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Abstract

Motivated by recommendation problems in
music streaming platforms, we propose a non-
stationary stochastic bandit model in which
the expected reward of an arm depends on the
number of rounds that have passed since the
arm was last pulled. After proving that find-
ing an optimal policy is NP-hard even when all
model parameters are known, we introduce a
class of ranking policies provably approximat-
ing, to within a constant factor, the expected
reward of the optimal policy. We show an
algorithm whose regret with respect to the
best ranking policy is bounded by Õ

(√
kT
)
,

where k is the number of arms and T is time.
Our algorithm uses only O

(
k ln lnT ) switches,

which helps when switching between policies
is costly. As constructing the class of learning
policies requires ordering the arms according
to their expectations, we also bound the num-
ber of pulls required to do so. Finally, we
run experiments to compare our algorithm
against UCB on different problem instances.

1 Introduction

Multiarmed bandits —see, e.g., (Bubeck and Cesa-
Bianchi, 2012)— are a popular mathematical frame-
work for modeling sequential decision problems in the
presence of partial feedback; typical application do-
mains include clinical trials, online advertising, and
product recommendation. Consider for example the
task of learning the genre of songs most liked by a given
user of a music streaming platform. Each song genre
is viewed as an arm of a bandit problem associated
with the user. A bandit algorithm learns by sequen-
tially choosing arms (i.e., recommending songs) and
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observing the resulting payoff (i.e., whether the user
liked the song). The payoff is used by the algorithm
to refine its recommendation policy. The distinctive
feature of bandits is that, after each recommendation,
the algorithm gets only a feedback for the selected arm
(i.e., the single genre that was recommended).

In the simplest stochastic bandit framework (Lai and
Robbins, 1985) rewards are realizations of i.i.d. draws
from fixed and unknown distributions associated to
each arm. In this setting the optimal policy is to con-
sistently recommend the arm with the highest reward
expectation. On the other hand, in scenarios like song
recommendation, users may grow tired of listening to
the same music genre over and over. This is naturally
formalized as a nonstationary bandit setting, where the
payoff of an arm grows with the time since the arm was
last played. In this case policies consistently recom-
mending the same arm are seldom optimal. E-learning
applications, where arms corresponds to questions that
students have to answer, are other natural examples
of the same phenomenon, as asking again immediately
the same question that the student has just answered
is not very effective.

In this paper we introduce a simple nonstationary
stochastic bandit model, B2DEP, in which the expected
reward µi(τ) of an arm i is a bounded nondecreasing
function of the number τ of rounds that have passed
since the arm was last selected by the policy. More
specifically, we assume each arm i has an unknown
baseline payoff expectation µi (equal to the expected
payoff when the arm is pulled for the first time) and an
unknown delay parameter di > 0. If the arm was pulled
recently (that is, 1 ≤ τ ≤ di), then the expected payoff
may be smaller that its baseline value: µi(τ) ≤ µi.
Vice versa, if τ > di, then µi(τ) is guaranteed to match
the baseline value µi. In the song recommendation
example, the delays di model the extent to which lis-
tening to a song of genre i affects how much a user is
willing to listen to more songs of that same genre.

Since τ can be viewed as a notion of state for arm i,
our model can be compared to nonstationary models,
such as rested bandits (Gittins, 1979) and restless ban-
dits (Whittle, 1988) —see also (Tekin and Liu, 2012).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/333582973?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Stochastic Bandits with Delay-Dependent Payoffs

In restless bandits the reward distribution of an arm
changes irrespective of the policy being used, whereas
in rested bandits the distribution changes only when
the arm is selected by the policy. Our setting is neither
rested nor restless, as our reward distributions change
differently according to whether the arm is selected by
the policy or not.

In Section 4 we make a reduction to the Periodic Main-
tenance Scheduling Problem (Bar-Noy et al., 2002) to
prove that the optimization problem of finding an opti-
mal periodic policy in our setting is NP-Hard. In order
to circumvent the hardness of computing the optimal
periodic policy, in Section 5 we identify a simple class
of periodic policies that are efficiently learnable, and
whose expected reward is provably to within a constant
factor of that of the optimal policy. Our approximating
class is pretty natural: it contains all ranking policies
that cycle over the r best arms (where r is the param-
eter to optimize) according to the unknown ordering
based on the arms’ baseline payoff expectations. As
it turns out, learning the best ranking policy can be
formulated in terms of minimizing the standard notion
of regret. This is unlike the problem of learning the
best periodic policy, which instead requires minimizing
the harder notion of policy regret (Arora et al., 2012).

