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ABSTRACT
Vortex mediated mutual friction governs the coupling between the superfluid and nor-
mal components in neutron star interiors. By, for example, comparing precise timing
observations of pulsar glitches with theoretical predictions it is possible to constrain
the physics in the interior of the star, but to do so an accurate model of the mutual
friction coupling in General Relativity is needed. We derive such a model directly from
Carter’s multi-fluid formalism, and study the vortex structure and coupling timescale
between the components in a relativistic star. We calculate how General Relativity
modifies the shape and the density of the quantised vortices and show that, in the
quasi-Schwarzschild coordinates, they can be approximated as straight lines for real-
istic neutron star configurations. Finally, we present a simple universal formula (given
as a function of the stellar compactness alone) for the relativistic correction to the
glitch rise-time, which is valid under the assumption that the superfluid reservoir is
in a thin shell in the crust or in the outer core. This universal relation can be easily
employed to correct, a posteriori, any Newtonian estimate for the coupling time scale,
without any additional computational expense.

Key words: Stars: neutron - Pulsars: general - Dense matter - Gravitation - Hydro-
dynamics

1 INTRODUCTION

Pulsars are known to be among the most stable clocks in
the universe, but their timing irregularities can help unveil
the mystery of their interior structure. The sudden spin-up
events called glitches are thought to be a manifestation of the
presence of a neutron superfluid in the interior of the neu-
tron star (Anderson & Itoh 1975). According to this theory,
there is a region of the star, the exact nature and extension
of which is still uncertain (Andersson et al. 2012; Chamel
2013), in which the quantised vortices of the superfluid are
mostly pinned to the normal component during almost the
whole life of the neutron star (Alpar 1977; Epstein & Baym
1988). This results in the formation of an angular momen-
tum reservoir which, when the lag between the superfluid
and the normal component becomes too large, is released
in a catastrophic event, producing the glitch (for a recent
review see Haskell & Melatos 2015).

Many attempts to constrain the physical properties of

? E-mail: lorenzo.gavassino@gmail.com
† E-mail: mantonelli@camk.edu.pl

neutron stars from observations of the relaxation process
have already been made (Baym et al. 1969; Datta & Alpar
1993; Link et al. 1999; Graber et al. 2018), but with the
development of the Square Kilometer Array (Lazio 2009;
Weltman et al. 2018) and the Five-hundred-meter Aperture
Spherical Telescope (Nan et al. 2011), we will have access to
precisions which have never been explored.

The improvement of the resolution of pulsar timing
techniques has already made it possible to have informa-
tion about the first seconds of a glitch (Palfreyman et al.
2018) allowing, also, to fit the profile of the rise with sim-
ple theoretical models (Ashton et al. 2019; Pizzochero et al.
2019) and constrain the glitch rise-time. In particular, the
observation of the largest glitch of the Crab pulsar (Shaw
et al. 2018) has also allowed to put constraints on the mu-
tual friction parameters (Haskell et al. 2018). Furthermore,
the coupling between the superfluid and the normal fluid
plays a key role when extracting nuclear physics parame-
ters related to the equation of state from measurements of
the activity of a pulsar (Newton et al. 2015). Precise mea-
surements of the activity can also be used to constrain the
mass of a pulsar (Ho et al. 2015; Pizzochero et al. 2017).
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Thus, it is becoming increasingly important to have models
which are able to produce quantitative predictions for the
coupling time-scale between the normal and the superfluid
component.

General Relativity plays a fundamental role in neutron
star theory as it is not possible to obtain realistic predic-
tions for masses and radii in a merely Newtonian context
(Shapiro & Teukolsky 1983). This implies that any quanti-
tative study, whose results depend on the structure of the
neutron star, must be performed considering the density
profile to be a solution of the Tolman-Oppenheimer-Volkoff
(TOV) equations, making non-relativistic models inconsis-
tent. Furthermore, Rothen (1981) has shown, for a simpli-
fied constant density neutron star model, that the spacetime
curvature can affect significantly the geometry of the vortex
lines and this can have consequences on the estimates of the
mutual friction. In addition, the difference of speed between
the clocks on the Earth and the clocks in the neutron star,
due to the gravitational redshift phenomenon, influences ev-
ery dynamical time-scale we observe. It is clear, then, that
to make quantitative predictions of the glitch rise-time, it
is necessary to have an estimate of the relativistic effects.
An initial study was performed by Sourie et al. (2017) for
a system composed of two rigid components, and significant
quantitative differences (a correction of the order of 40%)
were found with respect to Newtonian models for selected
equations of state.

Here, our final objective is to construct a consistent gen-
eral relativistic model for the mutual friction coupling in
neutron stars, that can be applied to pulsar glitches, r-mode
damping (Haskell 2015), asteroseismology and to the study
of gravitational wave emission (Glampedakis & Gualtieri
2018). Thus, with the aim of quantifying the role of General
Relativity, in this paper we will derive directly from Carter’s
multifluid formalism a local simple formula for the relativis-
tic corrections to the coupling time. To achieve this goal we
will also extend the vortex-tracing technique developed by
Rothen (1981) to make it applicable to the computation of
the vortex density. Finally, using the conservation of the an-
gular momentum, we will find a formula for the correction
to the glitch rise-times. A key ingredient which makes this
formula a universal relation (namely, the correction factor
is independent on the choice of the equation of state) is the
assumption that the angular momentum reservoir is located
in a thin shell near the surface encompassing the crust and
possibly parts of the outer core (Ho et al. 2015). This puts
our results in contrast to Sourie et al. (2017), where it is
assumed that the reservoir is extended over the whole core.

In the derivation of the formula we follow a sequence of
five steps which cover the different aspects of the problem.

Section 2 : We review the basic ideas of Carter’s hy-
drodynamic formalism and of the prescription for vortex-
mediated mutual friction of Langlois et al. (1998), recasting
the equations in a form which is convenient for our purposes.

Section 3 : We study the general mathematical prop-
erties of the macroscopic vorticity of a circularly rotating
non-turbulent superfluid in a stationary axisymmetric sys-
tem, deriving simple techniques to compute the vortex shape
and density.

Section 4 : The techniques developed in the previous sec-
tion are applied to the case of the neutron superfluid in a
star. We derive analytic formulas for the vortex density and

shape in the slow rotation approximation, and compare our
results with Rothen (1981). The approximations proposed
in Ravenhall & Pethick (1994) are used to simplify the ex-
pressions, unveiling their physical interpretation.

Section 5 : We employ the results of the previous sec-
tions to see how the rise-time of a glitch is modified by Gen-
eral Relativity. Using the universality relation proposed in
Breu & Rezzolla (2016) for the moment of inertia, we show
that the relativistic factor we obtain is a pure function of
the compactness of the star, so it is independent from the
equation of state.

Section 6 : We show that the universality of the rela-
tivistic correction is a direct cosequence of the assumption
that the free superfluid is located in a thin shell near the
surface. This is done by proving that the formula for the
rise-time found by Sourie et al. (2017) reduces to ours in
this limit.

Throughout the paper we adopt the spacetime signature
(−,+,+,+), choose units with the speed of light c = 1 and
Newton’s constant G = 1, use greek letters ν, ρ, σ... for
coordinate tensor indexes. The sign of the volume form is
chosen according to the convention ε0123 =

√
−g.

2 RELATIVISTIC VORTICITY AND MUTUAL
FRICTION

We briefly introduce the two-fluid formalism to model the
dynamics of superfluid neutron star interiors. The coupling
between the two fluids is provided by the vortex-mediated
mutual friction, for which we adopt the prescription of Lan-
glois et al. (1998), rewriting it in a form which is convenient
for our purposes. To make the physical interpretation of the
mutual friction clear, in subsection 2.2 we review the ge-
ometric properties of the macroscopic vorticity in General
Relativity.

2.1 The two-fluid formalism

A realistic hydrodynamic description of a neutron star
should take into account the existence of four components:
nνp , the normal four-current, nνn, the four-current of the su-
perfluid neutrons, sν , the entropy four-current, and an elec-
tromagnetic component (Haskell & Sedrakian 2017; Chamel
2017). It is useful to introduce the rest-frame density asso-
ciated with each component, in particular

np =
√
−nνpnpν nn =

√
−nνnnnν , (1)

and the four-velocities

uνp = nνp/np uνn = nνn/nn, (2)

which are clearly normalized to −1.
The conservation of the baryon number implies that

∇ν(nνp + nνn) = 0 (3)

and the second law of thermodynamics requires ∇νsν ≥ 0.
In the following we will assume, either because chemical
equilibrium is reached, or because the hydrodynamic pro-
cesses considered are faster than the time-scale of the reac-
tion (Gavassino & Antonelli 2019), that

∇νnνp = −∇νnνn = 0 . (4)

MNRAS 000, 1–20 (2018)



A relativistic correction to the mutual friction coupling time-scale 3

The hydrodynamic description must be consistent with the
Einstein equations,

Gνρ = 8πT νρ(tot), (5)

where Gνρ is the Einstein tensor and T νρ(tot) is the total
energy-momentum tensor accounting for the presence of all
the four components. To recover a two-component model for
a neutron star interior we split the energy-momentum tensor
as

T νρ(tot) = T νρ + T νρ(ext) , (6)

where T νρ represents the fluid contribution obtained by us-
ing a two-fluid zero-temperature formalism of the kind em-
ployed by e.g. Andersson & Comer (2001). In this theory
the equation of state is given in terms of a master function1

(Carter 1989; Andersson & Comer 2007)

−E(n2
p, n

2
n, n

2
np), (7)

with n2
np = −nνnnpν , leading to the definition of the mo-

menta per particle

µpν = − ∂E
∂nνp

µnν = − ∂E
∂nνn

, (8)

of the generalised pressure

Ψ = −E − nνpµpν − nνnµnν (9)

and of the fluid stress-energy tensor

T νρ = Ψδνρ + nνpµ
p
ρ + nνnµ

n
ρ . (10)

The tensor T νρ(ext), on the other hand, contains all the contri-
butions which are not considered in T νρ, such as the finite
temperature corrections due to the presence of sν , the elastic
part of the stress tensor in the crust and the electromagnetic
energy-momentum. These parts play a negligible role in (5),
but they are fundamental in the study of the dynamics of nνp
and nνn. Taking the four-divergence of (5) and (6), we have

∇ρT ρν = f(ext)ν , (11)

where the external force density is defined as

fν(ext) := −∇ρT νρ(ext) . (12)

As a result, we have that a mixture of charged, superfluid
and possibly solid components at finite temperature can be
conveniently described in terms of a zero-temperature two-
fluid model subject to the action of an external force.

