procedure and the SAE model, and in Subsection 4.2 we discuss the result obtained.

4.1. Data and Variables

The SWBI index over 24 quarters from 2012 to 2017 is available at provincial and regional

level. More than two hundred million tweets, in the period of the analysis were

downloaded and classified, partly manually and partly through the iSA algorithm. The

tweets have been classified as þ1 (positive), 0 (neutral), or 21 (negative). The outcome

variable is the estimated proportion of þ1’s over the proportion of þ1 and 21 and this

represents the input variable yidt in Equation (4).

As the variability of the number of tweets is remarkable, both along the time and the

space dimension, there is the need to take into account this diversity. The range of data

extends from a minimum of 1,727 tweets in 2016-Q1 for the Basilicata region to a

maximum of 2,728,640 in 2017-Q2 for the Lombardia region. (Note that Valle d’Aosta has

been dropped from the analysis as, considering that it consists of a single province, the

proposed approach is not applicable because for example, random effects cannot be

estimated.)

In order to have a more reliable view of the SWBI data at the regional level, we use

the Twitter rate (i.e., the ratio between the number of tweets analysed and the population

size in the area in the same period). The distribution of the Twitter rate over time

among the Italian regions is shown in Figure 1. The average Twitter rate is around 18%

(SD ¼ 12.29), with a minimum regional value higher than 9% (SD ¼ 4.93) in Campania,

and a maximum regional value higher than 30% (SD ¼ 21.15) in Molise (time averages

for all the regions are blue points in the figure). The dispersion during the observational

period is lower for large regions like Lazio, Puglia, Campania and Lombardia, and higher

for small regions like Molise and Marche.

A better understanding of the SWBI information using the Twitter rate is made evident

by examining Figure 2. The Twitter counts of 2017-Q4, shown on the left side of the

figure, give the erroneous impression that most of the SWBI information comes from only

a few large more populous regions (Piemonte, Lombardia, Veneto, Emilia and Campania),
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while the Twitter rates displayed on the right side of the figure give the correct conclusion

that all regions are homogeneously monitored.

4.1.1. The Construction of the Actual Weights

To implement the weighting procedure introduced in Subsection 3.2, after a selection

process to define significant variables, we use the Twitter rate and the broadband coverage.

The Twitter rate is closely related to mobile phone shares and broadband coverage is a

measure of internet capacity. The use of these two variables is an attempt to take into

account the selection bias. The Twitter rate, computed in each period and at province level,
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Fig. 1. Twitter rate for the considered Italian regions from the first quarter of 2012 to the last quarter of 2017.
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Fig. 2. Twitter counts map, on the left, and Twitter rates map, on the right, in the last quarter of 2014.
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can be considered a good proxy of the use of Twitter for Italians. The broadband coverage is

annual public data provided by II Sole 24 Ore and Infratel Italia for all the Italian provinces

and can be considered the opportunity to access the internet in the different provinces.

Coverage is quite stationary during a single year but, over time, what can happen is only an

improvement of coverage in space or in signal intensity. Therefore, we replace the missing

values with the data from the previous year to ensure that the coverage is not overestimated.

The average broadband coverage is around 94% (SD ¼ 4.68), with a minimum regional

value of 72% (SD ¼ 4.57) for Isernia in the Molise region. In 2012, the coverage mean was

92.15% (SD ¼ 3.9) and in 2017, it was 92.65% (SD ¼ 5.6). So, during the examined time

period, the average broadband coverage remained the same, but the variability among

regions increased, with an growth of around 42%. In detail, calling w1;idt the Twitter rate and

w2;idt the broadband coverage, to apply to the weighting procedure for ŷw
dt in Equation (4) and

for s 2
ŷw

dt
in Equation (5), we computed the weights as widt ¼ w1;idt · w2;idt.