Consider the task of learning the best ranking policy.
In our music streaming example, a ranking policy is a
playlist for the user. As changing the playlist streamed
to the user may be costly in practice, we also introduce
a switching cost for selecting a different ranking policy.
Controlling the number of switches could also have a
good effect in our nonstationary setting, when the ex-
pected reward of a ranking policy may depend on which
other ranking polices were played earlier. The learning
agent should ensure that a ranking policy is played
many times consecutively (i.e., infrequent switches),
so that estimates are calibrated (i.e., computed in the
same context of past plays).

A standard bandit strategy like UCB (Auer et al.,
2002), which guarantees a regret of O

(√
kT lnT

)
irre-

spective of the size of the suboptimality gaps between
the expected reward of the optimal ranking policy
and that of the other policies, performs a number of
switches growing with the squared inverse of these gaps.
In Section 6 we show how to learn the best ranking
policy using a simple variant of a learning algorithm
based on action elimination proposed in (Cesa-Bianchi
et al., 2013). Similarly to UCB, this algorithm has a
distribution-free regret bounded by

√
kT . However, a

bound O
(
k ln lnT

)
on the number of switches is also

guaranteed irrespective of the size of the gaps.

In Section 7 we turn to the problem of constructing the
class of ranking policies, which amounts to learning the

ordering of the arms according to their baseline payoff
expectations µ1, . . . , µk. Assuming µ1 > · · · > µk, this
can be reduced to the problem of learning the ordering
of reward expectations in a standard stochastic bandit
with i.i.d. rewards. We show that this is possible with
a number of pulls bounded by

∑
i 1/∆2

i (ignoring loga-
rithmic factors), where ∆i is the smallest gap between
µi−1 − µi and µi − µi−1. Note that this bound is not
significantly improvable, because 1

/
∆2
i samples of each

arm i are needed to verify that µi−1 < µi < µi+1.

Finally, in Section 8 we describe experiments comparing
our low-switch algorithm against UCB in both large-
gap and in small-gap settings.

2 Related works

Our setting is a variant of the model introduced
by Kleinberg and Immorlica (2018). In that work,
µi(τ) are concave, nondecreasing functions satisfying
µi(τ) ≤ µi(τ − 1) + 1. Note that this setting and ours
are incomparable. Indeed, unlike (Kleinberg and Im-
morlica, 2018) we assume a specific parametric form
for the functions µi(·), which are nondecreasing and
bounded by 1. On the other hand, we do not assume
concavity, which plays a key role in their analysis.

Pike-Burke and Grunewalder (2019) consider a setting
in which the expected reward functions µi(·) are sam-
pled from a Gaussian Process with known kernel. The
main result is a bound of order

√
kT on the Bayesian

d-step lookahead regret, where d is a user-defined pa-
rameter. This notion of regret is defined by dividing
time in length-d blocks, and then summing the regret
in each block against the greedy algorithm optimizing
the next d pulls given the agent’s current configuration
of delays (i.e., how long ago each arm was last pulled).
Similarly to (Pike-Burke and Grunewalder, 2019), we
also compete against a greedy block strategy. However,
in our case the block length is unknown, and the greedy
strategy is not defined in terms of the agent’s delay
configuration.

A special case of our model is investigated in the very
recent work by Basu et al. (2019). Unlike B2DEP,
they assume µi(τ) = 0 for all τ ≤ di and complete
knowledge of the delays di. In fact, they even assume
that every arm i cannot be selected in the next di
time steps after a pull. Their main result is a regret
bound for a variant of UCB competing against the
greedy policy. They also show NP-hardness of finding
the optimal policy through a reduction similar to ours.
It is not clear how their learning approach could be
extended to prove results in our more general setting,
where µi(τ) could be positive even when τ ≤ di and
the delays di are unknown.
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A different approach to nonstationary bandits in recom-
mender systems considers expected reward functions
that depend on the number of times the arm was played
so far, (Levine et al., 2017; Cortes et al., 2017; Bounef-
fouf and Féraud, 2016; Heidari et al., 2016; Seznec et al.,
2019; Warlop et al., 2018). These cases correspond to a
rested bandit model, where each arm’s expected reward
can only change when the arm is played.