In glitch models of the kind pioneered by Baym et al.
(1969), the external force is expected to play two main roles
(see e.g. the discussion in Antonelli & Pizzochero 2017).
Firstly, there is a contribution in fν(ext) that is assumed to
enforce the proton-electron fluid and the crustal lattice rigid
rotation: this is implicitly incorporated into glitch models
by imposing that Ωp, the angular velocity of the normal
p component, depends only on time. Secondly, it exerts a
torque on the two-fluid system, which can be interpreted
as the local contribution to the braking torque, which is
included into the evolution equation for the total angular
momentum of the neutron star.

1 For an interpretation of the master function −E as a thermo-
dynamic potential see Gavassino & Antonelli (2019).

2.2 The macroscopic vorticity of a superfluid

At the mesoscopic scale, the momentum µnν is related to the
superfluid order parameter φ according to the Josephson
relation (Carter et al. 2006)

µnν =
k

2π
∂νφ , (13)

where k = π~ to account for the Cooper pairing mechanism
(if the superfluid were a Boson fluid, then k = 2π~). On
scales smaller than the inter-vortex separation, the relation
(13) implies that the four-vorticity

$νρ := (dµn)νρ (14)

must be concentrated into vortex filaments and zero else-
where. However, in an astrophysical context we are in-
terested in the dynamics of macroscopic matter elements
crossed by several quantised vortices. Hence, we must lo-
cally average the momentum, and the relative vorticity, over
a portion of fluid. In this way, if the vortex filaments are ar-
ranged in a tangled configuration (as is expected if quantum
turbulence develops in neutron star interiors, Greenstein
(1970); Andersson et al. (2007)), then it is in general not
possible to reconstruct the vortex line configuration starting
from the knowledge of the macroscopic vorticity field.

For simplicity, we assume that turbulence is absent, so
that the quantized vortices in each local matter element
are parallel to each other. Given this condition, the region
of spacetime occupied by the superfluid can be foliated by
two-dimensional worldsheets which follow the profile of the
vortex lines. Stachel (1980) has shown that these spacetime
foliations are completely described by a bivector field Sνρ
(normalized as SνρSνρ = −2) such that

?Sνρ Sρσ = 0 (15)

and

?Sνρ ∂σSρσ = 0 , (16)

where the symbol ? is the Hodge duality operator, which
acts on a generic p-form Σ as

?Σν1...ν4−p =
1

p!
ε
λ1...λp

ν1...ν4−p
Σλ1...λp . (17)

Equation (15) is an algebraic degeneracy condition: it tells
us that Sνρ, as seen as an antisymmetric 4× 4 matrix, must
have rank 2. This implies that the bivector Sνρ is simple,
i.e. there are two vector fields, say uC and vC , such that

Sνρ = uνC v
ρ
C − u

ρ
C v

ν
C . (18)

The factor of two in the normalization condition implies that
we can impose uC and vC to be orthonormal, while the mi-
nus sign tells us that one of the two vectors, conventionally
uC , is timelike. This bivector represents the unit surface ele-
ment of the wordsheet and the condition (16) is the require-
ment that all these surface elements mesh together smoothly.

It is easy to verify that if we want the macroscopic four-
vorticity $νρ to come from an array of vortices which have
the shape given by S, then it must be true that

Sνρ = −?$
νρ

$
with $ :=

√
$λσ$

λσ

2
. (19)

Equation (19) can be rewritten into the form

$νρ = $?Sνρ = $ ενρσλ u
σ
C v

λ
C , (20)

MNRAS 000, 1–20 (2018)
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so that the kernel of $νρ corresponds to the linear combi-
nations of uC and vC . The above relation allows to rewrite
(15) as

$νρ Sρσ = 0 , (21)

which naturally leads to define the two orthogonal projectors

//νρ := SνλSλρ ⊥νρ :=
$νλ$ρλ

$2
. (22)

In appendix A we show that, given an observer O with four-
velocity uO, the vector

$ν
O = $ SνρuOρ (23)

can be interpreted as

$ν
O = kNO v

ν
O , (24)

where NO is the local surface density of vortices measured by
O and vνO is the unit vector directed along the local vortex
array, as seen by O. Furthermore, the vector

uVO :=
//uO√

−g(//uO, //uO)
(25)

defines the four-velocity of the vortices in the frame of O.
This velocity is constructed in a way that the relative three-
velocity between the lines and the observer O,

wVO :=
uVO
ΓVO

− uO, (26)

is orthogonal to the vortex lines. Here, ΓVO = −g(uO, uVO)
is the Lorentz factor associated with the relative speed
∆VO =

√
g(wVO, wVO) between uO and uVO. As it is ex-

plained in appendix A, this Lorentz factor accounts for the
length contraction phenomenon in the definition of the vor-
tex density NO measured by the observer O, namely

NO = NΓVO , (27)

where

N =

√
$λσ$

λσ

2 k2
, (28)

can be interpreted as the rest-frame vortex density.
Despite having used a terminology related to the pres-

ence of quantised vortex lines in a superfluid, we end this
subsection by remarking that the construction described so
far can be applied to a more general class of fluids. In all
situations in which $νρ can be computed as the exterior
derivative of µnν , it is possible to use the fact (d$)νρσ = 0 to
prove that (15) implies (16). This means that a given field
$νρ defines a worldsheet foliation if and only if there exists
a time-like vector field uC such that

uρC$ρν = 0 . (29)

Therefore, given an arbitrary fluid for which the above equa-
tion is satisfied, it is possible to replace the words vortex
line with macroscopic vorticity line everywhere in this sub-
section. This result is discussed in detail in appendix C by
taking advantage of the language of force-free magnetohy-
drodynamics, based on the fact that reading the momentum
µnν as a vector potential leads to interpret the quantities in-
troduced in equations (23) and (26) as the magnetic field
and the drift velocity respectively.

2.3 The mutual friction coupling

A model for the vortex-mediated mutual friction is one of the
most important elements in pulsar glitch modelling. In this
work we follow the mutual friction prescription of Langlois
et al. (1998), which we briefly rederive with a geometrical
argument. According to Langlois et al. (1998), the tensorial
quantity

fMν := −nρn$n
ρν (30)

provides the relativistic generalization of the Magnus force
density (see also Carter et al. 2001; Andersson et al. 2016).
The minus sign is chosen in a way that fM/N can be inter-
preted as the force per unit length exerted by the superfluid
on the normal matter inside the core of the vortex. The norm
of fM is

|fM | =
√
fMρf

ρ
M = nn kNΓV n ∆V n , (31)

in accordance with what it is expected by considering that
Nn = NΓV n is the density of vortices measured in the frame
defined by un, see equation (27). Regarding the direction of
fM , it is immediate to see that it is orthogonal to uC , vC
and un.

In the presence of a normal component, the vortex lines
experience also a drag force per unit length (Donnelly 1991),
that we will indicate as FD. To understand how this dissi-
pative force can be modelled it is convenient to work in the
frame defined by the four-velocity

uV p =
//up√

−g(//up, //up)
=: uv . (32)

In this frame the vortices are at rest and the normal compo-
nent moves orthogonally to the vortex lines, see the previ-
ous section. The vector uV p can be interpreted as the proper
four-velocity of the vortices, so, for notational convenience,
it will be referred to as uv, in full analogy with the notation
used for un and up.

Since the drag force on vortices has to balance the Mag-
nus force (because the vortex lines have no inertia), it must
be orthogonal to the vortex worldsheet. Assuming a viscous
drag force per unit length FD which is proportional to the
three-velocity of the normal component in the frame of uv,
this results in

FD = αΓ−1
vp ⊥up , (33)

where α is a coefficient that sets the strength of the micro-
scopic dissipative interaction between a vortex core and the
constituents of the normal component.

The averaged force per unit volume fD is found by mul-
tiplying the force exerted on a vortex by the number Np of
vortices per unit area in the frame defined by up,

fDν = Np FDν = αN⊥ρνupρ , (34)

see equation (27). Hence, it is possible to write the force
balance

fM + fD = 0 , (35)

which, defined the dimensionless factor

R := α/(k nn) , (36)

takes the form

uρn$
n
ρν = R kN⊥νρuρp, (37)

MNRAS 000, 1–20 (2018)
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which is the one proposed in Langlois et al. (1998). This
equation, despite being clear from the geometrical point of
view, is not written in the best form for practical purposes.
By using the two orthonormal generators of S, i.e. uv and
vp , equation (37) can be cast as

−ενµρσuµnuρvvσp = R(upν − Γvpuvν). (38)

In appendix B we show how to remove the dependence on
uv, so that the mutual friction is expressed in terms of the
relative velocity between the n and p components. This pro-
cedure gives

−uρn$n
ρν =

RkN
1 +R2

[
Ruλnvσp ελσνρwρnp + ⊥̂νρwρnp

]
, (39)

for the non-relativistic ∆np � 1 limit of the Magnus force
(30), where

wnp =
un
Γnp
− up ≈ un − up (40)

and ⊥̂
ν

ρ is the projector orthogonal to the plane generated
by un and vp. For small velocity lags between the superfluid
and normal components (∆np � 1), equation (37) coincides
with the one of Andersson et al. (2016). In fact, equation
(39) can be obtained also as the limit for non-relativistic
relative speeds of equation (67) in Andersson et al. (2016).

3 STATIONARITY, AXIAL SYMMETRY AND
CIRCULARITY CONDITION

In this section we present the general properties of the
macroscopic vorticity of a non-turbulent superfluid (intro-
duced in section 2.2) under the assumptions of axial symme-
try, stationarity and circular motion. Given these three as-
sumptions, the following analysis is valid for a general fluid.
Hence, only in this section we drop the label n of the four-
momentum µn, since the superfluid species can be arbitrary.
We specialise our results to a neutron star context in section
4.

3.1 Motion in a circular spacetime

Before studying the properties of the macroscopic vorticity
we have to introduce the general form for the four-velocity
of matter elements. In a stationary and axially symmetric
spacetime the metric is invariant under transformations gen-
erated by a time-like Killing vector field ξ and a space-like
Killing vector field h with closed orbits. The fields ξ and
h can always be set in a way that they commute, so it is
possible to choose a chart such that (Carter 1970)

ξ = ∂t h = ∂ϕ . (41)

We also assume that the stationarity and axial symme-
try properties are shared by the hydrodynamical quantities:
given a generic tensor q, we impose that Lξq = Lhq = 0,
where L is the Lie derivative (Gourgoulhon 2010).