4.1.2. Choosing the Covariates Among the Available Official Statistics

To apply the model proposed in Subsection 3.3, we need official statistics to use as

covariates. After the Stiglitz’s Commission suggestions, the Italian scenario of well-being

measurement has increasingly changed. For example, the Italian National Institute of

Statistics (ISTAT) set up the equitable and sustainable well-being project, where they plan

a very complex system of well-being indicators, just following the same Commission

suggestions. In 2013, they provided the BES (“Benessere Equo e Sostenibile”, which, in

English, is “Fair and Sustainable Well-being”) index for the Italian regions, which

analyses several dimensions of well-being.

Among these, the “work and life balance” dimension is the one that more closely relates

to our research, although the construction of the composite indicator changed over time

and it is not available for all quarters and provinces of Italy, making it impossible to use in

our study.

ISTAT also provides other measures of well-being from the sample survey “Aspect of

daily life”; however, these indicators are annual and representative for the five Italian

macroeconomic areas: North-East, North-West, Center, South and Islands.

Discarding the idea to use the BES indexes and the “Aspect of daily life” survey

measures, as covariates, we decided to rely on the only official statistics distributed by

ISTAT that are available at least at the regional level and for the period of the analysis

(although only for every quarter, the ISTAT data are available: http://dati.istat.it/ and

http://demo.istat.it/). Despite the fact that the proposed model should work for each

component of the SWBI at the province level, due to the limited availability of official

statistics at frequencies higher than the year and at the sub-national level, we restrict our

empirical analysis to the wor dimension of the SWBI. Even though the wor dimension

could be monitored daily at province level, for the analysis they have been aggregated

quarterly for each province (ŷidt).

The distribution of the unweighted wor (ŷdt) with regional aggregation over time is

shown in Figure 3. The average of wor is 35.34% (SD ¼ 25.40) with a minimum average

regional value around 33% (SD ¼ 21.01) in Sardegna and a maximum average regional

value higher than 38% (SD ¼ 28.48) in Lazio. The minimum and the maximum values

of the quality of work are 9.01% for Lombardia in 2012-Q2 and 93.01% for Trentino in
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2015-Q3, respectively. The similar averages are 35.79% (SD ¼ 26.87) and 34.88%

(SD ¼ 24.74), respectively.

The considered area level auxiliary variables, before any process of selection, in the job

context were as follows: the unemployment and inactivity rates, computed both in relation to

the labour force (as they are traditionally calculated) and to the resident population; and the

birth rate, the mortality rate and the natural rates, in the socio-demographic context. In the

numerator of the natural rate there is the natural balance, which is the difference between

births and deaths. After fitting the model, the selected covariates that make up the matrix x in

Model (8), are the “unemployment rate” x1 and the “mortality rate” x2. The selection of these

variables is the result of a standard model selection procedure after testing different variable

configurations.

A large number of studies – since Clark and Oswald (1994) – provides documentary

evidence of the negative relationship between unemployment and subjective well-being. It

has also been argued that getting unemployed people back to work can do more for their

well-being perception than subsidizing their unemployment status (see, e.g., Winkelmann

2014). In other words, non-pecuniary costs of unemployment are significant: therefore,

higher unemployment rate (i.e., a higher risk of being unemployed) is here assumed to be

related to the evaluation of well-being at work.

The relationship between working conditions and subjective well-being is often

mediated, in the same literature, by health conditions: mortality or morbidity rates are

assumed, in this respect, as proxies of health conditions.

The distribution of the unemployment rate over time among regions, as shown in

Figure 4, reveals an average unemployment rate of 12.37% (SD ¼ 5.31), with a minimum

average regional value around 5% (SD ¼ 0.78) for Trentino and a maximum average

regional value higher than 22% (SD ¼ 2.13) for Calabria. The same two regions also

register the minimum and maximum values for the unemployment rate, 3.59% in 2017-Q3

and 25.15% in 2017-Q4, respectively.
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Fig. 3. The SWBI’s unweighted wor dimension (ŷdt) for the considered Italian regions from the first quarter of

2012 to the last quarter of 2017.

