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Abstract: Transforming growth factor beta (TGFB) is a pleiotropic cytokine known to be 

dysregulated in many neurodegenerative disorders and particularly in amyotrophic lateral sclerosis 

(ALS). This motor neuronal disease is non-cell autonomous, as it affects not only motor neurons but 

also the surrounding glial cells, and the target skeletal muscle fibers. Here, we analyze the multiple 

roles of TGFB in these cell types, and how TGFB signaling is altered in ALS tissues. Data reported 

support a crucial involvement of TGFB in the etiology and progression of ALS, leading us to 

hypothesize that an imbalance of TGFB signaling, diminished at the pre-symptomatic stage and 

then increased with time, could be linked to ALS progression. A reduced stimulation of the TGFB 

pathway at the beginning of disease blocks its neuroprotective effects and promotes glutamate 

excitotoxicity. At later disease stages, the persistent activation of the TGFB pathway promotes an 

excessive microglial activation and strengthens muscular dysfunction. The therapeutic potential of 

TGFB is discussed, in order to foster new approaches to treat ALS. 
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1. Introduction 

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder affecting the motor system. 

Nevertheless, it implicates different cell types: motor neurons are the main affected cells, but glial 

and skeletal muscle cells are strongly implicated and able to deeply modulate the disease onset and 

course. The neuromuscular system is a complex network; one of the most important factors 

influencing its development and maintenance is the transforming growth factor beta (TGFB), a 

pleiotropic molecule also known to be dysregulated in ALS patients. The aim of this review is to 

summarize the current knowledge of the different roles of TGFB in ALS. We will briefly describe why 

ALS is also considered a non-cell-autonomous disease, and the general features of the TGFB family; 

then, we will analyze the roles of TGFB on the multiple cell types involved in ALS, and we will 

discuss the TGFB pathway as a potential pharmacological target. We will only briefly mention the 

multiple effects of TGFB on the immune system in ALS, as it is a field that deserves a separate 

discussion, due to the various and multifaceted roles exerted by TGFB on this system. 

2. Amyotrophic Lateral Sclerosis as a Non-Cell-Autonomous Disease 
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ALS is a disease affecting upper and lower motor neurons, with an incidence of 1–2/100,000 per 

year, and mean survival of 3–5 years after diagnosis [1]. ALS can occur in two different forms, 

sporadic (sALS, 90–95% of cases) and familial (fALS, 5–10% of cases), and it can also appear as a pure 

motor phenotype or in association with fronto-temporal dementia (ALS-FTD). ALS is characterized 

by a progressive loss of motor neurons, but the precise pathological mechanisms involved are not 

clear as their complex interplay with neighboring and target cells. Mutations in many different genes 

have been associated with fALS, starting from the superoxide dismutase 1 (SOD1) gene (coding for 

an antioxidant enzyme), to the more recently described mutations in TAR DNA-binding protein 43 

(TDP-43), ALS-linked fused in sarcoma/translocated in liposarcoma (FUS/TLS), and other genes (see, 

for review [2]). Recently, 50% of fALS cases have been associated with an alteration of the 

chromosome 9 open reading frame 72 (C9orf72), resulting in the expansion of the hexanucleotide 

(G4C2) repeat located in its 5’-untranslated region [3–5]. 

ALS is primarily caused by the death of upper and lower motor neurons. Nevertheless, in the 

last 15 years, besides the main classical “neuron-centric” view of ALS, a number of research studies 

evidenced that ALS could also be a non-cell-autonomous disease [6,7]. Data have been mostly 

obtained using ALS mouse models, but they may also be linked to sALS cases [8]. Glial and skeletal 

muscle cells demonstrated their ability to trigger, or modulate, ALS. The analysis of chimeric mice 

indicated that the restricted expression of human mutant SOD1 (mutSOD1) in motor neuron is not 

sufficient to induce a cell-autonomous degeneration of motor neurons [9]. Moreover, utilizing floxed 

mutSOD1 gene, it has been demonstrated that the damaging process starts in motor neurons and 

determines the disease onset, with little influence on its progression [6]. Conversely, mutSOD1 

activates glial cells exacerbating the disease progression, while motor neuronal mutSOD1 has little 

influence on the progression of ALS [6]. 

Among the non-neuronal neighbors of ALS motor neurons, glial cells are the most investigated, 

so far. Astrocytes, microglia, oligodendrocytes, and Schwann cells are all able to modulate ALS 

pathology, and gliosis is a hallmark of ALS from an immuno-histological point of view (see, for 

review [10,11]).  