The final assumption is the circularity condition, ac-
cording to which the currents of the chemical species in ev-
ery point of the spacetime are linear combinations of ξ and
h. Since the corrections to the metric due to T νρ(ext) are neg-
ligible, the circularity condition implies that the two vectors

T νρ ξ
ρ and T νρ h

ρ are linear combinations of ξ and h them-
selves (Andersson & Comer 2001).

Given the above assumptions, there is always a collec-
tion of charts (t, ϕ, x, y) such that the metric takes the form
(Hartle & Sharp 1967)

gνρ =


−N2 + ω2ρ2 −ωρ2 0 0
−ωρ2 ρ2 0 0

0 0 g2
x 0

0 0 0 g2
y

 . (42)

The lapse function N contains information about the gravi-
tational redshift, while the frame dragging ω is related to the
Lense-Thirring effect. Furthermore, the physical quantities
are functions of x and y only.

The Zero Angular Momentum Observer (ZAMO) at a
point is defined through the four-velocity

uZ := N−1(∂t + ω∂ϕ) , (43)

which is constructed in a way such that its dual is

u[Z = −Ndt . (44)

In this way, the ZAMO is an Eulerian observer, namely an
observer whose local set of simultaneous events is tangent
to the surfaces t = const (Rezzolla & Zanotti 2013; Gour-
goulhon 2007). In such a spacetime, a general four-velocity
field of a matter element takes the form

uO = N−1 ΓOZ (∂t + ΩO∂ϕ) , (45)

with

Γ−1
OZ =

√
1−∆2

OZ ∆OZ = ρN−1(ΩO − ω) . (46)

Here ∆OZ is the speed (with sign) of an observer moving
with four-velocity uO, measured in the frame of the ZAMO.
In the following it will be useful to use the dual of uO, whose
expression is

u[O = −ΓOZ(N + ωρ∆OZ)dt+ ΓOZ∆OZ ρ dϕ . (47)

As a result of the circularity condition, the four-velocity of
each species can be written in the form (45) and its dual in
the form (47).

3.2 Vorticity in a circular spacetime

Under the conditions imposed in the previous subsection,
the momentum per particle of a species takes the form

µ = µt(x, y)dt+ µϕ(x, y)dϕ (48)

and the corresponding four-vorticity is

$νρ =


0 0 −∂xµt −∂yµt
0 0 −∂xµϕ −∂yµϕ

∂xµt ∂xµϕ 0 0
∂yµt ∂yµϕ 0 0

 . (49)

To unveil the underlying vortex structure, it is useful to
consider the function N (x, y) which counts the number of
vortices enclosed in a loop t, x, y = const. The quantity N
can be regarded as a rescaling of the azimuthal component
of the momentum, as the Feynman-Onsager relation (see
(A13) of appendix A) imposes that

µϕ =
kN
2π

. (50)

MNRAS 000, 1–20 (2018)



6 L. Gavassino, M. Antonelli, P. Pizzochero & B. Haskell

We saw in subsection 2.2 that a four-vorticity must have
a non-trivial kernel, see equation (29). This leads to the
vanishing-determinant condition

∂xµt∂yµϕ − ∂xµϕ∂yµt = 0, (51)

which can be alternatively written as

∂xµt
∂xµϕ

=
∂yµt
∂yµϕ

=: −ΩC , (52)

where ΩC is a function of x and y. Therefore, employing
both (50) and (52), the vorticity in (49) reads

$νρ =
k

2π


0 0 ΩC∂xN ΩC∂yN
0 0 −∂xN −∂yN

−ΩC∂xN ∂xN 0 0
−ΩC∂yN ∂yN 0 0

 . (53)

Moreover, defining the four-velocity

uC :=
ΓCZ
N

(∂t + ΩC∂ϕ) , (54)

we can verify that

uρC$ρν = 0 . (55)

It is possible to provide a simple physical interpretation of
this result. First, there must exist a four-velocity uC which
satisfies (55) and an observer moving with this four-velocity
will see the vortices at rest. Since we are considering a sta-
tionary configuration, the vortices cannot move towards the
polar axis or back, because this would change N . The only
motion a vortex can undergo is a circular one around the
axis, so that there must be a four-velocity satisfying equa-
tion (55) with the form given in (54). The result is that, in-
stead of dealing with µt, we can directly consider ΩC , which
describes the velocity of revolution of the vortices around
the axis of the star.

Now that we have ensured that the four-vorticity has a
non-trivial kernel of dimension two, we can find a convenient
basis for this space (the kernel defines the two-dimensional
plane tangent to the vortex worldsheet). Considering that
uC satisfies equation (55), we need to compute only a second,
linearly independent, basis vector. It is immediate to verify
that

vC :=
∂yN∂x − ∂xN∂y√

g2
x(∂yN )2 + g2

y(∂xN )2
, (56)

satisfies

vρC$ρν = 0 g(vC , vC) = 1 g(vC , uC) = 0, (57)

so that we can express the projector in (22) as

//νρ = −uνCuCρ + vνCvCρ . (58)

A final remark about the nature of ΩC is needed: the con-
dition (52) implies

∂xN ∂yΩC − ∂yN ∂xΩC = 0 , (59)

which leads to

vνC ∂νΩC = 0 . (60)

This means that the function ΩC(x, y) cannot be arbitrarily
chosen, but it must be conserved along the integral curves
of vC .

3.3 Techniques to calculate the vortex structure

Our purpose, now, is to provide simple techniques to visu-
alise the global vortex structure, as well as useful formulas
for its local properties.

Consider a worldsheet of the spacetime foliation defined
by $νρ. Its intersection with a t = const hypersurface is a
space-like curve, which is the natural relativistic generaliza-
tion of the concept of vortex line. We can parametrise it with
the parameter l, chosen in a way that the tangent four-vector

d

dl
:=

dxν

dl
∂ν (61)

is normalised to 1. Since d/dl is tangent both to the world-
sheet and to the constant time hypersurface, it must lo-
cally belong to the intersection between span{uC , vC} and
span{∂ϕ, ∂x, ∂y}. This, together with the normalization con-
dition, implies that

d

dl
= vC , (62)

if we choose the proper orientation. Therefore, the vortex
lines are the integral curves of vC , so that the vortices lie in
the plane ϕ = const. This fact is a consequence of the cir-
cularity condition and arises as a particular case of a more
general result, which is presented at the end of this subsec-
tion. If we now apply (62) to ΩC and use (60), we see that

dΩC
dl

= 0 , (63)

whose physical meaning is clear: ΩC at a point is the ve-
locity of revolution of the unique vortex line passing exactly
through that point. If ΩC was varying along the same vortex
line this would induce a deformation which would wrap the
vortex around the rotation axis, breaking the stationarity
of the system. Therefore, ΩC must be constant along the
vortex line, which is the physical interpretation of equation
(60). This result is general and also applies to the angular
velocity of the magnetic field lines in a stationary axisym-
metric system, as discussed by Gralla & Jacobson (2014).

As expected, the enclosed number of vortices N does
not change along the profile of a vortex line. Formally, this
is a consequence of (62) and (56), that can be combined to
obtain

dN
dl

= 0. (64)

The immediate consequence is that the profile of the vortices
coincides with the level curves of N (x, y). In particular, the
functions N and ΩC are both constant on the vortex lines.
This, together with the fact that N increases monotonically
as we move far from the rotation axis, implies that we can
parametrise the levels of ΩC as ΩC = ΩC(N ), see also ap-
pendix D for a more detailed proof.

Let us come back to equation (52) and rewrite it as

∂νµt = −kΩC
2π

∂νN . (65)

Hence, also µt can be expressed in terms of N only and we
have

µt(N ) = µt(N = 0)− k

2π

∫ N
0

ΩC(N ′)dN ′ . (66)
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The overall constant µt(N = 0) can be fixed by considering
that N vanishes on the rotation axis, so that µt is constant
there. Moreover, because of the circularity condition all the
species comove on the axis and have a unique four-velocity
u = N−1∂t for all of them. As a consequence, the momen-
tum per particle of a generic chemical species with chemical
potential µ is µν = µuν and µt = −Nµ on the rotation axis,
namely

µt(N = 0) = −(Nµ)|axis . (67)

Let us now focus on the local density of vortex lines. To
visualize the densities obtained by taking a t = const slice of
the stellar interior we must consider the ZAMO introduced
in (44). The pseudovorticity vector associated to the ZAMO
is

$ν
Z = N (?$)νt , (68)

where the Hodge dual of the four-vorticity is

?$νρ=
k(2πρ)−1

Ngxgy


0 0 −∂yN ∂xN
0 0 −ΩC∂yN ΩC∂xN

∂yN ΩC∂yN 0 0
−∂xN −ΩC∂xN 0 0

 .
(69)

This explicit expression allows us to cast the pseudovorticity
into the form

$Z =
k(2πρ)−1

gxgy
(∂yN ∂x − ∂xN ∂y). (70)

A comparison with (24) and (56) gives

vZ = vC (71)

and

NZ = (2πρ)−1
√

(g−1
x ∂xN )2 + (g−1

y ∂yN )2 . (72)

This is the expression for the density of vortices in the frame
of the ZAMO we were looking for. Note that (71) simply
states that the local profile of the vortices seen by a ZAMO
is tangent to vC .

We can now easily calculate the rest-frame density of
vortices. The definition (25) and the result (58) immediately
give

uV Z = uC , (73)

meaning that the vortices move with four-velocity uC with
respect to the ZAMO. The Lorentz factor associated with
the relative motion is

ΓV Z = ΓCZ =
1√

1−∆2
CZ

∆CZ =
(ΩC − ω)ρ

N
, (74)

see (46), and the vortex three-velocity in the frame of the
ZAMO is

wV Z = N−1 (ΩC − ω) ∂ϕ. (75)

Therefore, using (27), we have

N = Γ−1
CZ NZ , (76)

where we recall that N is the rest frame vortex density, while
NZ is the vortex density in a ZAMO frame. We can conclude
that a ZAMO measures a vortex density which is increased
with respect to the rest-frame one by a factor that encodes

the relativistic length contraction effect due the vortex line
motion around the rotation axis of the star.

We have shown that a vortex line lives on hypersurfaces
ϕ = const. We conclude this section by showing how this
property emerges exclusively from the circularity condition.
At a given point, the intersection between the t = const hy-
persurface and the vortex worldsheet trough the point is tan-
gent to the pseudovorticity vector associated to the ZAMO.
This is always true if the metric is Kerr-like, whether the
circularity condition is satisfied or not. The vortex lines are
thus forced to lie on ϕ = const surfaces if and only if it is
true that

$ϕ
Z = N(?$)ϕt = 0 (77)

everywhere. This is equivalent to saying that

$xy = 0 , (78)

in complete analogy with the Newtonian case.