Journal of Official Statistics326



The distribution of the mortality rate over time among regions, as shown in Figure 5,

illustrates an average mortality rate of 0.267% (SD ¼ 0.04) with a minimum average

regional value around 0.216% (SD ¼ 0.022) in Trentino and a maximum average regional

value higher than 0.343% (SD ¼ 0.032) in Liguria. The same two regions also register the

minimum and maximum values for the mortality rate, 0.19% in 2014-Q3 and 0.42% in

2017-Q1, respectively.

4.2. Results and Discussion

The weighted quality of job dimension ŷw
dt (weighted wor), obtained following Equation

(4), has remained stable with little variability between regions (Figure 6). The distributions
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Fig. 4. Unemployment rate (x1) for the considered Italian regions from the first quarter of 2012 to the last

quarter of 2017.
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were compressed until the second half of 2015, when they grew. This is especially evident

from the second half of 2016, when this dimension attained values greater than 80, and

even the differences between the regions were more marked, and the box-plots less

crushed. Moreover, the average of ŷw
dt is 36.17% (SD ¼ 26.38) with a minimum average

regional value around 34% (SD ¼ 22.91) for Sardegna and a maximum average regional

value higher than 39% (SD ¼ 29.24) for Lazio, reflecting the earlier distributions shown in

Figure 3 for ŷdt (unweighted wor). The minimum and maximum values of the ŷw
dt

remained with Lombardia in 2012-Q2 (8.99%) and Trentino in 2015-Q3 (92.76%),

respectively, and their averages were still similar (36.68% with SD ¼ 27.46 for

Lombardia and 37.99% with SD ¼ 28.66 for Trentino).

Since comparing rankings is a valuable tool for policy makers and analysts, here we

propose some discussions about them. The different rankings obtained by the two indices,

both unweighted ŷdt and weighted ŷw
dt, show no differences for around 4% of the cases

(D ¼ ranking differences), and only 15.6% of the cases show a D greater than four

positions. The mean of the D is equal to 2.19 (SD ¼ 2.58). Regions with the greatest

differences were Trentino, Campania, Marche, and Sardegna, with the first two showing

position improvement and the last two showing position weakening. For Trentino in

particular, we remark that, after the weighting procedure, the greatest improvement took

place during all four quarters of 2017.

In the applied STFH Model (8), data are available for T ¼ 24 time instances, and the

domains are D ¼ 19, the considered Italian regions. Our data are “balanced” in that each

region is measured using the same number of times and on the same occasions.

The row-standardized proximity matrix Wc of dimension 19 £ 19 has been obtained from

an initial proximity matrix, WI
c, whose diagonal elements are equal to zero and residual

entries are equal to one, when the two regions had some common borders, and zero otherwise.

Since in Italy, there are two regions corresponding to two islands (Sicilia and Sardegna), for

these regions, we take other Italian regions with direct naval connections as neighbours.

As shown in Table 2, the coefficients for the covariates (b̂1 and b̂2) were both negative.

This means that regions with larger unemployment and mortality rates had a poorer quality
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Fig. 6. The SWBI’s weighted wor dimension ( ŷw
dt) during the periods from the first quarter of 2012 to the last

quarter of 2017.
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of job dimension. The estimated spatial autocorrelation coefficient r̂1 is significant enough

with a small negative value of about 20.07, (the size of the vector used is not large,

D ¼ 19), while the temporal autocorrelation coefficient r̂2 is still significant and has a

greater positive value equal to about 0.88. The value equal to zero for ŝ 2
1 is coherent with

the analysis of distribution discussed above. The quality of job changes over time, but

either little or not at all between regions.

4.2.1. The Weighted Measure of Well-Being at Work

In Figure 7, the scatter plots between the resulting m̂dt; obtained by fitting the STFH model,

and the direct estimates, both unweighted ŷdt (on the left) and weighted ŷw
dt (on the right). In

the SAE context, this graphical representation is used to test if the estimates are design

unbiased: if the points lie along the diagonal, the direct estimates are approximately design

unbiased, but if the points are under the line, the direct estimators are larger than the values

predicted by the model, and vice versa if the points are above the line. Both the plots in the

figure show points that lie along the diagonal for most of the cases. On the left side of the

figure, we compare the SAE estimates m̂dt with ŷdt, the unweighted estimates of wor, and

there are more points away from the diagonal line than when the same estimated values are

compared with ŷw
dt, the weighted estimates. Looking at the same plots, but for the different

considered quarters, we find that the points away from the diagonal are in the periods where

we have fewer analyzed tweets, and we observe an anomalous value of the variances. These

two situations are caused by a lack of reliability in the information, but overall, we can

conclude that the weighted estimates ŷw
dt are approximately design unbiased.