Activated and proliferating astrocytes become neurotoxic, and no longer provide the metabolic 

support to motor neurons, but secrete cytokines or other toxic factors (among which is the TGFB) that 

are critical for determining the rate of disease progression [12,13]. Furthermore, activated astrocytes 

reduce the expression of the excitatory amino acid transporter-2, that is mandatory for glutamate re-

uptake from the synaptic cleft into astrocyte, leading to excitotoxicity in motor neurons [14].  

Microglia have long been known to be activated in ALS affected tissues, probably through the 

innate immune system. The extent of its activation correlates with the severity of the upper motor 

neuron involvement [15]. The non-cell-autonomous mechanisms of toxicity of microglia include the 

secretion of pro-inflammatory cytokines [16]. The reduction of mutSOD1 toxicity within microglia 

slows the progression of the disease, suggesting that microglia might contribute to the 

neurodegenerative processes of ALS [17]. Other studies indicated that a decreased number of 

microglial cells is present at the pre-symptomatic stage in mouse models, while two distinct microglia 

populations can be identified after symptom manifestation [18]. Whether microglial cells are 

beneficial or detrimental to motor neurons is already an open question. Probably, they exert a 

surveillance role on motor neurons and restore the correct environment after an injury but, when 

constitutively activated in the presence of a chronic stress (such as that causing ALS), they may 

become toxic. 

Other glial cell types are important for motor neuron functionality. Oligodendrocytes provide 

metabolic support to central nervous system (CNS) neurons and support their survival, while 

Schwann cells are strictly related to motor neuron axons and support axonal development and 

regeneration in the peripheral nervous system (PNS). Recent studies implicate oligodendrocytes in 

ALS pathogenesis, through both myelin sheath disruption and the reduction of the monocarboxylate 

transporter 1 [19]. Furthermore, it has been shown that oligodendrocytes isolated from human ALS 

patients are able to induce motor neuron death in a co-culture system [20]. Regarding Schwann cells, 
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few studies addressed their role in ALS, suggesting that axonal degeneration may occur earlier than 

myelin degeneration.  

In addition to neighboring cells, motor neurons can also be influenced by their target, the skeletal 

muscle cells. It has been shown, at least in fALS, a direct muscular toxicity and/or a functional 

impairment that has denervation and motor neuron death as a consequence [21–23]. Muscle 

dysfunction and neuromuscular junction (NMJ) degeneration occur long before disease onset [24]. A 

contribution to the initiation and progression of muscle atrophy is given by altered ALS satellite cell 

properties [25,26]. Furthermore, muscle gene expression is changed since the early stages of the 

disease [27–29]. Regarding the presence of muscle dysfunction in relation to the expression of other 

mutant genes linked to ALS, it must be recalled that TDP-43 immuno-reactivity is detectable only in 

muscle fiber nuclei without any sarcoplasmic TDP-43 aggregation [30,31]; very recently, it has been 

demonstrated that skeletal muscle contributes to the ALS phenotype also in C9orf72 related cases [32]. 

These authors demonstrated that the presence and the amount of dipeptide repeats in patient’s 

muscles are significantly related to a more severe muscular atrophy. In addition, our previous works 

have indicated that the protein quality control system is a dysfunctional cellular process in ALS 

muscle cells, but these cells seem to be more protected than motor neurons against the presence of 

accumulating misfolded proteins [33–35]. Proteasome activity is impaired by mutSOD1 only in motor 

neurons and not in muscle cells [35]. Nevertheless, we proved that motor neurons are characterized 

by a higher autophagic potential with respect to muscle cells. These results could help to clarify why 

muscle cells seem more protected than motor neurons from misfolded SOD1. Parallel results have 

indicated that muscle cells mainly depend on the proteasome system to quickly remove misfolded 

TDP-43 [33]. As a whole, data indicate that autophagy modulation could be a potential therapeutic 

approach to counteract muscle atrophy in ALS and to promote aggregate removal in motor neurons. 

3. Transforming Growth Factor Beta 

TGFB is a family of cytokines with widespread and diverse effects. During development and in 

adulthood, TGFB family member signals can reach practically all the cells modulating their activities 

[36]. The TGFB superfamily comprises 32 members grouped into different families, including TGFB, 

activin, growth and differentiation factor (GDF), and bone morphogenetic protein (BMP) families 

(Table 1) [37]. Among all these ligands, TGFB1 and myostatin are considered the most implicated in 

skeletal muscle development and function, with shared or contraposed features. 
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Table 1.  Transforming growth factor beta (TGFB) family members, their receptors, and SMAD signaling proteins. 

