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Abstract: Whereas there is an increasing amount of reports on the second-order nonlinear
optical (NLO) and luminescence properties of tetradentate [N2O2] Schiff base–zinc complexes,
the study of zinc complexes having two bidentate [NO] Schiff-base ligands is relatively
unexplored from an NLO point of view. This work puts in evidence that the known
chiral bis{2-[(R)-(+)-1-phenylethyliminomethyl]phenolato-N,O}zinc(II) complex is a fascinating
multifunctional molecular inorganic–organic hybrid material characterized by interesting
second-order NLO and luminescent properties in solution. The emissive properties of the organic
2-(R)-(+)-1-phenylethyliminomethyl]phenol proligand are greatly enhanced upon coordination to the
inorganic Zn(II) center.
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1. Introduction

Coordination compounds with second-order nonlinear optical (NLO) properties represent a topic
of growing interest as molecular inorganic–organic hybrid materials for emerging optoelectronic and
optical signal processing [1–15]. Compared to purely organic compounds [16–18], they have the
advantage of possessing both inorganic and organic elements with a lot of different electronic structures
related to the metal oxidation state and coordination sphere, which can give rise to fascinating tunable
electronic and photophysical properties [1–15]. Also, metals serve as perfect templates to construct
three-dimensional structures, affording dipolar and octupolar molecules [10,19]. In this panorama,
coordination compounds showing both luminescent and NLO properties are particularly appealing as
new multifunctional molecular materials [20–36].

An increasing amount of work has been devoted to low-cost zinc(II) complexes for their interesting
third-order [37–40] and second-order NLO [41] and luminescent [42] properties. Due to its d10

configuration, the zinc(II) center does not have a favorite stereochemistry caused by ligand field
stabilization effects. Therefore, depending on the nature of the ligands, Zn(II) complexes can have
various geometries (tetrahedral, square pyramidal, octahedral) and number of coordination (4, 5,
and 6), affording NLO-active dipolar and octupolar compounds. Besides, they are particularly
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attractive as concerns transparency considerations due to the lack of both d–d electronic transitions
of the metal and metal-to-ligand transitions at low energy. In fact, an important requirement for
second-harmonic generation (SHG) applications is transparency in a large spectral range in order to
avoid absorption of the second harmonic [43]. Many zinc compounds having nitrogen-donor ligands
such as monodentate stilbazole [44–46], bidentate bipyridine [26,47–52] or phenanthroline [44,53],
tridentate terpyridine [54–56] or tetradentate porphyrin [57–59], characterized by a good second-order
NLO response, have been reported, whereas the great potential of bis(salicylaldiminato)zinc Schiff
base complexes [60–63] has recently been the subject of a deep exploration.

Lacroix and co-workers [64] studied the second-order NLO response of a tetradentate [N2O2]
bis [4-(diethylamino)salicylaldiminato] zinc compound, observing an increase of the quadratic
hyperpolarizability of the ligand upon coordination to Zn(II). This increase was higher than that
observed upon coordination to Ni(II) and Cu(II), due to the presence of significant intraligand charge
transfer transitions; contrarily to the other investigated metals, the zinc atom had a square-pyramid
geometry, with a molecule of ethanol acting as an additional donor in the apical position. It was shown
by Di Bella et al. [65] that this kind of tetradentate [N2O2] Schiff-base complexes behave as Lewis acids
due to the incapability of the Zn(II) ion to reach a tetrahedral coordination, as a result of the ring strain
produced by the diamine moiety. Consequently, in the absence of Lewis bases, there is aggregation, with
Zn···O intermolecular interactions, while addition of a Lewis base causes deaggregation, with formation
of monomeric adducts having a penta-coordinated distorted square-pyramidal structure [66,67]. This
deaggregation can switch on the quadratic hyperpolarizability [68], a phenomenon that was the
springboard of an unprecedented mode of NLO switching in molecular materials. In order to
increase the second-order NLO properties of bis(salicylaldiminato) Zn(II) complexes, the use of
unsymmetrical tetradentate [N2O2] Schiff-base ligands was also investigated [69,70]. Remarkably,
some of these tetradentate [N2O2] Schiff-base zinc complexes also show interesting luminescent
properties [70]. Thanks to their Lewis acidic character, this kind of complexes are characterized by
fascinating aggregation/deaggregation properties in relation to the absence or presence of a Lewis
base, accompanied by significant changes of their spectroscopic properties that can find a lot of
applications [71–77].