The fact that we learn ranking strategies is reminiscent
of stochastic combinatorial semi-bandits (Kveton et al.,
2015b), where the number of arms in the schedule
is a parameter of the learning problem. In particular,
similarly to (Radlinski et al., 2008; Kveton et al., 2015a;
Katariya et al., 2016) our strategies learn rankings of
the actions, but unlike those approaches in our case
the optimal number of elements in the ranking must
be learned too.

3 The B2DEP setting

In the classical stochastic multiarmed bandit model, at
each round t = 1, 2, . . . the agent pulls an arm from K =
{1, . . . , k} and receives the associated payoff, which is
a [0, 1]-valued random variable independently drawn
from the (fixed but unknown) probability distribution
associated with the pulled arm. The payoff is the only
feedback revealed to the agent at each round. The
agent’s goal is to maximize the expected cumulative
payoff over any number of rounds.

In the B2DEP (Bandits with DElay DEpendend Payoff)
variant introduced here, when the agent plays an arm
i ∈ K the [0, 1]-valued payoff has expected value

µi(τ) = (1− f(τ)I {0 < τ ≤ di})µi (1)

where µi is the unknown baseline reward expectation
for arm i, f : N→ [0, 1] is an unknown nonincreasing
function, and τ is the number of rounds that have
passed since that arm was last pulled (conventionally,
τ = 0 means that an arm is pulled for the first time).
When f is identically zero, B2DEP reduces to the stan-
dard stochastic bandit model with payoff expectations
µ1, . . . , µk. The unknown arm-dependent delay param-
eters di > 0 control the number of rounds after which
the arm’s expected payoff is guaranteed to return to
its baseline value µi.

A policy π maps a sequence of past observed payoffs
to the index of the next arm to pull. Let gt(π) be
the payoff collected by policy π at round t. Given an
instance of B2DEP, the optimal policy π∗ maximizes,
over all policies π, the long term expected average
payoff

lim
T→∞

GT (π)

T
where GT (π) = E

[
T∑
t=1

gt(π)

]
.

Note that, the payoff expectations at any time step t
are fully determined by the current delay vector τ (t) =(
τ 1(t), . . . , τ k(t)

)
, where each integer 0 ≤ τi(t) ≤ di

counts how many rounds have passed since i ∈ K was
last pulled (setting τi(t) = 0 if i was never pulled or if
it was last pulled more than di steps ago). Hence, any
delay-based policy —e.g., any deterministic function
of the current delay vector— is eventually periodic,
meaning that π

(
τ (t)

)
= π

(
τ (t + P )

)
for all t0 ≤ t ≤

T , where P is the period and t0 is the length of the
transient.

Consider the greedy policy πgreedy defined as follows:
At each round t, πgreedy pulls the arm i ∈ K with the
highest expected reward according to current delays

πgreedy

(
τ (t)

)
= arg max

i∈K
µi
(
τi(t)

)
(2)

where τi(t) = 0 if i was never pulled before. It is
easy to see that πgreedy is not always optimal. For
example consider the following instance of B2DEP
with k = 2: f(τ) = 1

2 for all τ , µ1 = 1, µ2 = 1
2 − ε,

d1 = d2 = 1. Then πgreedy always pulls arm 1 and
achieves Gt(πgreedy) = 1 + T−1

2 , whereas GT (π∗) =

1 + T−1
2

(
3
2 − ε

)
where π∗ alternates between arm 1 and

arm 2. Hence GT (πgreedy) ≤ 2
3GT (π∗).

In the next section we show that the problem of finding
the optimal periodic policy for B2DEP is intractable.

4 Hardness results

We show that the optimization problem of finding an
optimal policy for B2DEP is NP-hard, even when all
the instance parameters are known. Our proof relies
on the NP-completeness of the Periodic Maintenance
Scheduling Problem (PMSP) shown by Bar-Noy et al.
(2002). Although a very similar result can also be
proven using the reduction of Basu et al. (2019), intro-
duced for a special case of our B2DEP setting, we give
our proof for completeness.

A maintenance schedule on n machines {1, . . . , n} is any
infinite sequence over {0, 1, . . . , n}, where 0 indicates
that no machine is scheduled for service at that time.
An instance of the PMSP decision problem is given by
integer service intervals `1, . . . , `n such that

∑n
i=1

1
`i
≤

1. The question is whether there exists a maintenance
schedule such that the consecutive service times of each
machine i are exactly `i times apart. The following
result holds (proof in the supplementary material).