TGFB Super 

Family 

Family Family Members Type I Receptor Type II Receptor R-SMAD I-SMAD 

TGFB TGFB 1–5 TGFBR1 TGFBR2 SMAD2/3 SMAD7 

ACTIVINS/INHIBIN 

ACTIVIN A, B ACVR1B, ACVR1C ACVR2, ACVR2B SMAD2/3 SMAD7 

INHIBIN A, B / ACVR2 / / 

LEFTTY A, B / / / / 

NODAL / ACVR2, ACVR2B SMAD2/3 SMAD6/7 

BMP 

BMP 2, 4 BMPR1A, BMPR1B 
ACVR2, ACVR2B, 

BMPR2 
SMAD1/5 SMAD6/7 

BMP 3 / ACVR2B / SMAD6/7 

BMP 5–8 
ACVR1A, BMPR1A, 

BMPR1B 

ACVR2, ACVR2B, 

BMPR2 
SMAD1/5 SMAD6/7 

BMP 9, 10 ALK1 ACVR2, BMPR2 SMAD1/5 SMAD6/7 

BMP 15 BMPR1B BMPR2 SMAD1/5 SMAD6/7 

AMH ACVR1A, BMPR1A AMHR2 SMAD1/5 SMAD6/7 

GDF 

GDF 1, 3 ACVR1B, ACVR1C ACVR2, ACVR2B SMAD2/3 SMAD7 

GDF 8 

(MYOSTATIN) 
ACVR1B, TGFBR1 ACVR2 SMAD2/3 SMAD7 

GDF 9 ACVR1B BMPR2 SMAD2/3 SMAD7 

GDF 11 ACVR1B ACVR2, ACVR2B SMAD2/3 SMAD7 

GDF 5–7 BMPR1A, BMPR1B 
ACVR2, ACVR2B, 

BMPR2 
SMAD1/5 SMAD7 

GDF 15 GFRAL / / / 
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The bioactive TGFB ligands are disulfide-linked dimers cleaved from the C-terminal portion of 

a precursor. Usually, the ligands are homodimeric, but also heterodimers exist. All the ligands of the 

TGFB family bind to two pairs of receptors that are transmembrane serine/threonine protein kinases. 

The binding of the cytokine to the type II receptor (TGFBRII) leads to its activation, and to the 

phosphorylation of the type I receptor (TGFBRI), allowing it to phosphorylate small mother against 

decapentaplegic (SMAD) transcription factors which shuttle between the cytosol and the nucleus 

[36]. In the nucleus, SMADs bind to specific responsive elements (SMAD binding elements, SBEs) 

throughout the genome, activating or repressing a variety of different responsive genes (Figure 1).  

 

Figure 1. Signal Transduction pathways of TGFBs. TGFB dimerization triggers the assembly of a 

heterodimeric complex between Type I and Type II receptors (TGFBRI and TGFBRII). This permits 

TGFBRII to trans-phosphorylate TGFBRI that, in turn, activates the receptor-regulated SMADs 

(SMAD2/3) by phosphorylation. Activated R-SMAD forms a complex with the common SMAD 

(SMAD4) and together translocate into the nucleus through nucleoporins; the complex interacts with 

specific SMAD binding elements (SBEs), regulating gene transcriptional responses. 

There are eight SMAD proteins in mammals: five are receptor regulated (R-SMAD, SMAD1, 2, 

3, 5, 8), two are inhibitory (SMAD6 and 7), and one (SMAD4) is a protein common to all the pathways 

of TGFB family members. In the pathway activated by TGFB ligands, the TGFBRI phosphorylates 

SMAD2 and SMAD3. Receptor-mediated phosphorylation facilitates oligomerization between R-

SMADs and SMAD4. The formation of this complex is mandatory to bring the signal from the cytosol 

to the nucleus, but, so far, SMAD4 specific function is unknown since certain TGFB functions do not 

require SMAD4. SMADs nuclear translocation does not depend on nuclear transport factors or 

importins; they can directly interact with nucleoporins [38]. The SMAD dependent signaling pathway 

of TGFB works ubiquitously in all cell types; however, in a context dependent manner, TGFB can 

activate SMAD-independent signaling cascades, such as PI3K, MAPK, or small GTPases [39]. 

Inhibitory SMADs bind an already activated TGFBRI, leading to the inhibition of the R-SMAD 

phosphorylation and their subsequent translocation into the nucleus and adding a further level of 

regulation of the TGFB/SMAD signaling cascade. 