Table 2. STFH model results.

(a) Estimated regression coefficients b̂ in Equation (9)

Variable Coeff. Std. Error p-value

Intercept 62.72 5.49 0.000
Unemployment rate 282.63 31.11 0.006
Mortality rate 25649.48 1450.95 0.000

(b) Estimated vales for the vector of predictors û and goodness of fit measures

Parameter Estimate Std. Error

ŝ 2
1 0.0000 0.0000

r̂1 20.0652 0.0000

ŝ 2
2 94.72 0.0000

r̂ 2 0.8848 0.0000

Goodness of fit

loglike 21718.05
AIC 3450.10
BIC 3478.95
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4.2.2. The Estimated Measure of Well-Being at Work from the Model

Considering the rankings, what changes if we use SAE model estimates instead of direct

estimates, whether weighted or not?

Comparing the rankings obtained with the ŷdt and those obtained with m̂dt;we find that in

29.2% of the cases the position is the same and in 15.8% of the cases, the D is greater than

four. The mean of the ranking D is 2.16 (SD ¼ 2.58). Equally, when we compared the above

simple means ŷdt with the weighted means ŷw
dt, regions with the greatest differences are

Trentino, Campania, Marche, and Sardegna, with the first two showing position improvement

and the last two showing position weakening. For Trentino, there is a great improvement

during all quarters of 2017. Comparing the rankings obtained with the weighted values ŷdt

and those obtained with model estimates m̂dt shows a very different situation: in 84.9% of the

cases the positions are identical with less than 1% of the cases having a D greater than four

(just one case has a great ranking difference: Marche in 2015-Q3 with a lag equal to eight

positions). The average of theD equals 0.2 (SD ¼ 0.6), which means that moving to weighted

estimates ŷw
dt with model predictions m̂dt provides estimates that rank the same.

In SAE literature (Molina and Marhuenda 2015), coefficients of variations (CVs) are

used traditionally to analyze the gain of efficiency for model estimates. While national

statistical institutes are committed to publishing statistics with a high level of reliability, it

is generally considered that estimates with CVs greater than 20% are not reliable. In

Figures 9 and 10, the CVs of the three compared indices are shown, for the proposed final

STFH model, and CVs were obtained by using the bootstrap procedure for the MSE

estimates in Equation (10). As is evident, in our application, the CVs are always lower than

20%, except for fewer peaks. In particular, for most regions, the CVs are lower than 10%

(Figure 10), while peak values are obtained in only a few quarters for 13 regions: Calabria,

Campania, Emilia, Friuli, Lazio, Liguria, Marche, Molise, Piemonte, Lombardia, Sicilia,

Toscana and Trentino. We stress that these high values of CVs are not stationary for these

regions and it is clear that whenever we observe a peak of CVs, both the weighted indices

and the model estimates improve reliability. Furthermore, CVs obtained for the model

estimates (m̂dt, solid line) are always lower than the weighted estimations (ŷw
dt, dashed line)
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Fig. 7. Predicted values from the STFH model m̂dt (SAE estimates) versus estimates of wor, unweighted ŷdt on
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and the unweighted estimates (ŷw
dt, dotted line). (For model estimates are computed as

CV ¼ 100 £
ffiffiffiffiffiffiffi
MSE
p

Index
, while for the others are CV ¼ 100 £

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Variance
p

Index
:)

Thus, values based on a STFH model look less variable in terms of the CV.

4.2.3. The Comparison Between the Estimated Measure of Well-Being at Work from the

Model and an Official Index

In this section we compare our index obtained by the STFH model with an index of work

satisfaction (WS) provided by ISTAT in its “Aspects of daily life” report. (All the details

about the probability sample for the ISTAT survey “Aspects of daily life” can be found at

www.istat.it/it/archivio/91926.)