Surprisingly, whereas there is an increasing amount of reports on the second-order NLO
properties of tetradentate [N2O2] Schiff-base zinc complexes, to our knowledge, only one paper
was published, almost 20 years ago, on those of zinc complexes having two bidentate [NO] Schiff-base
ligands [78]. Thus, a bis(salicylaldiminato)zinc(II) complex, synthesized from a Schiff base obtained by
the condensation of chiral (R)-(+)-1-phenylethylamine with salicylaldehyde (Figure 1), crystallizes in
the non-centrosymmetric space group P212121, and powder samples exhibit SHG of intensity between
that of 3-methyl-4-nitropyridine-1-oxide and that of N-(4-nitrophenyl)-(S)-prolinol, as determined by
the Kurtz and Perry powder test [79], when illuminated with a Nd:YAG laser (λ = 1.064 µm) [78].
In this complex, the geometry of the zinc(II) center is nearly tetrahedral, with two oxygen and two
nitrogen donor atoms from the bidentate ligands, and has the Λ (R,R) absolute configuration [80] with
π–π* intraligand charge transfer along the O(phenolato)→ CN(imino) direction [78]. Surprisingly,
the second-order NLO response of this complex was reported in the solid state but not in solution.
This observation prompted us to prepare this appealing chiral bis(salicylaldiminato)zinc(II) complex
and to study both its NLO activity at a molecular level, by means of the Electric-Field-Induced
Second-Harmonic generation (EFISH) technique [81–83] in solution, and its luminescence properties.
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2. Results and Discussion 

The known 2-(R)-(+)-1-phenylethyliminomethyl]phenol was prepared as previously reported by 
reaction of (R)-1-phenylethylamine with salicylaldehyde in refluxing methanol, as shown in Scheme 
1 [84]. Deprotonation with NaHCO3 and reaction with zinc(acetate)2 in refluxing ethanol afforded the 
related bis{2-[(R)-(+)-1-phenylethyliminomethyl]phenolato-N,O}zinc(II) complex [78,80]. 
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The second-order NLO properties of 2-(R)-(+)-1-phenylethyliminomethyl]phenol and of the 
related zinc(II) complex were studied by means of the EFISH method. This technique [81–83] affords 
information on the molecular second-order NLO properties, through the following Equation (1): 

γEFISH = (μβλ/5kT) + γ (−2ω;ω,ω,0) (1) 

in which µβλ/5kT represents the dipolar orientational contribution to the molecular nonlinearity, 
whereas γ (−2ω;ω,ω,0) is the third-order polarizability, an electronic cubic contribution to γEFISH which 
is usually neglected when investigating the second-order NLO properties of dipolar molecules. βλ 
represents the projection along the ground-state dipole moment (µ) axis of the vectorial component 
of the tensor of the quadratic hyperpolarizability (βVEC), when the incident wavelength of the pulsed 
laser is λ. In order to have a compound of interest for second-order NLO applications, one needs a 
high µβEFISH value. Extrapolation to zero frequency (νΛ = 0.0 eV; λ = ∞) allows the determination of 
µβ0, the product of the ground-state dipole moment by the static quadratic hyperpolarizability β0, a 
useful figure of merit to evaluate the basic second-order NLO properties of a molecular material. The 
µβ0 value can be obtained by using the following Equation (2): 

µβ0 = µβλ[1 − (2λmax/λ)2][1 − (λmax/λ)2] (2) 

where βλ is the quadratic hyperpolarizability value at the incident wavelength λ, and λmax is the 
absorption wavelength of the major charge-transfer transition considered. 

Besides, it is essential to avoid overestimation of the quadratic hyperpolarizabilty value due to 
resonance enhancements. For this reason, one has to use an incident wavelength whose second 
harmonic is remote from any absorption of the molecule investigated. In the present study, we chose 

Figure 1. Investigated zinc complex.

2. Results and Discussion

The known 2-(R)-(+)-1-phenylethyliminomethyl]phenol was prepared as previously reported
by reaction of (R)-1-phenylethylamine with salicylaldehyde in refluxing methanol, as shown in
Scheme 1 [84]. Deprotonation with NaHCO3 and reaction with zinc(acetate)2 in refluxing ethanol
afforded the related bis{2-[(R)-(+)-1-phenylethyliminomethyl]phenolato-N,O}zinc(II) complex [78,80].
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Scheme 1. Synthesis of bis{2-[(R)-(+)-1-phenylethyliminomethyl]phenolato-N,O}zinc(II).