Once in the nucleus, SMAD complexes target specific promoters to regulate gene expression and 

microRNA processing. R-SMADs can directly bind DNA through SBEs giving gene specificity to the 
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complex, while SMAD4 promotes or inhibits transcriptional activity, recruiting different, tissue-

specific co-regulators [40]. Phosphorylated SMAD (pSMAD) signaling is terminated through 

phosphatase (PPM1A/PP2Cα)-mediated dephosphorylation and SMAD export from the nucleus to 

the cytosol. Alternatively, nuclear pSMADs are targeted for ubiquitination and subsequent cytosolic 

proteasomal degradation [41].  

TGFB signaling can also be “non-canonical”; in this case, its effects are transduced by Smad-

independent pathways, which include ERK MAPKs, a TGFB-activated kinase 1 (TAK1 activating 

JNK, p38K, and NF-κB), and PI3K-AKT [42]. The differential activation of non-SMAD pathways is 

context dependent; for example, in myotubes, the atrophic effect of TGFB seems to be linked to 

ERK1/2 and JNK1/2, in addition to SMADs [43]. 

TGFB regulates a plethora of cellular functions, in different contexts, ranging from embryonic 

development to tumor progression, from immune regulation to tissue fibrosis, and neurotrophic 

response modulation. Dysregulation of the TGFB pathway has been reported also as a common 

feature in neurodegenerative disorders, and among them, in pathologies affecting motor neurons, 

and particularly in ALS. The following paragraphs will summarize alterations in the TGFB pathway 

reported in many different ALS models, both in vivo and in vitro, in addition to those detected in 

patients.  

4. TGFB Plasma Levels in ALS Patients 

Similarly to Parkinson’s and Alzheimer’s patients [44,45], in which an increased concentration 

of TGFB1 was found in the cerebrospinal fluid (CSF) or serum respectively, TGFB1 plasma 

concentration in ALS patients is significantly higher than in the healthy controls, and it positively 

correlates with the disease [46]. Indeed, TGFB1 is increased in the serum of ALS patients at an 

advanced stage of disease; likewise, TGFB1 is also augmented in the CSF of ALS patients with long 

disease duration [47]. A recent study has confirmed the existence of a negative correlation between 

TGFB1 and TGFB3 levels and ALS severity; this study postulated that high levels of TGFB in the 

serum might represent a compensatory mechanism to counteract the pronounced systemic immune 

response typical of the late stage of the disease, by inducing T cells to differentiate into non regulatory 

phenotypes [48]. Even if the increase in plasma TGFB1 levels has been confirmed also in mutSOD1 

transgenic mice [49], whether TGFB1 plasma levels are biomarkers of ALS or not is still an open 

question; in fact, other studies fail to detect the changes of TGFB1 levels in patient CSF compared to 

healthy controls [50], or between fast and slow progressing ALS patients analyzed both at early and 

late stage of disease [49]. 

In the attempt to find specific ALS-susceptibility genes, a single-nucleotide polymorphism in the 

ZNF512B gene has been identified; the ZNF512B gene codes for a transcription factor with a reduced 

ability to promote TGFB signaling [51]. A retrospective analysis of this gene in ALS patients indicated 

a significantly lower probability of survival in patients, carrying the risk allele independently from 

other factors know to be involved in ALS [52]. For this reason, ZNF512B might be a new prognostic 

factor in ALS. 

5. TGFB and ALS-Nervous System 

In the adult rodent nervous system, TGFB1 immunoreactivity is constitutively present only in 

meninges and the choroid plexus in the brain [53,54]. However, TGFB1 mRNA is more widely 

expressed, with intense labeling in cortical layers 2, 3, and 5, hippocampus, retinal ganglionic cells, 

some hypothalamic areas, and the ventral horn of the spinal cord [54,55]. TGFB2 and 3 are 

widespread and distributed [53,54]. The immunoreactivity of TGFB is also present in astroglial cells. 

The expression of TGFBRI and TGFBRII has been demonstrated in neurons, astrocytes, 

oligodendrocytes, microglia, and brain endothelial cells [56,57]. 

TGFBs have multiple functions in the CNS. They enhance synapse formation and synaptic 

transmission [58,59], regulate synaptic plasticity and memory [57], increase the number and length 

of neurites [56], control neuronal migration [60], and cerebral cortex angiogenesis [61]. CNS-TGFB1-

deficient mice have a reduced brain weight and a loss of neurons in the CA1 hippocampal region. 
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These mice show a reduction of dendritic spine density, impaired long-term potentiation, and 

facilitated long-term depression in the hippocampus, in addition to the loss of the astrocyte glutamate 

transporters GLT-1 (EAAT2) and GLAST (EAAT1), and decreased glutamate uptake, resulting in a 

higher sensibility to glutamate excitotoxicity, that is one of the possible pathogenic mechanism in 

ALS (Figure 2) [62]. 

