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Abstract

The GPR17 receptor, expressed on oligodendroglial precursors (OPCs, the myelin produc-

ing cells), has emerged as an attractive target for a pro-myelinating strategy in multiple scle-

rosis (MS). However, the proof-of-concept that selective GPR17 ligands actually exert

protective activity in vivo is still missing. Here, we exploited an iterative drug discovery pipe-

line to prioritize novel and selective GPR17 pro-myelinating agents out of more than

1,000,000 compounds. We first performed an in silico high-throughput screening on GPR17

structural model to identify three chemically-diverse ligand families that were then combina-

torially exploded and refined. Top-scoring compounds were sequentially tested on reference

pharmacological in vitro assays with increasing complexity, ending with myelinating OPC-

neuron co-cultures. Successful ligands were filtered through in silico simulations of metabo-

lism and pharmacokinetics, to select the most promising hits, whose dose and ability to tar-

get the central nervous system were then determined in vivo. Finally, we show that, when

administered according to a preventive protocol, one of them (named by us as galinex) is

able to significantly delay the onset of experimental autoimmune encephalomyelitis (EAE),

a mouse model of MS. This outcome validates the predictivity of our pipeline to identify

novel MS-modifying agents.

Introduction

Multiple sclerosis (MS) is a chronic, inflammatory, autoimmune disease of the central nervous

system (CNS), characterized by demyelination [1,2]. MS starts as an autoimmune reaction

leading to acute CNS inflammation, followed by plaques of demyelination [3] and axonal dam-

age. The latter might be consequent to demyelination, but can also occur independently of

myelin destruction [4,5] eventually leading to axonal atrophy and impaired neuronal signal
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transmission [6,7]. The chronic disease is accompanied by a progressive loss of patient ability

to repair damage and reacquire lost functions [8].

Current treatments depend upon patient’s classification and response to therapy [9], but all

the available drugs are mainly aimed at controlling inflammation and modulating patients’

immune response [10]. While these strategies can slow down MS evolution, no drugs able to

repair MS-induced demyelination are available yet [11].

Recently, it was demonstrated that the activation of the G protein-coupled receptor

(GPCR) GPR17 controls the progression of oligodendrocyte precursor cells (OPCs) to mature

oligodendrocytes in vitro [12–16]. However, while GPR17 is needed to start OPC differentia-

tion, the receptor has to be timely downregulated at later differentiation stages to allow termi-

nal maturation. Any failure in this physiological downregulation, resulting in aberrant ad

prolonged GPR17 upregulation, blocks OPCs at immature stages and delays myelination.

Indeed, abnormal up-regulation of GPR17 was reported in several CNS disorders such as

brain ischemia, spinal cord and traumatic brain injury, as well as in a rodent model of Alzhei-

mer’s disease [12,16–19]. Accordingly, GPR17 overexpression in late OPCs in vitro [16] and in

transgenic mice results in loss of oligodendrocytes as well as myelination arrest [15]. Its locali-

zation on the extracellular membrane of myelinating cells and its behavior in pathophysiologi-

cal conditions make GPR17 an attractive ‘druggable’ target [11,20–23]. Small molecules

highly-selective for this receptor could be developed and used either alone or in synergy with

other drugs able to control immune response and inflammation. Although previous studies

have shown that GPR17 non-selective antagonists may be beneficial in limiting brain damage

in acute conditions [12,13] we postulate that, in chronic diseases such as MS, GPR17 agonists

may promote oligodendrocyte maturation and foster myelination, by promoting its signalling

and the consequent receptor downregulation [24,25]. However, all the GPR17 agonists identi-

fied so far also interact with other receptors [26,27], which obviously hampers the develop-

ment of these ligands into therapeutic agents [28].

The present study was purposely aimed at developing novel and highly selective GPR17

agonists via a rational drug discovery pipeline.

First, we modelled the three-dimensional structure of GPR17 [29,30] and afterwards carried

out virtual high-throughput screening (HTS) for the identification of putative ligands [31,32],

whose structures were then optimized in silico to ameliorate their affinity for GPR17. Among

these novel selected ligands, some were tested in highly specific in vitro assays characterized by

increasing complexity: i) a reference pharmacological assay for GPCR activation to confirm

compounds ability to bind GPR17 and determine their intrinsic activity [12,33], followed by

ii) testing in an OPC-dorsal root ganglia (DRG) neuron co-culture myelination assay.

Subsequently, the doses and ability to reach the brain of the most promising hits were inves-

tigated in vivo, guided by in silico pharmacokinetics studies. Then, we determined target selec-

tivity in vitro and validated the ability of the best emerging candidate to modify disease

evolution in vivo in experimental autoimmune encephalomyelitis (EAE) [34], a well-estab-

lished mouse model that presents clinical and pathological similarities to human multiple scle-

rosis. The findings reported here confirm the strength of our drug-discovery pipeline and

prompt new experiments in which selective GPR17 ligands can be administered alone or in

combination with anti-inflammatory drugs to foster endogenous remyelination.