The second-order NLO properties of 2-(R)-(+)-1-phenylethyliminomethyl]phenol and of the
related zinc(II) complex were studied by means of the EFISH method. This technique [81–83] affords
information on the molecular second-order NLO properties, through the following Equation (1):

γEFISH = (µβλ/5kT) + γ (−2ω;ω,ω,0) (1)

in which µβλ/5kT represents the dipolar orientational contribution to the molecular nonlinearity,
whereas γ (−2ω;ω,ω,0) is the third-order polarizability, an electronic cubic contribution to γEFISH which
is usually neglected when investigating the second-order NLO properties of dipolar molecules. βλ
represents the projection along the ground-state dipole moment (µ) axis of the vectorial component of
the tensor of the quadratic hyperpolarizability (βVEC), when the incident wavelength of the pulsed
laser is λ. In order to have a compound of interest for second-order NLO applications, one needs a
high µβEFISH value. Extrapolation to zero frequency (νΛ = 0.0 eV; λ =∞) allows the determination of
µβ0, the product of the ground-state dipole moment by the static quadratic hyperpolarizability β0, a
useful figure of merit to evaluate the basic second-order NLO properties of a molecular material. The
µβ0 value can be obtained by using the following Equation (2):

µβ0 = µβλ[1 − (2λmax/λ)2][1 − (λmax/λ)2] (2)

where βλ is the quadratic hyperpolarizability value at the incident wavelength λ, and λmax is the
absorption wavelength of the major charge-transfer transition considered.
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Besides, it is essential to avoid overestimation of the quadratic hyperpolarizabilty value due
to resonance enhancements. For this reason, one has to use an incident wavelength whose second
harmonic is remote from any absorption of the molecule investigated. In the present study, we chose an
incident wavelength of 1.907 µm, obtained by Raman-shifting the fundamental 1.064 µm wavelength
produced by a Q-switched, mode-locked Nd:YAG laser.

We found that both 2-(R)-(+)-1-phenylethyliminomethyl]phenol and the related zinc(II) complex
are characterized by a positive value of µβλ, in agreement with a positive value of ∆µeg (difference
of the dipole moment in the excited and ground states) upon excitation, according to the “two-level”
model [85,86].

The µβ1.907 value of bis{2-[(R)-(+)-1-phenylethyliminomethyl]phenolato-N,O}zinc(II) is 420 ×
10−48 esu, a value somewhat larger than the double of that of the pro-ligand (195 × 10−48 esu). This
behavior is in agreement with that previously observed in the case of tetradentate [N2O2] Schiff bases
and related zinc complexes [64]. The µβ value of the investigated zinc(II) complex, calculated by using
Equation (2) and its low energy π–π* intraligand charge-transfer absorption band (374 nm) [78], is 342
× 10−48 esu, a value not too far from that (450 × 10−48 esu) of the prototypical organic 1D push–pull
NLO chromophore Disperse Red One (trans-4,4′-O2NC6H4N=NC6H4NEt–(CH2CH2OH), which finds
application in electrooptic polymeric poled films [87].

In order to determine the β1.907 and β0 values, it is necessary to know µ. Therefore, the
geometry of the zinc complex was optimized, and its dipole moment was calculated by means of
the Density Functional Theory. We used the B3LYP exchange correlation functional, the 6-311g**
basis set for all atoms except for Zn, which has been described with the LANL2DZ basis set, along
with the corresponding pseudopotentials. The CHCl3 solution effects were included by means of the
conductor-like polarizable continuum model. Geometry optimization, performed with Gaussian09 [88]
without any symmetry constraints, showed a pseudo-C2 symmetry (Figure 2). In agreement with
the structure determined by X-ray crystallography, the dihedral angle between plane O1ZnN1 and
plane O2ZnN2 is 84.4◦, so that the geometry around the zinc atom is almost tetrahedral, with a small
distortion on the way to a cis-planar geometry [78]. The computed dipole moment, 6.72 D, is aligned
on the bisector of O1ZnO2 angle from the oxygen atoms to the metal center.
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The β1.907 and β0 values, obtained by using the calculated dipole moment (6.72 D), are 62.5
and 50.9 × 10−30 esu, respectively. These values are higher than those previously reported for
[(4,4′-trans-NMe2-C6H4CH=CHC5H4N)2Zn(CF3CO2)2] [44], a remarkable result for such a simple
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complex. This opens a new avenue for the design of NLO-active zinc complexes, by using two bidentate
[NO] Schiff-base ligands.

As a further step, we were curious to investigate the luminescence properties of the complex.
Indeed, there is interest in the study of organic–inorganic hybrid materials consisting of Schiff
base–Zn(II) complexes in polymethyl methacrylate (PMMA) to impart new features such as
luminescence properties [89]. Akitsu et al. prepared various organic–inorganic materials containing
an organic photochromic dye and a chiral Schiff base–zinc(II) complex in PMMA in order to
obtain multi-input and multi-output digital logic circuits [90]. They proposed that a chiral
Schiff base–zinc(II) complex could be used in logic circuits in combination with a photochromic
dye by using intermolecular quenching of emission [91]. Of interest for this application
was bis{2-[(R)-(+)-1-phenylethyliminomethyl]phenolato-N,O}zinc(II), which emits at 451 nm, in
combination with spiropyran (or its photoisomerized form merocyanine) [91], but the quantum
yield of this complex was not reported. These observations prompted us to reinvestigate its
photophysical properties.