Theorem 1. It is NP-hard to decide whether an in-
stance of B2DEP has a periodic policy π achieving

lim
T→∞

GT (π)

T
≥

k∑
i=1

µi
di + 1

.
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5 Approximating the optimal policy

In order circumvent the computational problem of find-
ing the best periodic policy, we introduce a simple class
ΠK of periodic ranking policies whose best element
πghost has a cumulative expected payoff not too far
from that of π∗. Without loss of generality, assume
that µ1 > · · · > µk. Let ΠK ≡ {πm : m ∈ K}, where
each policy πm cycles over the arm sequence 1, . . . ,m.
The average reward g(m) of policy πm is defined by

g(m) =
1

m

m∑
j=1

µj(m) .

Since πghost maximizes g(m) over m ∈ K, πghost ≡ πr?
where

r? ∈ arg max
m=1,...,k

1

m

m∑
j=1

µj(m) (3)

We now bound GT (πghost) in terms of GT (π∗).

Theorem 2.

GT (πghost) ≥
(
1− f(r0)

)
GT (π∗) +O(1)

where r0 is the largest arm index r such that

µi > max
j=1,...,i−1

µj(i− j) i = 2, . . . , r

and r0 = 1 if µ2 ≤ µ1(1).

The definition of r0 is better understood in the context
of the more intuitive delay-based policy πgreedy. Note
indeed that r0 + 1 is the first round in which πgreedy

prefers to pull one of the arms that were played in the
first r0 rounds rather than the next arm r0 + 1.

Proof. Since r? maximizes (3),

GT (πghost) =
T

r?

r?∑
i=1

µi(r
?) +O(1)

≥ T

r0

r0∑
i=1

µi(r0) +O(1)

≥ T

r0

r0∑
i=1

(
1− f(r0)

)
µi +O(1)

where the O(1) term takes into account that r? may
not divide T , and the fact that in the first r? rounds the
expected reward is µ1+· · ·+µr? instead of µ1(r?)+· · ·+
µr?(r?). Now split the T time steps in blocks of length
r0. Because r0 is —by definition— the largest expected
reward any policy can achieve in r0 consecutive steps,
the expected reward of π∗ in any of these blocks is at
most µ1 + · · ·+ µr0 . Therefore

GT (π∗) ≤ T

r0

r0∑
i=1

µi +O(1)

where, as before, the O(1) term takes into account that
r0 may not divide T . This concludes the proof.

The proof of Theorem 2 actually shows that both r?

and r0 achieve the claimed approximation. However,
by definition GT (πghost) is bigger than the total reward
of the policy that cycles over 1, . . . , r0. Also, learning
πghost is relatively easy, as we show in Section 6.

It is easy to see that g(m) is not monotone due to the
presence of the coefficients di. For example, consider
the B2DEP instance defined by k = 3, µ1 = 1, µ2 = 2

3 ,
µ3 = 1

2 , d1 = d2 = d3 = 2, and f(τ) = 2−τ . Then
g(2) < g(1) < g(3).

6 Learning the ghost policy

In this section we deal with the problem of learning
r? assuming the correct ordering 1, . . . , k of the arms
(such that µ1 > · · · > µk) is known. In the next section,
we consider the problem of learning this ordering.

Our search space is the set of ranking policies ΠK ≡
{πm : m ∈ K}, where each policy πm cycles over the
arm sequence 1, . . . ,m. Note that, by definition,
πghost ≡ πr? . The average reward g(m) of policy πm is
defined by g(m) =

(
µ1(m) + · · · + µm(m)

)/
m. Note

that every time the learning algorithm chooses to play
a different policy πm ∈ ΠK, an extra cost is incurred
due to the need of calibrating the estimates for g(m).
In fact, if we played a policy different from πm in the
previous round, the reward expectation associated with
the play of πm in the current round is potentially differ-
ent from g(m). This is due to the fact that we cannot
guarantee that each arm in the schedule used by πm
was pulled exactly m steps earlier. This implies that we
need to play each newly selected policy more than once,
as the first play cannot be used to reliably estimate
g(m).

We now introduce the policy πlow (Algorithm 1), a
simple variant of a learning algorithm based on action
elimination proposed in (Cesa-Bianchi et al., 2013).
This policy has a regret bound similar to UCB while
guaranteeing a bound O

(
k ln lnT

)
on the number of

switches, irrespective of the size of the gaps. In Sec-
tion 8 we compare πlowwith UCB.