The ISTAT’s sample survey “Aspects of daily life” forms part of an integrated system

of social surveys – The Multi-purpose Surveys on Household – and collects fundamental

information on Italian individual and household daily life. It provides information on

citizens’ habits and the problems they face in everyday life. In the questionnaire, there are

several thematic areas, based on different social aspects, that help describe the quality of

individuals life, the degree of satisfaction of their conditions, their economic situation, the

area in which they live, and the functioning of all public utility services, all topics

Table 3. Pearson correlation coefficients r between ISTAT’s WS and SAE-wor, in the five Italian geographical

areas

Area Overall North-west North-east Central South Islands

r 0.245 0.694 0.383 0.581 0.849 0.480
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Fig. 8. Standardized time series of SAE-wor, solid line, and ISTAT’s WS, dotted line, in the five Italian

geographical areas (C: Central, I: Islands, NE: North-east, NW: North-west, S: South).
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traditionally useful in studying the quality of life. This has been an annual survey since

2005, with data collection in February.

For our purpose we only consider WS, defined as the percentage of employed persons

aged 15 years and over with a “good” level of satisfaction with their work. This index is

computed as the sum of the percentages of people declaring to be “quite” and “very much”

satisfied during the survey. Yearly WS data are distributed free of charge, but, as
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mentioned previously in the covariates section, they are representatives for the five Italian

geographical areas: North-west, North-east, Central, South, and Islands.

To compare this index with our information, we aggregate the SAE estimates, m̂dt,

obtained as discussed in the previous sections, yearly and in the same geographical areas,

weighing with the corresponding resident population (SAE-wor).

The correlations between ISTAT index and SAE-wor are displayed in Table 3. If we

consider all the overall data, the correlation is about 25%, while if we analyze the

relationships within each area we find stronger links, with a maximum value in South Italy

amounting to 85%.

Given the different scales of the ISTAT index and the proposed STFH estimator, for

the purpose of visual comparison, Figure 8 represents the plot of their values, both

standardized. Looking at these plots, the correlations become quite evident. We note that

the correlation results are similar if we replace the STFH estimator with the raw wor

measures (unweighted ŷw
dt and weighted ŷw

dt).
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Fig. 10. Coefficient of variations for the regions with peaks greater than 20%2; SAE estimates (m̂dt) with solid

lines, weighted estimates (ŷw
dt) with dashed lines, and unweighted estimates (ŷdt) with dotted lines.
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5. Conclusion

The huge and increasing amount of data provided by social media is affected by selection

bias that occurs either because not everyone has access to the internet or because not

everyone who accesses the internet is interested in using social media. So far, this is a

serious obstacle to using data from SNS for integrating into official statistics. To the best

of our knowledge, there has been no systematic attempt to treat the bias problem, although

we mentioned other important studies in which social media data have been considered

along with official statistics and showed the added value in using this type of data.

In this article we have proposed to control selection bias caused by the use of aggregated

data from social media by combining a weighting method and an SAE model.

Looking at the results, it seems that the selection bias inherent in social network data can

be controlled using our approach. In particular, what we have shown is that – properly

weighting statistics based on social media – we have approximately design unbiased

statistics, that is, we have corrected the selection bias up to the only benchmark data

available, which are the official statistics. We also gained additional properties through the

SAE model, one of which is the stabilization of the variances of the social media statistics,

which is a property required by official statistics. We have also shown that, despite using

SNS data, the adjusted “wor” component of SWBI (albeit built upon different official

statistics) correlates with the ISTAT statistics (available at macroeconomic level only) on

the quality of work survey data.

This is clearly just the beginning of the story. Certainly, the accuracy of the proposed

method could be improved using different SAE models based on dynamic systems so as to

exploit fully the high resolution of the social media data, or by integrating more big data,

sources at the same time, each with its own bias corrected statistics. These kinds of

extensions represent interesting methodological challenges for the future.
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