 

Figure 2. Possible effects of TGFB on different tissues of amyotrophic lateral sclerosis (ALS) patients. 

At the pre-symptomatic stage, the decreased activation of the TGFB pathway reduces its 

neuroprotective activity, and, at the same time, increases excitotoxicity induced by glutamate, with a 

lesser uptake by astrocytes. At the symptomatic stage, TGFB levels are largely increased, giving rise 

to microglia activation, and neuromuscular junction (NMJ) dismantling, thus leading to atrophy of 

skeletal muscle fibers. ALS disease progression could be promoted by a chronically altered TGFB 

pathway. A, astrocyte; M, microglia; MN, motor neuron; SkMf, skeletal muscle fibers. 

Motor nerve terminals show an intense TGFBRI and II immunoreactivity [63]; thus, they are 

expected to be responsive to TGFB. Furthermore, the Schwann cell side of the synapse and axons 

express TGFBRII, suggesting that motor neurons are exposed to TGFB along their full length. Indeed, 

motor neurons are surrounded by different cell types, all capable of producing and releasing TGFB: 

blood cells, Schwann cells, muscle fibers. During development, TGFB promotes motor neurons 

survival and saves them from naturally occurring cell death, due to competition for a limited amount 

of survival factors provided by all the cells that they interact with [64]. In primary motor neuron 

cultures, TGFB1 protects cells from damage caused by cytotoxic hypoxia or excitatory amino acids 

inducing an increase in cell viability, neuronal ATP levels, and protein content [65]. In vivo, its 

administration attenuates axotomy-induced motor neuron death, even if its rescue effect is not 

permanent [66]. TGFB2 is a motor neuron survival factor concentrated in the post-synaptic domain 

of mature rodent and human muscle fibers [67]. Nevertheless, in specific conditions, motor neurons 

are able to produce TGFB2 in an autocrine manner, probably to counteract peripheral (dendritic, or 

at the nerve terminal) apoptotic signals [63].  

Even if the comparative analysis of fALS and sALS tissues indicates the existence of common 

and distinct biological mechanisms driving the different forms of the pathology, altered levels of the 

TGFB1 pathway have been reported in motor neurons of most ALS models and patients. Recently, 

an analysis of DEGs and DEPs in induced pluripotent stem cells (iPSC)-derived motor neurons from 
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patients with mutations in C9orf72 indicated TGFB and SMAD2/3 targets among the pathway most 

involved with a high correlation between significantly altered mRNA and proteins [68]. Similar 

results have been obtained in postmortem spinal motor neurons from sALS patients. The mutated 

TDP-43 protein aggregates form intracytosolic inclusion bodies that sequester pSMAD2/3 and 

SMURF2, an E3 ubiquitin ligase promoting the ubiquitin-dependent degradation of SMAD proteins, 

suggesting an impaired TGFB signal in motor neurons of sALS patients [69,70]. Interestingly, TDP-

43 inclusions of brain extra-motor neurons do not co-localize with pSMAD2/3, and its nuclear 

staining is preserved, indicating regional differences in the composition of the inclusions and in the 

impairment of TGFB signaling [70]. 

An excessive activation of the TGFB pathway has also been reported in ALS4 patients 

characterized by mutation in senataxin (SETX) gene. These patients present fewer R-loops (three-

stranded nucleic acid structures) and their differentially-expressed genes are highly enriched for 

activation of the TGFB pathway [71]. Principally, it is decreased in the expression of BAMBI, a TGFB 

pseudo receptor, which lacks the intracellular kinase domain and acts as a negative regulator, leading 

to an increased TGFB signaling. Indeed, in the same ALS4 patients, levels of pSMAD2/3 are increased 

in the anterior horn of the spinal cord [71]. 

TGFB/SMAD targets are abnormally regulated in iPSC-derived motor neurons from patients 

with mutSOD1, even if, in this case, they belong to downregulated gene sets [68]. Neuronal injuries, 

such as oxidative stress, rapidly up-regulate TGFB1 mRNA, inducing the expression of multiple 

genes involved in neuronal protection, and counteracting neuronal damage [72]. Reduced Tgfb1 

mRNA levels in the spinal cord of pre-symptomatic mutSOD1 mice could indicate a lack of the TGFB 

neuroprotective effect in the early stages of the disease [29]. With disease progression, Tgfb1 gene 

expression increases in the spinal cord, probably for the development of reactive astrogliosis [29,73]. 

In fact, it must be highlighted that all types of glial cells are able to produce and/or respond to TGFB. 