4 COROTATING CASE

We now specialise the analysis made in the previous sec-
tion to the case of superfluid neutrons corotating with the
proton-electron fluid in a neutron star. We show that the
vortex lines are almost straight in the quasi-Schwarzschild
coordinates when a realistic EOS is used, in contrast to the
prediction of Rothen (1981), that is valid for an idealised star
of constant density, in which the vorticity lines are found to
have substantial curvature.

The explanation of this fact is discussed by considering
the approximations of Ravenhall & Pethick (1994), which
are valid only for realistic EOSs and imply that the rela-
tivistic corrections to the profile of vortex lines cancel out.

4.1 Slow rotation approximation

On the the dynamical time-scales we are interested in, the
motion of the proton-electron fluid can be considered ap-
proximately rigid, so that Ωp is a constant. Under the as-
sumption of corotation we have that

up = un =
ΓpZ
N

(∂t + Ωp∂ϕ) (79)

and by imposing chemical equilibrium we have

µpν = µnν = µupν , (80)

where

µ =
E + Ψ

nb
, (81)

and the energy-momentum tensor reduces to that of a per-
fect fluid of baryons.

In the following we use quasi-Schwarzschild coordinates,
obtained by requiring that x = r, y = θ are built in a such
a way that the surfaces t, r = const are conformal to a
sphere, i.e. gθ = ρ/ sin θ. The quasi-Schwarzschild coordi-
nates have the advantage that, for slowly rotating neutron
stars in which

ΓpZ ≈ 1, (82)
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one can make the simplifications

N ≈ eΦ(r) gr ≈ eΛ(r) ρ ≈ r sin θ . (83)

Here Φ and Λ are solutions of the TOV equations, while the
frame dragging is

ω = Ωp ω̃ , (84)

where ω̃(r) can be found by using the approach of Hartle
(1967). Therefore, the metric tensor has the form

ds2 = −e2Φdt2 + e2Λdr2 + r2[dθ2 + sin2 θ(dϕ− ωdt)2] (85)

and the generic circular four-velocity (45) reads

uO = e−Φ(∂t + ΩO∂ϕ) . (86)

4.2 Vortex profile and density

We are now ready to explicitly calculate the profile of a vor-
tex line in the simplest situation of a corotating body. In
section 3.2 we have seen that the function ΩC is not com-
pletely arbitrary. However, it is easy to verify from (37) that
ΩC = Ωp in the corotating case, so that the condition (60)
is fulfilled simply because Ωp is uniform. This also allows
to perform the integration in (66): equations (50) and (67),
evaluated at the radius r = RD at which the neutrons start
to drip out of the nuclei, give

µnt + Ωpµ
n
ϕ = −mnND , (87)

where ND := N(r = RD, θ = 0) and we have used the fact
that at neutron drip µ = mn. We can make use of (80) and
(47) to transform the above equation into a formula for µ,

µ =
mnND
N

ΓpZ . (88)

Inserting these results into (50) we finally arrive at

N = 2πk−1mn

NDΓ2
pZ

N2
ρ2(Ωp − ω) . (89)

Within the slow rotation approximation this expression can
be further simplified thanks to (82) and (83),

N = 2πk−1mnΩpe
ΦD−2Φ(1− ω̃)r2 sin2 θ , (90)

where ΦD := Φ(RD). All the relativistic corrections to N
are contained in the factor

λ(r) := (1− ω̃(r)) eΦD−2 Φ(r) , (91)

meaning that

N = λ(r)NNewt(ρ) , (92)

where NNewt is the vortex line density for a non-relativistic
superfluid system in uniform rotation (Feynman 1955),

NNewt = 2π k−1mnΩpr
2 sin2 θ . (93)

It is possible to recognize three different relativistic effects
in the factor λ:

• Special relativistic dynamics: since all the forms of en-
ergy contribute to the inertia, the relativistic momentum is
µuν and not just mn uν . Thus, taking the slow rotation limit
of (88), we expect a factor

µ

mn
= eΦD−Φ (94)

in the formula for N . This factor, that grows as we move
towards the center, has the effect to increase the momentum
(and, therefore, also the number of vortices) with respect to
the Newtonian theory.
• Gravitational dilation of times: Ωp represents the angu-

lar velocity of the neutron star as seen by a distant observer,
which has a slow motion picture of the internal dynamics.
For an observer inside the star, everything is faster because
of the gravitational dilation of time, so we expect the num-
ber of vortices N to be increased by a factor

dt

dτ
= e−Φ. (95)

This contribution behaves exactly as the previous one.
• Frame dragging : spacetime is distorted in a way that,

from the point of view of a distant observer, an Eulerian ob-
server inside the star moves with angular velocity ω. Hence,
from Earth we see the superfluid rotating with angular ve-
locity Ωp, but to compute the local properties of the vor-
ticity field we have to subtract the apparent rotation ω of
the Eulerian observer. This is the physical interpretation of
the factor (1− ω̃), which has the effect of reducing the num-
ber of vortices (with respect to the Newtonian theory) and
becomes smaller as we move towards the center, so that it
partially cancels out the previous two contributions.

Now, recalling that the level curves of N are the profiles of
the vortices, we immediately have that a vortex line passing
trough the point (r = req, θ = π/2) on the equatorial plane
is defined by the implicit relation

r e−Φ(r)
√

1− ω̃(r) sin θ = req e
−Φ(req)

√
1− ω̃(req) . (96)

This coincides with the early result of Rothen (1981), cf.
equation (15) therein. This equation was obtained by Rothen
(1981) computing the integral curves of the pseudovorticity
$ν
n in the frame of the superfluid itself for a single perfect-

fluid model. This approach leads to the same formula we are
presenting here because, from (69), one can verify that

$ν
n = Γ−1

pZ$
ν
Z , (97)

so $ν
n is proportional to vνC , see equation (71).
We can, also, employ (72) to find the density of vortices

in the frame of the ZAMO

NZ = NNewt λ

√
1 + sin2 θ

[
e−2Λ

(
1 +

r∂rλ

2λ

)2

− 1

]
, (98)

where

NNewt = 2k−1mnΩp (99)

is the uniform density of vortices in the Newtonian limit. For
later purposes, it is worth mentioning here that (98) reduces
to

NZ = NNewt λ (100)

on the polar axis (θ = 0), while it reads

NZ = λNNewt e
−Λ

(
1 +

r∂rλ

2λ

)
(101)

on the equatorial plane (θ = π/2).
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Figure 1. The relativistic factor λ(r), normalised with respect to

its value in the center λ(0). In the upper panel we consider stars
of 1.4M� for six different equations of state: NL3ωρ (without hy-

perons), GM1 (without hyperons), DDME2 (with hyperons), DD2

(without hyperons), BSk21 and Sly4 (Fortin et al. 2016, 2017). In
the lower panel we show the profile of λ/λ(0) for different (Komar)

masses for two selected equations of state: M = 1.0, 2.0, 2.2M�
for BSk21 (Goriely et al. 2010) and M = 1.0, 2.0M� for SLy4
(Douchin & Haensel 2001).

4.3 Ravenhall and Pethick’s approximation

The relativistic corrections to the vortex shape are encoded
into the factor λ(r), see (92), which turns out to be approxi-
mately constant when realistic equations of state are used to
integrate the TOV equations, as can be seen in figure 1. It is
interesting to show that this is a by-product of the validity
of some approximations introduced by Ravenhall & Pethick
(1994).

Consider the quantity eΦ−Λ, which we call first Raven-
hall and Pethick (RP) parameter. Using the TOV equations,
it is immediate to see that

d

dr
eΦ−Λ =

8

3
π r eΦ+Λ

[
〈E〉2 −

3

2
(E −Ψ)

]
, (102)

Figure 2. Plot of the first RP parameter, eΦ−Λ, normalised with

its value in the center, for different (Komar) masses and equa-
tions of state: M = 1.0, 2.0, 2.2M� for the BSk21 EOS (Goriely

et al. (2010), blue curves) and M = 1.0, 2.0M� for the SLy EOS
(Douchin & Haensel (2001), red curves).

where 〈E〉2 is a volume average of the energy density,

〈E〉2 =
3

r3

∫ r

0

r′
2 E(r′) dr′. (103)

The right-hand side of equation (102) goes to zero for
r = 0. However, there is a competition between 〈E〉2 and
(3/2)(E −Ψ) for r > 0. In the non-relativistic limit the pres-
sure Ψ is negligible with respect to E , so that 3E/2 > 〈E〉2
in the region extending from the center to the radius at
which eΦ−Λ reaches a minimum. The minimum, however,
is reached not far from the surface for realistic equations
of state, so that both 〈E〉2 and 3E/2 are small and eΦ−Λ

does not have the possibility to grow considerably. On the
other hand, if the central pressure Ψ(0) is comparable to the
mass-energy density E(0), the inequality

〈E〉2 > 3(E −Ψ)/2 (104)

may hold also for small values of r; in this case eΦ−Λ is an
increasing function of the radial coordinate. Therefore, we
have two extremal situations in which the first RP param-
eter is always respectively lower and higher with respect to
its central values. As we can see in figure 2, neutron stars
below their maximum mass are exactly on the turning point
between these two different behaviors. So we happen to be
in the situation in which

eΦ−Λ ≈ const. (105)

Figure 2 also shows that the error which we commit with
this approximation is of the order of 10%.