In each stage s, algorithm πlow plays each policy πm
in the active set As for Ts/

(
m|As|

)
+ 1 times, where

Ts = T 1−2−s

. Then, the algorithm computes the sam-
ple average reward ĝs(m) based on these plays, ex-
cluding the first one because of calibration (lines 3–
6). After that, the empirically best policy is selected
(7). Finally, the active set is recomputed (line 8) ex-
cluding all policies whose sample average reward is
significantly smaller than that of the empirically best
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Algorithm 1 (πlow)

Input: Policy set ΠK, confidence δ ∈ (0, 1), horizon T
1: Let A1 ≡ K be the initial set of active policies
2: repeat . s indexes the stage number
3: for m ∈ As do
4: Play πm for Ts/

(
m|As|

)
+ 1 times

5: Compute ĝs(m) discarding the first play
6: end for
7: Let m̂s = arg max

m∈As

ĝs(m̂s)

8: As+1 = {m ∈ As : ĝs(m) ≥ ĝs(m̂s)− 2Cs}
9: until overall number of pulls exceeds T

policy. The quantity Cs is derived from a standard

Chernoff-Hoeffding bound and is equal to
√

k
2Ts

ln 2kS
δ

where

S = min

{
j ∈ N :

j∑
s=1

(
|As|+ Ts

)
≥ T

}

implying S = O
(

ln lnT
)
. The terms |As| account for

the extra calibration pull each time we switch to a new
policy in ΠK. We can prove the following bound on
the regret of πlow with respect to πghost.

Theorem 3. When run on an instance of B2DEP
with parameters δ and T , with probability at least 1− δ
Algorithm 1 guarantees

GT (πghost)−GT (πlow)

= O

(
k2 ln lnT +

√
kT

(
ln
k

δ
+ ln ln lnT

))
(4)

with probability at least 1− δ.

Note that this bound is distribution-free. That is,
it does not depend on the gaps g(r?) − g(m) (which
in general could be arbitrarily small). The rate

√
T ,

as opposed to the lnT rate of distribution-dependent
bounds, cannot be improved upon in general Bubeck
and Cesa-Bianchi (2012).

Proof. The proof is an adaptation of (Cesa-Bianchi
et al., 2013, Theorem 6). Note that AS ⊆ · · · ⊆ A1

by construction. Also, our choice of Cs and Chernoff-
Hoeffding bound implies that

max
m∈As

∣∣ĝs(m)− g(m)
∣∣ ≤ Cs (5)

simultaneously for all s = 1, . . . , S with probability at
least 1 − δ. To see this, note that in every stage s
the estimates ĝs(m) are computed using Ts/

(
m|As|

)
plays. Since a play of πm consists of m ≤ k pulls, we
have that each g(m) is estimated using Ts/|As| ≥ Ts/k

realizations of a sequence of random variables whose
expectations have average exactly equal to g(m).

We now claim that, with probability at least 1 − δ,
r? ∈

⋂S
s=1As and 0 ≤ ĝs(m̂s) − ĝs(r?) ≤ 2Cs for all

s = 1, . . . , S.

We prove the claim by induction on s = 1, . . . , S. We
first show that the base case s = 1 holds with prob-
ability at least 1 − δ/S. Then we show that if the
claim holds for s− 1, then it holds for s with probabil-
ity at least 1− δ/S over all random events in stage s.
Therefore, using a union bound over s = 1, . . . , S we
get that the claim holds simultaneously for all s with
probability at least 1− δ.

For the base case s = 1 note that r? ∈ A1 by def-
inition, and thus 0 ≤ ĝ1(m̂1) − ĝ1(r?) holds. More-
over: ĝ1(m̂1)− g(m̂1) ≤ C1, g(r?)− ĝ1(r?) ≤ C1, and
g(m̂1)−g(r?) ≤ 0, where the two first inequalities hold
with probability at least 1 − δ because of (5). This
implies 0 ≤ ĝ1(m̂1)−ĝ1(r?) ≤ 2C1 as required. We now
prove the claim for s > 1. The inductive assumption

r? ∈ As−1 and 0 ≤ ĝs−1(m̂s−1)− ĝs−1(r?) ≤ 2Cs−1

directly implies that r? ∈ As. Thus we have 0 ≤
ĝs(m̂s) − ĝs(r?), because m̂s maximizes ĝs over a set
that contains r?. The rest of the proof of the claim
closely follows that of the base case s = 1.