The role of glia-derived TGFB1 in the spinal cord of ALS patients and mice has been studied by Endo 

and colleagues [12]. They observed an upregulation of TGFB1 in the lumbar spinal cord of ALS mice, 

mainly in astrocytes. Furthermore, TGFB1 mRNA levels negatively correlated with the survival of 

ALS mice. Taking advantage of the ALS mice overexpressing TGFB1 in astrocytes and of the ALS 

mice with the astrocyte-specific deletion of TGFB1, they determined that astrocyte-derived TGFB1 

accelerates disease progression in ALS mice, preventing neuroprotective responses mediated by the 

microglia and T cells [12]. 

In the spinal cord of ALS mice, the TGFB signaling pathway is also altered. Tgfbr2 mRNA levels 

are increased [29] in agreement with other authors, indicating a higher TGFBR2 immunoreactivity 

[73], and higher levels of Tgfbr2 in human and mouse spinal cord ALS samples [74,75].  

In mutSOD1 mice, levels of pSMAD2 in the nuclei of lumbar motor neurons are significantly 

decreased already at the pre-symptomatic stage, while they are preserved at the cytosolic level as the 

expression of TGFBR1 and 2 [12,69,76]. This led to the hypothesis of an aberrant nucleo/cytosolic 

transport with an accumulation of cytosolic pSMAD2/3 immunoreactivity [69,76]. Moreover, the 

presence of pSMAD2 in glial nuclei is preserved. This hypothesis is also supported by the fact that 

physiological pSMAD2 levels in the nucleus are not recovered by overexpressing TGFB1 [12], and 

that the expression of Smad2 and Smad4 is decreased [29]. Otherwise, an up-regulation of SMAD4 in 

the spinal motor neurons of autopsied sALS cases has also been reported [77]. 

6. TGFB Pathway in ALS Skeletal Muscle 

In skeletal muscle, the expression of TGFB is related to normal processes such as growth, 

differentiation, regeneration, and stress response. However, continuously elevated levels of TGFB 

are linked to impaired regeneration and atrophy. TGFB blocks myogenic responses and stimulates 

fibrosis [78]. It inhibits the activation of MyoD and myogenin (two transcription factors regulating 

muscle cell differentiation) through the signaling of SMAD3 or by inactivating cyclin-dependent 

kinases [79,80]. Satellite cell activation is also prevented in the presence of TGFB, and muscle 

overexpression of TGFB leads to muscle weakness and atrophy [81,82]. Furthermore, TGFB has a 

dual role in the inflammatory process taking place after muscle injury: it acts first as a stimulating 
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factor, and then as a suppressor for muscle inflammatory response. Injured muscle fibers secrete 

TGFB, and in different disorders, its muscle levels are elevated [83]. Spinal and bulbar muscular 

atrophy (SBMA), a polyglutamine disease dependent on the expansion of the CAG repeat within the 

androgen receptor (AR) affects motor neurons and skeletal muscles and it is also associated with the 

disruption of TGFB signaling [84,85]. Mdx mice (a model of Duchenne muscular dystrophy) are 

characterized by myofiber degeneration and augmented TGFB1 signaling [86]. Furthermore, in this 

murine model, the neutralization of TGFB1 signaling may enhance the differentiation and fusion of 

the precursor satellite cells, suggesting a direct role for this cytokine in skeletal muscle regeneration 

[87].  

ALS muscle tissue is also characterized by alterations of the TGFB pathway. We reported 

increased levels of the Tgfb1 mRNA in the muscle of mice expressing mutSOD1 [28]. These changes 

are also gender-related, since male mice present an increased TGFB expression in muscle already at 

the pre-symptomatic stage, both at the mRNA and protein level, while in female animals, TGFB 

increases only at the symptomatic stage [29]. Tgfb mRNA levels are further increased with the 

administration of an anabolic/androgenic steroid (AAS), indicating that, at least at the muscular level, 

AAS might exert a detrimental role in ALS, since it might exacerbate some of the alterations induced 

by mutSOD1 [28,88]. Moreover, data obtained with the C2C12 muscle cell model indicate that an 

increase of the AR (that was obtained in vivo by stabilizing the receptor through a chronic AAS 

treatment) may also modify the effect of the wild type human SOD1, leading to an augmented TGFB1 

expression [28]. These data might help to explain gender differences in the risk to develop ALS [2]. 