Let us focus, now, on the quantity j(1−ω̃), which we call
second Ravenhall and Pethick parameter, where j := e−Φ−Λ.
Given the equation for the frame dragging of Hartle (1967),
it is easy to see that

d

dr
[j(1− ω̃)] = (1− ω̃)

dj

dr
− 〈 (1− ω̃)

dj

dr
〉3 , (106)
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Figure 3. Plot of the second RP parameter, e−Φ−Λ(1− ω̃), nor-

malised with its value in the center, for different (Komar) masses
and equations of state: M = 1.0, 2.0, 2.2M� for the BSk21 EOS

(Goriely et al. (2010), blue curves) and M = 1.0, 2.0M� for the

SLy EOS (Douchin & Haensel (2001), red curves).

where

〈 (1− ω̃)
dj

dr
〉3 =

4

r4

∫ r

0

(1− ω̃(r′))
dj

dr′
r′3dr′ . (107)

Now, the TOV equations allow to verify that

(1− ω̃)
dj

dr
= −4πr(E + Ψ)(1− ω̃)e−Φ+Λ. (108)

For small r, both the terms in the right-hand side of equation
(106) go to zero. As r grows, (1 − ω̃)∂rj becomes negative,
implying

(1− ω̃)
dj

dr
< 〈 (1− ω̃)

dj

dr
〉3 . (109)

This average gives more importance to the contributions
close to r, implying that the difference ∂rj(1 − ω̃) −
〈∂rj(1− ω̃)〉3 is small. As we move towards the surface of
the star, the fact that E + Ψ goes to zero becomes increas-
ingly important and lowers the value of ∂rj(1 − ω̃), until
we reach a point in which (1− ω̃)∂rj = 〈(1− ω̃)∂rj〉3. Here
we have the minimum of j(1 − ω̃) after which it will start
growing. Thus, as can be seen in figure 3, we can conclude
that

e−Φ−Λ(1− ω̃) ≈ const (110)

within an error of at most the 10%.
Since λ, apart from an overall constant factor, is the

ratio of the two RP parameters, then it is approximately
constant as well (within the 2% for masses below 1.4 M�
and the 17% for masses close to the maximum mass, see fig-
ure 1). As a result, we do not present the plot of the vortex
lines for the low mass cases because the relativistic effects
are essentially invisible. We show only the profile for the
most relativistic star considered here (i.e. a 2M� star with
the SLy EOS, see figure 1). The result is shown in figure 4:
the vortices are still essentially straight, as the gradients of
NNewt overwhelm the effect of the ∼ 20% relativistic cor-
rection due to λ.

0 0.2 0.4 0.6 0.8
r sin (θ)/R

0

0.2

0.4

0.6

0.8

r 
co

s 
(θ

)/
R

Figure 4. Vortex profile in the quasi-Schwarzschild coordinates

for a neutron star of 2.0M� described by the SLy EOS. The
spacing between vortices has been chosen in a way to facilitate

the visualization and does not reflect the vortex density.

Figure 5. Map of NZ/NNewt in the quasi-Schwarzschild coor-
dinates, for a very compact neutron star of 2.0M� described by
the SLy EOS.

Finally, we remark that λ ≈ const, which leads to al-
most straight vortex lines in this chart, is not the product
of a more fundamental symmetry. Neutron stars supported
by a realistic equation of state explore the particular range
of parameters which guarantees this unexpected result. The
use of unrealistic equations of state can lead to a highly de-
formed vortex structure. This is the case of Rothen (1981),
who employed the equation of state E = const, which is
pathological, especially close to the maximum mass where
Ψ(0) −→∞.
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4.4 Approximate formula for the density of
vortices

We now focus on the vortex density given by equation (98).
In figure 5 we plot the density of vortices for a 2M� neu-
tron star governed by the Sly equation of state (Douchin &
Haensel 2001): it is higher close to the axis of symmetry,
while has a minimum at the equator. Let us consider this
behaviour in more detail.

When Ravenhall and Pethick’s approximation is appli-
cable, we can put ∂rλ ≈ 0 in equation (98) to obtain

NZ = NNewtλ
√

1 + sin2 θ(−1 + e−2Λ). (111)

There is a simple geometrical interpretation for this result:
the fact that λ is nearly constant means that the vortices are
perfectly vertical and uniformly distributed in the chart (this
is analogous to the Newtonian case, since the only correction
is given by the overall rescaling factor λ). However, when we
have to compute the density NZ measured by the ZAMO, we
need to consider also the fact that the lengths are distorted
and that the density must be computed orthogonally to the
vortex lines.

Consider two different ZAMOs, one on the polar axis
and the other on the equatorial plane. In the first case the
induced metric on the surface orthogonal to the vortices is

dσ2 = r2dθ2 + r2 sin2 θdϕ2, (112)

which coincides with its Newtonian limit. Therefore, λ is the
only relativistic correction and

NZ = NNewt λ. (113)

In the second case the surface element is

dσ2 = e2Λdr2 + r2dϕ2, (114)

so that the space is dilated in the radial direction by a factor
eΛ with respect to the Newtonian limit. As a consequence,
the measure of surface density becomes

NZ = NNewt λ e
−Λ. (115)

Therefore, the square root factor in (111) accounts for the
fact that space is distorted: even if in the chart the vortices
may be uniformly distributed (similarly to the Newtonian
case), we still measure different local densities. The gravi-
tational dilation of space in the radial direction is responsi-
ble for an alteration of the surface density, but only if the
surface element has a radial extension, which explains the
dependence on both r and θ presented in equation (111).

In figure 6 we show the profile of the density of vortices
on the equatorial plane for different solar masses, assuming
the SLy equation of state. In the same figure, we also com-
pare the exact formula (101) to the approximate one, (115).
Clearly, the approximation is acceptable for low mass stel-
lar configurations, but the induced error can be relevant for
more massive stars. In all cases the approximation becomes
better as we move towards the center, due to the fact that
we are neglecting a term which is proportional to r∂rλ.

5 RELATIVISTIC CORRECTION TO THE
COUPLING TIME-SCALE

We are now ready to estimate the time-scale on which the
mutual friction couples the superfluid and the normal com-

Figure 6. Plot of NZ/NNewt as a function of r along the equa-

torial plane (θ = π/2), assuming the SLy equation of state. The
continuous lines represent the exact surface density given by equa-

tion (98), the dashed ones represent the approximate result in
equation (111).

ponents in a relativistic star. For a given velocity lag between
the two components, we derive the time-scale on which the
mutual friction couples them and re-establishes corotation.
The time-scale we calculate is, therefore, also the one associ-
ated to the potentially observable spin-up phase in a pulsar
glitch.

5.1 Small lag approximation

As a first step, we need to find the general expression for µnϕ
in the presence of a velocity lag between the components.
Given that Ωp is uniform and represents the angular velocity
of the neutron star we see from the Earth, let us consider
the presence of a lag Ωnp := Ωn − Ωp such that

|Ωnp|
Ωp

� 1, (116)

so we can treat it as a perturbation. We also impose that
the lag is different from zero only in a thin spherical shell
(containing the crust), implying that the inertia of the part
of superfluid which is not rotating with Ωp is small compared
to the rest of the star. This allows us to neglect the effect of
this small lag on the metric.

The momentum per particle of the neutron superfluid
can be written with the aid of an entrainment parameter εn
(Prix et al. 2005) as

µnν = µ(C)
n

[
(1− εn)unν +

εn
Γnp

upν

]
, (117)

where µ
(C)
n is the comoving chemical potential (Gavassino &

Antonelli 2019). We have shown that, when the species coro-
tate and are in chemical equilibrium, equation (88) holds.
In the slow rotation approximation this condition can be
rewritten as

µ(C)
n = mne

ΦD−Φ. (118)
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This equation remains true also in the presence of a lag,
provided that ∣∣∣∣∆2 ∂µ

(C)
n

∂∆2

∣∣∣∣
np,nn

∣∣∣∣� µ(C)
n . (119)

It is easy to show that the above condition is equivalent to

|εn|∆2 � 1, (120)

which is verified in every realistic situation.2 Thus, we can
plug equation (118) into equation (117) and use the slow-
rotation approximation in (47), obtaining

µnϕ = mne
ΦD−2Φ

[
(1− ω̃)Ωp + (1− εn)Ωnp

]
r2 sin2 θ. (121)

Clearly, when Ωnp = 0 the above relation becomes equation
(90).

We remark that if the lag was different from zero for ev-
ery r, and not only in a thin shell of small moment of inertia,
the frame dragging would be modified by the lag and would
have the form ω = ω̃Ωp + ω′ where ω′ = ω′[Ωnp] is a non-
local linear functional of the lag. So in equation (121) a term
−ω′ would appear inside the square brackets, which has the
same order of Ωnp and therefore cannot be neglected. The
consequences of this complication are discussed in section 6.

5.2 Local relaxation time

We compute here the timescale with which the velocity lag
in different rings of constant r and θ relax to corotation.

In the slow rotation approximation the relative velocity
between the two components is

wnp = e−ΦΩnp ∂ϕ. (122)

Considering that ⊥̂ϕϕ ≈ r2 sin2 θ, the ϕ component of equa-
tion (39) reads

∂tµ
n
ϕ = −RkNZ

1 +R2
Ωnpr

2 sin2 θ. (123)

Note that this equation coincides with equation (85) of Lan-
glois et al. (1998), neglecting the convection angular veloc-
ity Ω+ and using the slow rotation approximation. Recalling
equation (121), we find that

∂tµ
n
ϕ = mne

ΦD−2Φ[(1− ω̃)Ω̇p + (1− εn)∂tΩnp]r
2 sin2 θ.

(124)
Since the relaxation process we are considering is fast com-
pared to the spin-down time-scale, the Komar angular mo-
mentum is approximately conserved. Moreover, we are as-
suming that the part of superfluid which is not locked to
the normal component is contained in a thin shell of small
moment of inertia. Therefore, the angular momentum con-
servation implies

|Ω̇p| � |∂tΩnp|, (125)

which allows us to neglect the term (1− ω̃)Ω̇p in (124). With

2 The maximum value that |εn| is expected to assume in the

crust is around 10 (Chamel 2012), so the approximation is correct
provided that ∆ � 0.32, which is always satisfied in a neutron

star.

the aid of this approximation, we can obtain from (123) a
closed equation for the evolution of Ωnp:

∂tΩnp = − RkNZe
2Φ−ΦD

mn(1 +R2)(1− εn)
Ωnp. (126)

Integrating this equation we obtain that for each ring of
constant r and θ we have a different relaxation time-scale,

t
(ring)
R,GR =

mn(1 +R2)(1− εn)

RkNZe2Φ−ΦD
. (127)

Finally, isolating the Newtonian contribution

t
(ring)
R,Newt =

mn(1 +R2)(1− εn)

RkNNewt
, (128)

we find, using (111) and (91),

t
(ring)
R,GR (r, θ) =

t
(ring)
R,Newt(r)

(1− ω̃(r))
√

1 + sin2 θ(−1 + e−2Λ(r))
. (129)

Hence, General Relativity introduces a dependence of the
coupling time-scale on θ which is not present in the Newto-
nian limit. This is a direct consequence of the discussion in
subsection 4.4.

It is important to remark that our formula for the time-
scale has been derived under the fundamental assumption
of a mutual friction which is proportional to the modulus of
the macroscopic vorticity, see subsection 2.3. In a turbulent
regime this assumption is likely to be violated and this might
produce different contributions to the relativistic correction.
To compute them, one can perform the same calculations
we made in this subsection, modifying the right-hand side
of (123) according to the alternative prescription for the
mutual friction.