We now return to the proof of the theorem. For any
s = 1, . . . , S and for any m ∈ As we have that

g(r?)− g(m) ≤ g(r?)− ĝs−1(m) + Cs−1 by (5)

≤ g(r?)− ĝs−1(m̂s−1) + 3Cs−1

by definition of As−1, since m ∈ As ⊆ As−1

≤ g(r?)− ĝs−1(r?) + 3Cs−1

since m̂s−1 maximizes ĝs−1 in As−1

≤ 4Cs−1 by (5)

holds with probability at least 1−δ/S. Hence, recalling
that the number of switches between two different
policies in ΠK is deterministically bounded by kS, the
regret of the player can be bounded as follows,

GT (πghost)−GT (πlow)

= k2S +

S∑
s=1

Ts
|As|

∑
m∈As

(
g(r?)− g(m)

)

= k2S + T1 +

S∑
s=2

Ts
|As|

∑
m∈As

(
g(r?)− g(m)

)

≤ k2S + T1 +

S∑
i=2

4Ts

√
k

2Ts−1
ln

2kS

δ

= k2S + T1 + 4

√
k ln

2kS

δ

S∑
s=2

Ts√
Ts−1
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Algorithm 2 (BanditRanker)

Input: Confidence δ ∈ (0, 1)
Output: A permutation [1], . . . , [k] of K.
1: Let A1 ≡ K be the initial set of active arms
2: repeat . r indexes the round number
3: Sample once all arms in Ar . sampling round
4: Sort the empirical means µ̂[1],r ≥ · · · ≥ µ̂[n],r

5: for i = 1 to |A| do
6: if µ̂[i],r + 2εr < min

j∈K+
[i],r

µ̂j,r then

7: if µ̂[i],r − 2εr > max
j∈K−

[i],r

µ̂[s],r then

8: Remove [i] from Ar
9: Rank before [i] all arms in K+

[i],r

10: Rank after [i] all arms in K−[i],r
11: end if
12: end if
13: end for
14: until |At| ≤ 1

where the k2S term accounts for the regret suffered in
the kS plays where we switched between two policies
in ΠK and paid maximum regret due to calibration
for at most k steps (as each policy in ΠK is imple-
mented with at most k pulls). Now, since T1 =

√
T ,

Ts/
√
Ts−1 =

√
T and S = O

(
ln lnT

)
, we obtain that

with probability at least 1− δ the regret is at most of

order k2 ln lnT +
√
T +

√
kT
(
ln k

δ + ln ln lnT
)
.

7 Learning the ordering of the arms

In this section we show how to recover, with high
probability, the correct ordering µ1 > · · · > µk of the
arms. Initially, we ignore the problem of calibration,
and focus on the task of learning the arm ordering
when each pulls of arm i returns a sample from the
true baseline reward distribution with expectation µi.

BanditRanker (Algorithm 2) is an action elimination
procedure. The arms in the set Ar of active arms are
sampled once each (line 3), and their average rewards
are kept sorted in decreasing order (line 4). We use µ̂i,r
to denote the sample average of rewards obtained from
arm i after r sampling rounds, and define the indexing
[1], . . . , [k] be such that µ̂[1],r ≥ · · · ≥ µ̂[k],r, where ties
are broken according to the original arm indexing.

When the confidence interval around the average re-
ward of an arm [i] is not overlapping anymore with the
confidence intervals of the other arms (lines 6–7), [i] is
removed from Ar and not sampled anymore (line 8).
Moreover, the set K+

[i],r of all arms [b] ∈ Ar such that

µ̂[b],r ≥ µ̂[i],r (if any) is ranked before [i] (line 9). Sim-

ilarly, the set let K−[i],r of all arms [s] ∈ Ar such that

µ̂[s],r ≤ µ̂[i],r (if any) is ranked after [i] (line 10). The
algorithm ends when all arms are removed (line 14).

The parameter εr determining the confidence interval
after r sampling rounds is defined by

εr =

√
1

2r
ln

2kr(r + 1)

δ
. (6)

The sequence of removed arms can be stored in a binary
tree whose root is the first removed arm and whose
left (resp., right) leaf contain all arms whose average
reward was bigger (resp., smaller) when the first arm
was removed. When a new arm is removed, the leaf to
which it belongs is split using the same logic that we
used for the root. Eventually, all nodes contain a single
arm and the in-order traversal of the tree provides the
desired ordering.

We introduce the following quantity, measuring the
suboptimality gaps between arm that are adjacent in
the correct ordering,

∆i =

 ∆1,2 if i = 1
min

{
∆i−1,i,∆i,i+1

}
if 1 < i < k

∆k−1,k if i = k

where ∆i,j = µi − µj .