Evidence in human confirmed the involvement of TGFB1 since we reported an increased TGFB1 

expression in muscle of female and male sporadic ALS patients with a significant gender effect [29], 

and other authors also reported the increase of TGFB1, 2, and 3 in ALS patient muscles [89,90]. It must 

also be highlighted that TGFB1 and TGFB3 mRNA show a negative correlation with muscle strength 

in ALS patients [90]. In the same manner, the increase of TGFB1 correlates with disease progression 

in mutSOD1 mice [28] and Smad1, 5, and 8 expression negatively correlates with mouse rotarod scores 

[91]. As a result, TGFB1 has been proposed as a possible biomarker of ALS progression [29,90,92]. 

The analysis of muscle lysates from ALS patients indicated a strong increase of TGFB1 protein 

[90]. Even if, in these samples, TGFB1 immunoreactivity has been detected in macrophages and 

lymphocytes surrounding the fibers and suggesting inflammatory infiltrated cells as the TGFB1 

source, we reported that the expression of mutSOD1 in C2C12 cells stimulates Tgfb1 expression [28], 

and C2C12 cells are able to respond to TGFB, increasing SMADs production and phosphorylation 

[90]. 

Regarding the intracellular pathways mediating TGFB functions in muscle cells, different works 

have evidenced changes in the levels of SMAD proteins. We reported an increased expression of 

SMAD2 and SMAD3 in symptomatic ALS mice, in agreement with Si and collaborators [29,90]. 

Evidence in ALS patients is more contradictory, reporting increased [89], diminished [29], or 

unchanged [90] SMADs muscle expression. These discrepancies might be due to the heterogeneity of 

ALS patients (sporadic vs. familiar), to the site of the biopsies (deltoid, tibialis anterior, vastus 

lateralis), duration of the pathology, site of onset, etc. R-SMADs enter into the nucleus through 

SMAD4, and in line with the work of Saris et al., we found a decreased Smad4 expression in muscle, 

suggesting a further site of dysregulation of TGFB intracellular signaling [93]. The involvement of 

other SMAD proteins (SMAD 1, 5, and 8, usually more involved in the BMP signaling pathway), has 

been reported [91]. BMP is one of the strongest hypertrophic signals in muscle; for this reason, the 

increase of these SMADs could represent a way to counteract denervation-induced atrophy. Whether 

SMAD changes are related to the progressive loss of motor neuron innervation or to a muscle 

pathological modification contributing to its atrophy and to disease progression has yet to be 

established. However, we reported that mutSOD1 toxicity can be exerted independently of its 

tendency to aggregate. At motor neuron level, mutSOD1 forms proteinaceous inclusions that alter 

SOD1 protein bioavailability and turnover [94] and reduce the protective effect exerted by wild type 

SOD1 against free radical reactive oxygen species [95]. On the contrary, in the gastrocnemius muscle 

of ALS mice, an increase of mutSOD1 levels was detected only at the terminal stage, and no high 
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molecular weight SDS-resistant species of mutSOD1 were identified, either in ALS mice or in C2C12 

cells expressing mutSOD1 [28,35]. 

The hypothesis of an impairment of TGFB signaling in motor neurons at the step of pSMAD 2/3 

translocation into the nucleus is also supported by data obtained in the muscle since, usually, TGFB1 

inhibits MyoD transcription through SMAD3, while in mutSOD1 mouse muscle, and in mutSOD1 

transfected C2C12 cells, we detected high levels of MyoD mRNA [28]. 

It has also been proposed that excessive oxidative processes may be a mechanism of activation 

of latent TGFB pool in ALS, as in other neurodegenerative diseases, leading to an increased TGFB1 

release from the complex [96]. 

TGFB1 is a potent inducer of fibrotic tissue formation, promoting the transformation of 

myoblasts into fibrotic tissue after an injury, inhibiting satellite cell activation, and impairing myocyte 

differentiation [86]. In the skeletal muscle of mutSOD1 expressing mice fibrosis is enhanced and 

correlates with TGFB levels, therefore, we can hypothesize that the beneficial effects of reducing 

TGFB levels could also be associated with a reduction of fibrosis [97]. 

7. TGFB and NMJ in ALS 

Since the first histological studies, recurrent denervation and reinnervation have been observed 

in the NMJs of ALS patients [98]. Because of that, it has been proposed to consider ALS also as a distal 

axonopathy, with pathological changes occurring at the NMJs prior to motor neuron degeneration 

and muscle fiber atrophy (see, for review [99]). 