5.3 Global relaxation time

Different rings reach corotation on a different time-scale, but
from the Earth we can observe only the changes of Ωp. Its
evolution can be obtained by using angular momentum con-
servation, so its behaviour will not be a simple exponential
but a weighted average of exponentials. We expect the aver-
age to favour those rings which are located around θ = π/2
(the equatorial plane), as they are those with the largest
moment of inertia. Therefore, employing also the fact that
the metric functions vary slowly in the thin shell and can,
thus, be evaluated at r = RD, we obtain

tR,GR

tR,Newt
=

eΛD

1− ω̃D
, (130)

where tR,GR and tR,Newt are respectively the relativistic and
the Newtonian prediction for the evolution of the angular
velocity of the pulsar, seen from Earth.

We can now discuss the physical interpretation of equa-
tion (130) by taking into account all the expected relativistic
effects:

• Gravitational time dilation: from Earth we observe a
slow-motion picture of the internal dynamics of the star,
thus the rise-time should be increased by a factor e−ΦD . On
the other hand, the time dilation increases the amount of
vortices because an observer sitting inside the star sees faster
motions. As the number of vortices increases, the mutual
friction becomes stronger, so tR,GR is reduced by the factor
eΦD . Thus the effects of time dilation cancel out.
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• Curvature of space: in subsection 4.4 we have shown
that the effect of gravity on the t = const leaves is to enlarge
the lengths in the radial direction. This reduces the density
of vortices, increasing the rise-time by a factor eΛD .
• Frame dragging : the frame-dragging constitutes a con-

stant which needs to be subtracted to the angular velocity to
connect what we observe from the Earth to what we would
see if we were inside the star. Thus, it is not directly involved
in the dynamical process. However it reduces the number of
vortices, giving a factor 1− ω̃D in the denominator.

We can rewrite (130) in a more convenient way, consid-
ering that we can approximate the evaluation of the metric
functions at the drip point with an evaluation at the surface
of the star. In particular, given that

eΛD ≈
(

1− 2M

R

)−1/2

ω̃D ≈
2I

R3
, (131)

where M is the Komar mass and I is the Hartle moment of
inertia of the whole star, we arrive at

tR,GR

tR,Newt
=

(
1− 2M

R

)−1/2(
1− 2I

R3

)−1

. (132)

This formula can be written only in terms of the relativistic
compactness C = M/R by using the universal relation

I

R3
= ā1C

2 + ā2C + ā3 + ā4C
−1 , (133)

where ā1 = 8.134 × 10−1, ā2 = 2.101 × 10−1, ā3 = 3.175 ×
10−3 and ā4 = −2.717× 10−4 are coefficients which do not
depend of the EOS (Breu & Rezzolla 2016). Since all the
formulas are given in geometric units, C, I/R3 and the āi
are dimensionless.

In figure 7 we show the relativistic correction as a func-
tion of the compactness: the curve in the plot is practically
independent from the equation of state used. We observe
that the relativistic correction is always larger than 1 and
for a typical star of 1.4 M� (C ≈ 0.18) it is around 1.4. This
means that the coupling time-scale are always longer.

6 THE ROLE OF THE THIN-SHELL
ASSUMPTION

In this final section we discuss why the thin-shell assumption
is fundamental to find a universal formula for the relativistic
correction to the mutual friction coupling time-scale.

An alternative approach to obtain a global correction
is the one adopted by Sourie et al. (2017), where both the
species are assumed to move rigidly. Differently from our
approach (based on the presence of a thin shell that con-
tains the superfluid neutrons), Sourie et al. (2017) focus on
the relaxation process in the case in which the free super-
fluid component is extended over the whole core of the star.
This introduces two complications. First, the quantities of
interest are obtained as integrals over the star, loosing the
universal character of equation (132) (which has been found
by evaluating all the metric functions at the surface). Sec-
ondly, the frame dragging ω is a function of both Ωp and
Ωn, correcting the coefficient 1 − εn in equation (121) with
a Lense-Thirring contribution (see the discussion in section
5). This is another effect which compromises the universality
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Figure 7. The relativistic factor tR,GR/tR,Newt given in equa-

tion (132) as a function of the compactness C. For comparison
purposes, we employed six different equations of state (Fortin

et al. 2016, 2017) to compute the moment of inertia I = I(C):
all the curves appear to be nearly superimposed to the universal

relation (133).

of the result, as it strongly depends on the details of internal
stratification.

In this section we start from a rigid model and we im-
pose the requirement that the density of the neutron super-
fluid, nn, (which is formally extended over the whole core) is
zero outside a thin shell located near the surface. We prove
that under this assumption the formula for the relativistic
correction to the coupling time-scale given by Sourie et al.
(2017) reduces to (130), while in general it may differ from
it.

6.1 Moments of inertia

Following Sourie et al. (2017) we have to introduce the par-
tial moments of inertia of each species, because they appear
directly in their formula for the correction to the coupling
time-scale. As we said in subsection 5.1, in the thin shell
limit the metric is essentially unaffected by the presence of
the lag, implying that

ω = Ωpω̃. (134)

Using the slow rotation approximation, one can verify that
the moment of inertia of the species X defined in Sourie
et al. (2017) is

ÎX =

∫
Σ

mnnX(1− ω̃)eΛ+ΦD−2Φr2 sin2 θ d3x, (135)

where Σ is a t = const hypersurface, d3x = r2 sin θ dr dθ dϕ,
is the Newtonian volume element, and we have employed
equation (118) to replace µ

(C)
X . In the case X = n the in-

tegrand is different from zero only in the thin shell, so the
metric functions are approximately constant in the integral
and can be replaced by their value on the drip point, thus
we find

În = (1− ω̃D)eΛD−ΦD

∫
Σ

mnnnr
2 sin2 θ d3x. (136)
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On the other hand, for X = p, the integral is extended over
the whole star, so Îp � În. Defining Î = Îp + În, we have
that

Îp/Î ≈ 1. (137)

6.2 The gravitational space dilation factor

A second quantity which appears in the formula for the rel-
ativistic correction of Sourie et al. (2017) is the factor

ζ :=
1

2ÎnΩn

∫
Σ

ΓnZ nnkNZ ⊥(∂ϕ, ∂ϕ)eΛd3x. (138)

Using the slow rotation approximation, we have that

ΓnZ ≈ 1 ⊥(∂ϕ, ∂ϕ) ≈ r2 sin2 θ. (139)

Furthermore, since in the integral the angular part is
weighed with a factor sin3 θ, we can replace kNZ with its
value in θ = π/2, which, using (115), reduces to

kNZ = 2mnΩnλe
−Λ. (140)

The thin shell approximation allows to replace all the metric
functions in the integral with their value in RD; recalling
equation (91), we obtain

ζ ≈ e−ΛD . (141)

Therefore ζ contains the correction to the density of vortices
given by the gravitational dilation of space in the radial
direction.

6.3 The generalised entrainment coefficients

In Sourie et al. (2017), the role of the entrainment and of the
frame dragging on the coupling time-scale is encoded in two
generalised entrainment coefficients ε̂p and ε̂n. In this sub-
section we recap how they are defined and how they simplify
under the thin-shell assumption.

Given and arbitrary function f , we introduce the two
averaging procedures (X = n, p)

〈f〉X :=

∫
Σ
f mnnXe

Λ+ΦD−2Φr2 sin2 θ d3x∫
Σ
mnnXeΛ+ΦD−2Φr2 sin2 θ d3x

. (142)

In particular, Sourie et al. (2017) define

ε̃X = 〈εX〉X . (143)

It is clear that εp = 0 outside the superfluid domain. Since
the denominator (an integral over the whole star) is much
larger than the numerator (restricted over the thin shell),
we have that

ε̃p ≈ 0 . (144)

The authors also average the frame dragging and split the
contributions as

〈ω〉X = εLTXXΩX + εLTYXΩY . (145)

Using the approximation (134), it is clear that

εLTnn ≈ εLTnp ≈ 0 εLTpn ≈ ω̃D. (146)

Finally they define the coefficients

ε̂X =
ε̃X − εLTYX

1− εLTXX − εLTYX
, (147)

which, considering (144) and (146), become

ε̂p ≈ 0 ε̂n ≈
ε̃n − ω̃D
1− ω̃D

. (148)

6.4 Relativistic correction to the rise time

Now we have all the ingredients we need to study the rel-
ativistic correction to the rise time of Sourie et al. (2017),

tR,GR

tR,Newt
=

ÎGR
p /ÎGR

ÎNewt
p /ÎNewt

·
1− ε̂GR

p − ε̂GR
n

1− ε̃Newt
p − ε̃Newt

n

· ζ−1 , (149)

in the thin-shell approximation.
Noting that equations (137) and (144) are true both

in Newtonian theory and in General Relativity, we can use
(141) and (148) to obtain

tR,GR

tR,Newt
=

1− ε̃GR
n

1− ε̃Newt
n

· eΛD

1− ω̃D
. (150)

However, ε̃GRn ≈ ε̃Newt
n , because the relativistic corrections

(given by the metric functions) can be brought out of the
average over the thin shell, canceling out. Thus, we finally
arrive at

tR,GR

tR,Newt
=

eΛD

1− ω̃D
, (151)

which is what we wanted to prove.
If the thin shell approximation is not valid, however,

(137), (144) and (151) do not hold and the relativistic cor-
rection will depend on the EOS as is seen in figure 8 of Sourie
et al. (2017).

To date, there is no general consensus on the real exten-
sion of the superfluid region involved in the rise of a glitch.
The standard scenario of a pinned superfluid confined only
in the inner crust has been challenged in Andersson et al.
(2012), Chamel (2013) and Pizzochero et al. (2019). An ex-
tension of the region including only an external fraction of
the core for young neutron stars has been proposed by Ho
et al. (2015). This model remains in the limit of the thin
shell assumption. On the other hand, Gügercinoğlu & Alpar
(2014) have proposed that the whole core may contribute
to the glitch, which would imply the need of employing the
scheme adopted by Sourie et al. (2017).

7 CONCLUSIONS

We have computed the relativistic correction to the coupling
time-scale between the superfluid and the normal component
in a neutron star.

In doing this, we analysed all the quantities involved in
the mutual friction equation. First, we studied the vortex
profile in general relativity, verifying that the formula pre-
sented in Rothen (1981) can be easily justified directly from
Carter’s two-fluid formalism in the slow rotation approxima-
tion. Secondly, we found that the validity of the approxima-
tions presented in Ravenhall & Pethick (1994) implies that
the vortex lines are expected to be almost straight in the
quasi-Schwarzschild coordinates. Furthermore, we derived a

MNRAS 000, 1–20 (2018)



A relativistic correction to the mutual friction coupling time-scale 15

formula for the vortex density, which, making use of the ap-
proximations of Ravenhall & Pethick (1994), becomes pro-
portional to a geometric factor encoding the gravitational
dilation of space in the radial direction.