We are now ready to state and prove the main result
of this section.

Theorem 4. If Algorithm 2 is run with parameter δ
on a k-armed stochastic bandit problem, the correct
ordering µ1 > · · · > µk of the arms is returned with
probability at least 1−δ after a number of pulls of order

k−1∑
i=1

1

∆2
i

ln
1

δ∆i
. (7)

Note that, up to logarithmic factors, the bound stated
in Theorem 4 is of the same order as the sample used
by an ideal procedure that knows ∆1, . . . ,∆k and uses
the optimal order 1

/
∆2
i of samples to determine the

position of each arm i in the correct ordering.

Proof. The proof is an adaptation of Even-Dar et al.
(2006, Theorem 8). Using Chernoff-Hoeffding bounds,
the choice of εr ensures that

P
(
∃ r ≥ 1 ∃i ∈ K

∣∣µ̂i,r − µi∣∣ > εr

)
≤ 2k

∑
r≥1

e−2ε2tr

≤ δ . (8)

If an action [i] is eliminated after r sampling rounds,
then it must be that µ̂[b],r − 2εr > µ̂[i],r > µ̂[s],r + 2εr
for all [b] ∈ K+

[i],r and all [s] ∈ K−[i],r. Condition (8)

then ensures that, with probability at least 1−δ, µ[b] >
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µ[i] > µ[s] for all such b and s. This implies that the
current ordering of µ[j],r for j ∈ Ar is correct with
respect to [i]. Since εr → 0, every action is eventually
eliminated. Therefore, with probability at least 1−δ the
sequence of eliminated arms i and their corresponding
sets K+

[i],r,K
−
[i],r provide the correct arm ordering.

We now proceed to bounding the number of samples.
Under condition (8), for all b < i < s,

∆b,i − 2εr =
(
µb − εr

)
−
(
µi + εr

)
≤ µ̂b,r − µ̂i,r .

Therefore, if µ̂b,r − µ̂i,r ≤ 2εr, then ∆b,i ≤ 4εr. Recall-
ing the definition (6) of εr and solving by r = r(b, i)
we get

r(b, i) = O

(
1

∆2
b,i

ln
1

δ∆b,i

)
.

Thus, after r(b, i) sampling rounds, µ̂b,r(b,i)− µ̂i,r(b,i) >
2εr(b,i) with probability at least 1− δ. Similarly, after
r(i, s) sampling rounds, µ̂i,r(i,s) − µ̂s,r(i,s) > 2εr(i,s)
with probability at least 1− δ.

This further implies that after Ni = O
(

1
∆2

i
ln 1

δ∆i

)
many sampling rounds, action i is eliminated and not
sampled any more.

Re-define the indexing [1], . . . , [k] so that ∆[1] > · · · >
∆[k]. Hence N[1] < · · · < N[k] by definition. We now
compute a bound on the overall number of pulls based
on our bound on the number of sampling rounds. With
probability at least 1 − δ, we have that: kN[1] pulls

are needed to eliminate arm [1], (k − 1)
(
N[2] − N[1]

)
pulls are needed to eliminate arm [2], and so on. Hence,
with probability at least 1− δ the total number of pulls
needed to eliminate all arms is

k−2∑
i=0

(k − i)
(
N[i+1] −N[i]

)
= kN[k−1] −

k−2∑
i=0

i
(
N[i+1] −N[i]

)
= kN[k−1] − (k − 1)N[k−1] +

k−2∑
i=0

N[i+1]

= N[k−1] +

k−1∑
i=1

N[i]

where we set conventionally N[0] = 0. This concludes
the proof of the theorem.

In order to apply BanditRanker to an instance of
B2DEP, we assume that an upper bound d0 > maxi di
be available in advance to the algorithm. This ensures
that µi(d0) = µi for all i ∈ K. In each sampling round
r, we partition the arms in Ar in groups of size d0 and

make 2d0 pulls for each group by cycling twice over
the arms in an arbitrary order. Then, the first d0 pulls
in each group are discarded, while the last d0 pulls are
used to estimate the expectations µi (when d0 does not
divide |Ar| we can add to Ar arms that were already
removed, or arms from previous groups, just for the
purpose of calibrating). The sample size bound (7)
remains of the same order (because the extra pulls only
add a factor of two).