TGFB pathway regulates the formation and stability of the NMJs. All the members of this 

tripartite synapse are able to produce and/or respond to TGFB. Muscle fibers express TGFB1, motor 

neuron terminals express TGFB receptors, and the synapse associated Schwann cells, also called 

terminal Schwann cells (TSCs, which are active components of the NMJ [100]), promote 

synaptogenesis at the NMJ via TGFB1 [101]. In this site, TGFB1 is capable of doubling the size of 

acetylcholine receptor clusters increasing the percentage of nerve–muscle contacts. It has also been 

demonstrated that this synaptogenic effect of TGFB1 might be ascribed to its ability to induce 

neuronal agrin expression [101]. Agrin is a proteoglycan important for the maintenance of the 

architecture of the postsynaptic membrane, known to be down-regulated in the muscle of ALS mice 

expressing mutSOD1 [22]. 

Recent studies indicate that alterations of the TSCs are present well before motor neuron 

terminal degeneration and the beginning of denervation in mutSOD1 expressing mice [102]. An 

anomaly appears as the absence of TSCs at many NMJs of the fast medial gastrocnemius, and with 

TSC cell body displacement at other NMJs of gastrocnemius or soleus muscle. This evidence could 

support the different extent of denervation between fast and slow muscles [102]. 

Among the factors secreted by muscle fibers and concentrated at the NMJ to promote synapse 

well-being, there is the fibroblast growth factor binding protein 1 (FGFBP1) [103]. FGFBP1 is a 

secreted factor that might potentiate the bioactivity of different members of the FGF family during 

reinnervation, by releasing sequestered FGF from the extracellular matrix [103]. The expression of 

this binding protein is known to be decreased in mutSOD1 mouse skeletal muscles before NMJ 

degeneration, and the deletion of FGFBP1 from mutSOD1 mice accelerates NMJ degeneration and 

disease progression [104]. The same authors reported also that TGFB1 is highly concentrated at NMJs 

of pre-symptomatic mutSOD1 mice, and represses FGFBP1 expression, indicating TGFB1 pathway 

as a potential target for preventing NMJ dismantling in ALS mice [104]. 

Moreover, other genetic models of ALS present NMJ modifications. For example, the loss of 

function of VAPB in Drosophila reduces the number of boutons that are also larger than in wild type 

flies, and with a highly disorganized microtubule network [105]. Again, a Drosophila ALS model 

expressing a mutant form of an ortholog of VAPB (resembling the loss of function phenotype), shows 

reduced pMAD (an ortholog of SMAD) at the NMJ and in CNS [106]. 

8. TGFB: A Target for ALS Treatment  
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The therapeutic potential of TGFB has been investigated, in order to develop new therapies for 

ALS.  

In a study performed with mutSOD1 expressing mice, SB-431542, a selective inhibitor of TGFBRI 

kinase activity, has been proven to extend animal survival, even if administered after disease onset; 

this led the authors to hypothesize that TGFB1 produced by astrocytes inhibits the neuroprotective 

response given by microglia and inflammatory cells and could be considered a negative prognostic 

factor [12].  

Moreover, the intraperitoneal injection of TGFB2 is able to acutely improve the motor 

performance of ALS mice. It reverses initial muscle weakness, permitting a better performance at 

rotarod test, probably through a marked trophic action on motor neurons, as can be inferred by motor 

neuron nuclei and axonal enlargement. Unfortunately, this advantage is transient, leading to an even 

more rapid progression of the disease [107].  

Antibodies neutralizing other members of the TGFB family have been tested in ALS models. For 

example, the prevention of myostatin binding to its receptor delayed the onset and the progression 

of the disease in ALS mice, even if without extending their survival [108,109]. 

9. Conclusions 

The pleiotropic effects of TGFB in ALS have been analyzed and are summarized in Figure 2. 

The imbalance of TGFB signaling has been linked to ALS progression. On one hand, at the level 

of the CNS, there is a lack of the neuroprotective effects of TGFB at the first stages of the disease; later, 

the strong increase of TGFB levels due to microglial stimulation shifts the CNS milieu toward a 

proinflammatory and neurotoxic environment. On the other hand, at the level of the skeletal muscle, 

the chronically increased TGFB signaling facilitates the development of atrophy and fibrosis in 

skeletal muscle fiber, and the process of NMJ dismantling. Furthermore, the higher pre-symptomatic 

levels of TGFB in male vs. female muscle support the evidence that males are more vulnerable than 

females in ALS. Whether muscle effects are the cause or the result of the progressive motor neuron 

degeneration remains to be established. 

Taken together, the data reviewed here support the hypothesis that the TGFB pathway may be 

considered critical for ALS etiology and progression. Thus, TGFB and its signaling pathway could 

represent a promising target for developing new therapies for ALS.  
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TGFB transforming growth factor beta 
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TGFBRII TGFB type II receptor  
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