Inserting all the results in the prescription for the
vortex-mediated mutual friction presented in Langlois et al.
(1998) we have shown that the relativistic corrections to the
coupling time-scale are given, in the crust and in the outer-
most part of the outer core, by a universal factor which is a
function of the compactness of the star only. This universal
correction incorporates the effects of space curvature, which
dilates the vortex spacing, and of the frame dragging, which
reduces the amount of vortices. Both these effect reduce the
mutual friction between the two species, slowing down the
coupling process. For a typical star of 1.4 M� the glitch
rise-time is enhanced of the 40% with respect to Newtonian
predictions. The correction grows as the star becomes more
compact (and thus relativistic).

Currently, Newtonian models are mostly employed to
fit glitch rise-times and extract constraints on the mutual
friction coefficients (Haskell et al. 2018; Ashton et al. 2019;
Pizzochero et al. 2019), with the notable exception of (Sourie
et al. 2017), who however consider the superfluid reservoir to
be in the core of the star. In the case in which the reservoir
is assumed to be in the crust, the mutual friction coeffi-
cients obtained by means of Newtonian models should just
be rescaled with the coefficient given in equation (132) to
encode the corrections of General Relativity. This result is
particularly useful because the factor is a universal func-
tion of the compactness and, therefore, does not depend on
the equation of state. We remark that Ho et al. (2015) and
Newton et al. (2015) propose techniques to distinguish equa-
tions of state based on differences that have the same order
of magnitude as the relativistic correction that we obtain.
Thus in these studies the effect of General Relativity cannot
be neglected and our prescription for the correction needs
to be adopted.

The general picture emerging from the present paper
is that, despite the intrinsic difficulties of a fully relativistic
approach, in the quasi-Schwarzschild coordinates all the rel-
ativistic effects assume a simple and intuitive form. The fac-
tors eΦ (encoding gravitational time dilation), eΛ (encoding
the curvature of space) and ω̃ (encoding the Lense-Thirring
effect) always appear in positions which are coherent with
their intuitive meaning and their presence could also be de-
duced by means of simple arguments (see subsections 4.2,
4.4 and 5.3).

Finally, the present work (together with similar ones,
see e.g. Langlois et al. (1998), Andersson & Comer (2001),
Sourie et al. (2017) and Antonelli et al. (2018)) can be used
as a theoretical basis for the development of refined rela-
tivistic dynamical models for pulsar glitches and neutron
star oscillations in the framework of the slow rotation ap-
proximation.

ACKNOWLEDGEMENTS

The authors thank the PHAROS COST Action (CA16214)
for partial financial support. The authors acknowl-
edge support from the Polish National Science Centre
grant SONATA BIS 2015/18/E/ST9/00577 and OPUS

2019/33/B/ST9/00942. We thank A. Montoli and M. Fortin
for valuable help.

APPENDIX A: TROUGH THE EYES OF AN
IDEAL OBSERVER

Let us consider an ideal observer O with a four-velocity uO.
We define the pseudovorticity associated to O as

$ν
O := −?$νρ uOρ = $ SνρuOρ. (A1)

Considering the antisymmetry of ?$νρ, it is evident that

$ν
OuOν = 0, (A2)

so that in the local reference frame of the observer it is a
spatial vector. Equation (21) immediately gives

⊥νρ$ρ
O = 0, (A3)

which tells us that the pseudovorticity is tangent to the
wordlsheet. Hence, $O points along the intersection be-
tween the vortex worldsheet and the local set of simulta-
neous events of the observer (this intersection is just the
profile of the vortex locally seen by O). Furthermore, we
define

vO :=
$O√

g($O, $O)
, (A4)

which is the unit vector which points along the vorticity lines
seen by the observer. Using (22), it is easy to show that the
denominator in the definition (A4) can be rewritten as√

g($O, $O) = $
√
−g(//uO, //uO). (A5)

Another useful vector is

uVO :=
//uO√

−g(//uO, //uO)
, (A6)

which we refer to as vortex four-velocity (with respect to the
observer O). Equations (22) and (A5) can be used to verify
that

uνVO = SνρvOρ, (A7)

implying

uνVOvOν = 0. (A8)

To understand the meaning of uVO, imagine to mark a point
in the core of a vortex. The worldline of this point is con-
tained into the wordsheet of the corresponding vortex, im-
plying that its four-velocity will be tangent to it. Clearly,
there are infinitely many ways this particle can slide along
the vortex line and this is reflected in the fact that the ker-
nel of $νρ is a two-dimensional plane containing several nor-
malised future-oriented timelike four-vectors uC . In general,
these uC are solutions of (29) and can be written as

uC(ζ) := uVO cosh(ζ) + vO sinh(ζ). (A9)

Let us impose that the marked point is moving with four-
velocity uVO, which is the case ζ = 0. Then,

ΓVO := −g(uO, uVO) =
√
−g(//uO, //uO) (A10)

is the Lorentz factor associated with its relative speed with
respect to O, while the vector

wVO :=
uVO
ΓVO

− uO, (A11)
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represents the three-velocity of the particle seen by the ob-
server. Moreover wVO is orthogonal (making use of (A2)
and (A8)) to vO. This means that uVO represents the four-
velocity that the matter contained in the core of the vortices
would have if we suppose that in the frame of O its motion
is perpendicular to the shape of the vortices. For this reason,
it can be considered to be the four-velocity of the vortices
with respect to O, as it describes how their profile moves in
their local frame. In particular, it is easy to show that

ΓVO =
1√

1−∆2
VO

∆2
VO = g(wVO, wVO). (A12)

We now derive the local density of vortices measured by
the observer. To do so, it is necessary to use the Feynman-
Onsager quantization condition which emerges from (13),
see also Antonelli et al. (2018). Consider a spacelike two-
dimensional surface Σ in the superfluid domain, enclosed by
a circuit ∂Σ. It is immediate to see that∫

∂Σ

µ = kN , (A13)

where N is the net number of vortices enclosed by ∂Σ (An-
tonelli et al. 2018). Employing Stokes’ theorem and the fact
that the exterior derivative commutes with the pull-back,

N =
1

k

∫
Σ

$. (A14)

Let us define at each point of Σ an orthonormal basis ea,
such that e0 (time-like) and e1 are normal to it, while e2

and e3 are tangent. In the text we employ the convention
that, in the integral, the pull-back of $ is identified with $
itself. Since, however, the pull-back of $ is a 2-form defined
in a two-dimensional space, then∫

Σ

$ =

∫
Σ

$(e2, e3)
√
Gd2x, (A15)

where
√
G is the square root of the determinant of the met-

ric induced on Σ. Considering the fact that in a Lorentzian
manifold the Hodge dual has the property

?? = −1 (A16)

on two-forms, we can write

$(e2, e3) = $23 = −ε0123?$
01 = ?$(e0, e1). (A17)

Defining the unit bivector normal to the surface

SνρΣ := eν0e
ρ
1 − e

ρ
0e
ν
1 , (A18)

it is evident that

?$(e0, e1) =
1

2
?$νρSνρΣ . (A19)

Plugging our result into the integral we finally obtain

N =
1

2k

∫
Σ

?$νρdΣνρ, (A20)

where we used the compact notation

dΣνρ := SνρΣ dΣ with dΣ :=
√
Gd2x. (A21)

Therefore, the integral of the two-form has been transformed
into the flux of its Hodge dual. Defined the scalar

N :=
$

k
, (A22)

we are able to write

N = −1

2

∫
Σ

NSνρdΣνρ. (A23)

The density of vortices is a number per unit area and must
be computed by considering surfaces which are orthogonal
to the profile of the vortices. Thus, to obtain the local den-
sity of vortices NO measured by O, we need to consider an
infinitesimal area δS that is orthogonal to both uO and vO.
This gives

SνρΣ = uνOv
ρ
O − u

ρ
Ov

ν
O (A24)

and using (A6), (A7) and (A10), we arrive at

NO =
N
δΣ

= −NSνρuOνvOρ = NΓVO. (A25)

Looking again at equation (A4) and (A5), we notice that
the norm of $O is the density measured by O (apart from
the factor k). Hence, the pseudovorticity can be written as

$O = kNOvO. (A26)

Notice that if the four-velocity is tangent to the wordsheet
(meaning that for the relative observer the vortices are lo-
cally at rest), the density of vortices NO reduces to N. This
tells us that N can be considered to be the rest-frame vortex
density. Now the formula (27) has a clear interpretation: the
factor ΓVO encodes the contraction of lengths, which mod-
ifies the densities only if the velocity of the observer has a
component which is orthogonal to the vortex profile.

APPENDIX B: RELATIVISTIC MUTUAL
FRICTION

Let us start by rearranging the terms of (38) as

(gνρ −R−1Γ−1
vp ενµρσu

µ
nv

σ
p )uρv = Γ−1

vp upν . (B1)

This relation defines uv in terms of up, vp and un: we can
solve it for uv, considering now Γvp as a parameter and
ignoring for the moment the fact that it is a function of
uv itself. To simplify the calculations we choose a conve-
nient orthonormal basis ea = eµa∂µ such that e0 = un and
vp ∈ span{e0, e1}, with v1

p > 0. In this tetrad equation (B1)
reads

Mabu
b
v = Γ−1

vp upa, (B2)

where

Mab = ηab + Z ε01ab Z = R−1Γ−1
vp v

1
p, (B3)

whose matrix representation on this basis is

Mab =


−1 0 0 0
0 1 0 0
0 0 1 Z
0 0 −Z 1

 . (B4)

Now, if we are able to find the tensor Mca
(inv) such that

Mca
(inv)Mab = δcb , (B5)

then contracting (B2) with Mca
(inv) gives

ucv =Mca
(inv)Γ

−1
vp upa, (B6)

which is the expression we are looking for. Since the matrix
form of M(inv) is the inverse of M, it is now clear why the
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choice of this basis is so convenient: in fact, it is easy to
invert (B4), namely

Mca
(inv) =


−1 0 0 0
0 1 0 0

0 0
1

1 + Z2
− Z

1 + Z2

0 0
Z

1 + Z2

1

1 + Z2

 , (B7)

which in a tensorial notation can be written as

Mca
(inv) = ηca − Z

1 + Z2
ε ca

01 − Z2

1 + Z2
⊥̂
ca
, (B8)

where ⊥̂
ν

ρ is the projector onto the plane generated by e2

and e3.3

We use (B8) into (B6), lower the index c and rewrite
everything in a generic coordinate basis, obtaining

uvν =
upν
Γvp
− R

−1

1 + Z2
uλnv

σ
p ελσνρ

uρp
Γ2
vp

− Z2

1 + Z2
⊥̂νρ

uρp
Γvp

. (B9)

This equation is an exact reformulation of (37). In our
model, however, we will work in the limit in which the rel-
ative speeds between all the species are non relativistic, so
we can neglect the Lorentz factors and consider the limit

Z −→ 1

R . (B10)

It is, also, useful to introduce the relative three-velocities,
defined in general by the condition

ux =: Γxy(uy + wxy), (B11)

which in this limit become

wxy = ux − uy. (B12)

Equation (B9), then, reduces to

wvpν =
R

1 +R2
uλnv

σ
p ελσνρw

ρ
np +

⊥̂νρwρnp
1 +R2

. (B13)

Consider again equation (37); in the limit of small relative
speeds

⊥up ≈ −wvp (B14)

and we can rewrite the right-hand side employing (B13),
arriving at

−uρn$n
ρν =

RkN
1 +R2

[
Ruλnvσp ελσνρwρnp + ⊥̂νρwρnp

]
, (B15)

which is the expression of mutual friction we were looking
for (see Andersson et al. 2016 for an alternative derivation).