Whereas 2-(R)-(+)-1-phenylethyliminomethyl]phenol is not luminescent, the related zinc(II)
complex is intensely luminescent in dichloromethane solution, displaying a band at 451 nm upon
excitation at 372 nm (Figure 3), a behavior that puts in evidence the strong luminescent effect of
complexation to a Zn(II) center. The luminescent quantum yield (ϕlum= 0.17) was very good, being
similar to that of the most luminescent Schiff base–zinc(II) complexes [70].
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Figure 3. Excitation and emission spectra of the Zn(II) complex in dichloromethane (2 × 10−5 M) at
room temperature. Red line: Excitation spectrum, λem = 451 nm. Black line: Emisssion spectrum, λexc

= 372 nm.

3. Materials and Methods

3.1. Synthesis of 2-[(R)-(+)-1-phenylethyliminomethyl]phenol and
Bis{2-[(R)-(+)-1-phenylethyliminomethyl]phenolato-N,O}zinc(II)

The compound 2-(R)-(+)-1-phenylethyliminomethyl]phenol was prepared following a reported
procedure [84]. A solution of (R)-1-phenylethylamine (0.75 mL, 5.8 mmol) and salicylaldehyde (0.30 mL,
3.1 mmol) was refluxed in methanol (10 mL) for 4 h. The solution was cooled at room temperature,
and the solvent was removed under reduced pressure, affording a solid which was recrystallized from
ethanol, affording the product as a bright yellow powder (0.550 g, 2.44 mmol; 79% yield).

Then, in a Schlenk tube, 2-(R)-(+)-1-phenylethyliminomethyl]phenol (0.400 g; 1.77 mmol) was
dissolved in ethanol (12 mL) under reflux. Powdered NaHCO3 (0.151 g, 1.79 mmol) was added to
deprotonate the phenol group, and after 15 min, zinc(acetate)2 (0.198 g, 0.902 mmol) was added.
The mixture was refluxed for 2 h and then filtered, and the filtrate was concentrated under reduced
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pressure until crystals precipitated. The known complex [78,80] was obtained by filtration as pale
yellow crystals (0.420 g; 0.817 mmol; 91% yield; see elemental analysis and 1H NMR in Supplementary
Materials).

3.2. Instrumentation

Steady-state fluorescence data and absolute luminescence quantum yields measurements were
obtained using an FLS980 spectrofluorimeter (Edinburg Instrument Ltd., Livingston, United Kingdom)
and a C11347 Quantaurus Hamamatsu Photonics K.K spectrometer (Hamamatsu Photonics, Shizuoka,
Japan), respectively.

EFISH measurements were carried out in CHCl3 solutions at a concentration of 10–3 M, with a
non-resonant incident wavelength of 1.907 µm, obtained by Raman-shifting the fundamental 1.064 µm
wavelength produced by a Q-switched, mode-locked Nd:YAG laser manufactured by Atalaser (see
Supplementary Materials). The reported µβEFISH values are the mean values of 16 measurements
performed on the same sample, the error is ca. 10%.

4. Conclusions

In conclusion, this work unveils the interesting properties in solution of the chiral
bis{2-[(R)-(+)-1-phenylethyliminomethyl]phenolato-N,O}zinc(II) complex. It was previously reported
that powder samples of this complex exhibit second-harmonic generation [78]. The present study
shows that this hybrid inorganic–organic compound is also characterized by good second-order NLO
properties at the molecular level in solution. This is an interesting aspect, from an applicative
point of view, because it suggests that dispersion of this complex in organic matrices is a
promising route for the preparation of NLO-active polymeric films. This fascinating zinc complex
is characterized by multifunctional properties. As a matter of fact, it is also intensely luminescent
at 451 nm in dichloromethane, with a quantum yield (ϕlum = 0.17) similar to that of the most
luminescent tetradentate [N2O2] Schiff base–zinc(II) complexes. It is worth noting that the free ligand
2-(R)-(+)-1-phenylethyliminomethyl]phenol is not luminescent, a behavior that puts in evidence the
strong effect of complexation of the organic ligand to the inorganic Zn(II) center on the luminescent
properties. This work opens the door to the exploration of related bidentate [NO]–zinc(II) complexes
with various substituents on the phenolato moiety to understand their effects on the second-order
NLO and luminescence properties.
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