8 Experiments

In this section we present an empirical evaluation of our
policy πlow in a synthetic environment with Bernoulli
rewards. In order to study the impact the switching
cost on ranking policies when the suboptimality gap is
small, we also define a setting in which there are two
distinct ranking policies that are both optimal —see
Figure 1.

πm πn

µ1→m(m) + µm+1→n(m+ n)

µ1→m(n)

µ1→m(m) µ1→n(n)

Figure 1: Transitions between policies πm and πn as-
suming n > m, where the notation µm→n(d) stands
for µm(d) + · · ·+ µn(d). The expected reward obtain-
ing by switching between policies is different from the
expected reward obtaining by cycling over the same
policy.

We plot regrets against the policy πghost. Our policy
πlow is run without any specific tuning (other than
the knowledge of the horizon T ) and with δ set to 0.1
in all experiments. The benchmark πucb consists of
running UCB1 —with the same scaling factor as in the
original article by Auer et al. (2002)— over the class ΠK
of ranking policies, where calibration is addressed by
rolling out twice each ranking policy selected by UCB1
and using only the second roll-out to compute reward
estimates. Since both πlow and πghost are run over ΠK,
we implicitly assume that BanditRanker successfully
ranked the arms in a preliminary stage.

Figure 2 shows that when the gap between the best and
the second best ranking policy is not too small (0.1 on
average in these experiments), then πucb is competitive
against πlow even in the presence of unit switching
costs. This happens because, in order to minimize the
number of switches, πlow samples a suboptimal policy
more frequently than πucb. Although this oversampling
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Figure 2: Comparing regrets of πlow and πucb

against πghost with 7 arms and baseline expectations
0, 1/3, 2/3, 4/5, 13/15, 14/15, 1 and f(τ) = (0.999)τ . A
unit cost is charged for switching between ranking
policies. Curves are averages of 5 runs each using a
different sample of delays d1, . . . , d7 uniformly drawn
from {1, . . . , 6}. We plot expectations of sampled arms
rather than realized rewards.

does not affect the distribution-free regret bound of
πlow, it hurts performance unless the suboptimality gap
is small enough to cause the switching costs to prevail,
a case which is addressed next. Note also that πlow

eventually stops exploration because all policies but one
have been eliminated, while πucb keeps on exploring,
albeit at a logarithmic rate.

In the second experiment we consider two arms with
µ1 = 1, f(1) = 0.3, f(2) = 0.25, d1 = d2 = 2, and
µ2 chosen so that g(1) = g(2) to simulate a vanishing
suboptimality gap between π1 and π2. Figure 3 (upper
part) shows that πlow performs better than πucb due
to its low switch regime. On the other hand, Figure 3
(lower part) shows that when the switching cost is zero,
switching between two good policies becomes more
advantageous than using a single good policy, and
the regret of both πucb and πlow becomes negative (in
this case πucb, which has no control over the number
of switches, outperforms πlow). The reason for this
advantage is explained by Fact 1 below (proof in the
supplementary material), see also Figure 1.

Fact 1. If an instance of B2DEP admits two optimal
ranking policies, then consistently switching between
these two policies achieves an average expected reward
higher than sticking to either one.

To summarize, the experiments confirm that, in the
presence of switching costs, πlow works better than
πucb only when the suboptimalty gap is very small.
The advantage of πlow over πucb is however reduced
by the fact that switching between two good policies
is better than consistently playing either one of the
two (Fact 1). Note also that πlow stops exploring be-
cause T is known. This preliminary knowledge can be
dispensed with using a doubling trick, or some more

Figure 3: Comparing regrets of πlow and πucb against
πghost with 2 arms such that g(1) = g(2) with unit cost
charged for switching between the two policies (upper
part) and without any cost for switching (lower part).

sophisticated method. Also, it would be interesting to
design a method that achieves the best between the
performance of πucb and πlow, according to the size of
the suboptimality gap.

9 Conclusions

Motivated by music recommendation in streaming plat-
forms, we introduced a new stochastic bandit model
with nonstationary reward distributions. To cope with
the NP-hardness of learning the optimal policy caused
by nonstationarity, we introduced a restricted class
of ranking policies approximating the optimal perfor-
mance. We then proved sample and regret bounds on
the problem of learning the best ranking policy in this
class. One of the main problems left open by our work
is that of deriving more practical learning algorithms,
able to simultaneously learn the ranking of the arms
and the best cutoff value r?, while minimizing their
regret with respect to the best ranking policy.
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