APPENDIX C: CLOSED DEGENERATE
TWO-FORMS IN GENERAL RELATIVITY

In this appendix we briefly review the geometrical properties
of two-forms in General Relativity, expanding some concepts
that have been touched in section 2.2. In particular, we show
that the degeneracy condition (15) is sufficient to guarantee
the existence of a two-dimensional foliation whose leaves are
tangent to the kernel of the two-form. In the following, the

3 Not to be confused with ⊥νρ of equation (22)

names of the tensors which we introduce are those of the
fields of electrodynamics in General Relativity. This because
the formalism we are going to build is employed exactly as
presented here also in GRMHD (Gourgoulhon 2013; Gralla
& Jacobson 2014).

Consider an arbitrary two-form F . Given the four-
velocity uO of an observer, we can build a right-handed or-
thonormal basis ea = eµa∂µ such that e0 = uO. The form F
can be expanded in this basis as

F =
1

2
Fab e

a ∧ eb (C1)

and the components Fab represent what is measured by the
observer moving with uO. In this basis we can rename the
components of Fab according to the Faraday decomposition

Fab =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

 . (C2)

We can introduce the two covectors

EO := Eje
j BO := Bje

j , (C3)

where j runs from 1 to 3 and we put the subscript O to keep
track of the fact that everything depends on the choice of
the observer. Using the musical duality notation

u[O := uOνdx
ν , (C4)

F can be rewritten as

F = u[O ∧ EO + ?(u[O ∧BO). (C5)

Moreover,

(?F )ab =


0 B1 B2 B3

−B1 0 E3 −E2

−B2 −E3 0 E1

−B3 E2 −E1 0

 , (C6)

which can be seen as the result of the transformation

EO → −BO BO → EO (C7)

and implying that

?F = −u[O ∧BO + ?(u[O ∧ EO). (C8)

The properties of the wedge product and of the Hodge du-
ality, together with equations (C5) and (C8), can be used to
prove that

EO = −ιuOF BO = ιuO?F. (C9)

Thus we have a simple way to extract, for a given F and uO,
the two covectors EO and BO. Notice also that EO and BO
can be combined to give two scalars which do not depend
on the choice of uO. In fact, it is immediate to verify that

〈F, F 〉 = 〈BO, BO〉 − 〈EO, EO〉
〈F, ?F 〉 = 2 〈EO, BO〉 ,

(C10)

where 〈,〉 is the inner product of forms. Now, let us suppose
there is a four-velocity field uC such that

ιuCF = 0 (C11)

everywhere. According to (C9) this is equivalent to requiring
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that in every point of the spacetime the quantity E associ-
ated to uC is equal to zero. We call (employing again the
musical duality formalism)

B := (ιuC?F )#, (C12)

which is the B associated to uC with raised indices. Hence,
from (C5), we immediately have that

F = ?(u[C ∧ B[). (C13)

Now in every point of the spacetime we can consider the
plane K := span{uC ,B}. This two-dimensional plane coin-
cides with the kernel of F , i.e. it is the set of all the vec-
tors v such that ιvF = 0. According to Frobenius’ theorem,
the condition for the existence of a regular foliation of the
spacetime in two-dimensional worldsheets which are in every
point tangent to the corresponding K is that for any couple
of vector fields X and Y which take values in K everywhere,
their commutator takes values in K itself. However, from

ι[X,Y ]F = [LX , ιY ]F, (C14)

and using Cartan’s magic formula and the conditions ιXF =
ιY F = 0, one finds that the condition for the hypotheses of
the Frobenius theorem to hold is that

ιXιY dF = 0, (C15)

for all X, Y in K. In particular, if dF = 0, the existence of
the foliation is guaranteed.

In the electromagnetic setting F = dA, so dF = d2A =
0 and the degeneracy condition is verified in the case of force-
free GRMHD (Gralla & Jacobson 2014). The worldsheet fo-
liation, then, describes evolution of the magnetic-field lines.

As a last remark, note that equation (C11) automati-
cally implies, according to (C10), that

〈F, ?F 〉 = 0, (C16)

which is equivalent to

F ∧ F = 0. (C17)

C1 E ×B drift velocity

Consider a closed and degenerate two-form F which can be
written in the form presented in equation (C13). Then, for a
given observer with four-velocity uO it is possible to define
the quantity

wOE×B :=
?(uO ∧ EO ∧BO)

〈BO, BO〉
. (C18)

In the frame of the observer this four-vector takes the form

wOE×B
j

=
(EO ×BO)j

|BO|2
. (C19)

If F is the Faraday tensor, so we can interpret EO and BO
as respectively the electric and magnetic fields in the frame
of O, then wOE×B is the so called E×B drift velocity (Bellan
2006).

Let us write wOE×B in terms of uC , B and uO. It is con-
venient to work in components; combining (C9) and (C13),
we find that

EOµ = εµνρσu
ν
Ou

ρ
CB

σ

BOµ = ΓOCBµ + g(uO,B)uCµ,
(C20)

which immediately implies

〈BO, BO〉 = g(B,B)Γ2
OC − g(uO,B)2. (C21)

By definition, the numerator of the right-hand side of equa-
tion (C18) is, in components,

?(uO ∧ EO ∧BO)µ = ενρσµuOνEOρBOσ. (C22)

Plugging equations (C20) inside this identity, and using the
condition

ελν1ν2ν3ελρ1ρ2ρ3 = −3!δ[ν1
ρ1 δ

ν2
ρ2 δ

ν3]
ρ3 , (C23)

it is possible to verify that

?(uO ∧ EO ∧BO)µ =g(B,B)ΓOCu
µ
C + g(uO,B)Bµ

− [Γ2
OCg(B,B)− g(uO,B)2]uµO.

(C24)

Finally, considering that

//νρ = −uνCuCρ +
BνBρ
g(B,B)

, (C25)

so that

(//uO)µ = ΓOCu
µ
C +

g(uO,B)

g(B,B)
Bµ (C26)

and

−g(//uO, //uO) = Γ2
OC −

g(uO,B)2

g(B,B)
, (C27)

we arrive at the formula

wOE×B =
//uO

−g(//uO, //uO)
− uO, (C28)

which is the analogue of the three-velocity given in equation
(A11).

APPENDIX D: DERIVATION USING THE
LANGUAGE OF FORMS

In this appendix we provide a formal derivation of the results
in section 3 by using the language of the exterior calculus.

Our starting point is equation (48). The exterior deriva-
tive of this formula gives the four-vorticity two-form which,
using the properties of the exterior derivative, can be written
as

$ = dµt ∧ dt+ dµϕ ∧ dϕ . (D1)

It is easy to check that this is equivalent to (49). We have
shown in appendix C that a two-form must satisfy the con-
dition

$ ∧$ = 0 (D2)

to be degenerate (i.e. to have a non-trivial kernel). More
explicitly, this means that

dµt ∧ dµϕ ∧ dt ∧ dϕ = 0. (D3)

This is a requirement of linear dependence which, consider-
ing that dµt and dµϕ are linear combinations only of dx and
dy, is equivalent to

dµt ∧ dµϕ = 0. (D4)

If we assume that dµϕ is nowhere zero, we can recast the
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above constrain as the requirement that there exists a func-
tion ΩC such that

dµt = −ΩCdµϕ. (D5)

Let us imagine to build a coordinate system such that the
function N is one of the coordinates. Then, the above equa-
tion, which in an arbitrary chart reads

∂νµt = −kΩC
2π

∂νN , (D6)

in this system of coordinates becomes

∂νµt = −kΩC
2π

δNν . (D7)

This implies

µt = µt(N ) (D8)

and

dµt
dN = −kΩC

2π
, (D9)

namely

ΩC = ΩC(N ). (D10)

This completes the formal proof for the validity of equation
(66). Let us put equation (D5) into (D1), as well as the
definition of N : we arrive at

$ =
k

2π
dN ∧ (dϕ− ΩCdt), (D11)

that provides a simpler and more compact way of writing
(53). Furthermore, it is transparent that the vector uC de-
fined in (54) belongs to the kernel of the four-vorticity.

We can take advantage of the exterior calculus to find
also the vortex rest-frame density. In fact, we know that

〈$,$〉 = k2N2 . (D12)

On the other hand, if α(1), ..., α(p), β(1), ..., β(p) are one-
forms, then

〈α(1) ∧ ... ∧ α(p), β(1) ∧ .... ∧ β(p)〉 = det[〈α(j), β(K)〉] .
(D13)

Therefore, considering that dN and d$ − ΩCdt are mani-
festly orthogonal, we find that

N2 =
1

4π2
〈dN , dN〉 〈dϕ− ΩCdt, dϕ− ΩCdt〉 . (D14)

The first scalar product is

〈dN , dN〉 = (g−1
x ∂xN )2 + (g−1

y ∂yN )2, (D15)

while it is easy to verify that

〈dϕ− ΩCdt, dϕ− ΩCdt〉 =
1

ρ2Γ2
CZ

, (D16)

which leads us to the final result

N =

√
(g−1
x ∂xN )2 + (g−1

y ∂yN )2

2πρΓCZ
, (D17)

in agreement with what we found in equations (72) and (76).
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