Materials and methods

Homology modelling

The three-dimensional structure of the human GPR17 receptor was built by homology model-

ling, using the 2.5 Å resolution X-ray structure of the human CXCR4 deposited in RCSB

PLOS ONE Galinex delays EAE onset via GPR17

PLOS ONE | https://doi.org/10.1371/journal.pone.0231483 April 22, 2020 2 / 23

have any additional role in the study design, data

collection and analysis, decision to publish, or

preparation of the manuscript. IE acknowledges

funding support from MIUR (FFABR2017). IE and

MF gratefully acknowledges departmental “Linea 2

– Azione A 2017” funding (http://www.disfeb.

unimi.it/ecm/home). Aptuit srl has been recruited

to perform in vivo DMPK experiments as

professional service under a commercial

agreement and did not provide any financial

support to the research. This does not alter our

adherence to PLOS ONE policies on sharing data

and materials.

Competing interests: All the compounds included

in this Manuscript are protected by an international

Patent Cooperation Treaty (PCT/EP2012/058500,

Gpr17 receptor modulators) deposited on May

09th, 2012 and granted on August 6th, 2014.

Inventors: Maria Pia Abbracchio, Mario Alberto

Battaglia, Ivano Eberini, Marta Fumagalli, Chiara

Parravicini, Cristina Sensi, Paola Zaratin This PCT

has generated the following patents and national

applications: Italy: granted patent -

102012902048704 (MI2012A000785), released on

2014/10/23; Italy: granted patent -

102012902048705 (MI2012A000786), released on

2014/10/23; Japan: granted patent - 2015-510655,

released on 2017/01/27; USA: granted patent -

9879030, released on 2018/01/30; China: granted

patent - 104428288B, released on 2018/03/13;

Israel: granted patent - 235557, released on 2018/

11/29; Europe: granted patent - 2850068 (B1)

released on 2019/05/29; Korea: 10-2014-7034470,

application discontinuation. This does not alter our

adherence to PLOS ONE policies on sharing data

and materials. Non-financial competing interests:

Prof. Ivano Eberini is a member of the Editorial

Board of PLOS ONE. I declare that one of the

authors of this manuscript has a commercial

affiliation: “Luca Raveglia, Aptuit Srl (Evotech

Company), Via Alessandro Fleming 4, 37135

Verona, Italy”. This does not alter our adherence to

PLOS ONE policies on sharing data and materials.

https://doi.org/10.1371/journal.pone.0231483
http://www.disfeb.unimi.it/ecm/home
http://www.disfeb.unimi.it/ecm/home


Protein Data Bank as template (PDB, code: 3ODU) [35], as previously described by Sensi and

coauthors [29]. Briefly, the homology modelling procedure was performed using the MOE

Homology Model program of the Molecular Operating Environment (Chemical Computing

Group, Montreal, Canada) with standard settings, starting from a multiple sequence alignment

of the primary structures of a subgroup of structurally related class-A GPCRs, selected accord-

ing to the presence of a conserved pair of cysteines, putatively engaged in an extracellular

disulfide bridge linking the N-terminus with the extracellular loop 3 (EL3), as previously

described [36]. The multiple sequence alignment was performed using the TM-Coffee algo-

rithm, a module of the T-Coffee alignment package optimized for transmembrane proteins

[37]. For the homology modelling procedure, the Amber12:EHT force field with the reaction

field electrostatics treatment was used.

In silico HTS

A virtual HTS of a large chemical library of approximatively 130,000 lead-like compounds was

performed on GPR17 model using the Dock program contained in the MOE Simulation mod-

ule. The initial chemical database was supplied by Asinex (Asinex Platinum Collection, http://

www.asinex.com/), and corresponds to a lead-like structural library of commercial 2D com-

pounds, providing diverse and cost-effective coverage of drug-like chemical space. Most of the

included compounds are characterized by a high degree of drug-likeness, in accordance with

Lipinski’s rule of 5. The GPR17 binding site was identified through the MOE Site Finder

module.

Docking calculations were performed following a previously described workflow imple-

mented in the MOE software [31]. Accordingly, two progressive docking cycles based on two

different prioritization stages (placement and refinement) were applied, each one character-

ized by increasing levels of deepness to account for the decreasing number of compounds to

be screened at each stage. In all these stages, GPR17 was treated as rigid receptor, while ligands

conformations were freely sampled. All the docking procedures were performed using the

MMFF94x force field. Solvation effects were calculated using the reaction field functional form

for the electrostatic energy term. For the estimation of the binding free energy of the generated

complexes two different scoring functions with different degrees of accuracy were used (see

below). Before starting with the first stage (placement), 20,000 conformations were generated

for each ligand by sampling their rotatable bonds. Triangle Matcher methodology was selected

for generating the docking poses for the initial scoring. Within this methodology, poses are

generated by aligning ligand triplets of atoms on triplets of alpha spheres in a systematic way.

Duplicate complexes were removed, and the accepted poses, set to 1,000 for each ligand, were

scored according to the London dG empirical scoring function [38].

For each ligand, the top scoring complex coming from the first docking stage was submitted

to the second more accurate step (refinement) based on molecular mechanics (MM). Energy

minimization was carried out using a conventional molecular mechanics setup, under

MMFF94x force field. In order to speed up the calculation, all receptor atoms were held fixed,

and residues over a 6 Å cut-off distance away from the pre-refined pose were ignored, both

during the refinement and in the final energy evaluation. During the refinement, solvation

effects were calculated using the reaction field functional form for the electrostatic energy term

and a dielectric constant of 4. The final binding free energy was evaluated using the force-field

based GBVI/WSA ΔG empirical scoring function [32].

All the ligands contained in the Platinum library were screened according to the above pro-

cedure; then, the 15 top scoring compounds were resubmitted to the same docking procedure,

keeping for each one of them 300 poses. The 6 ligands associated with the lowest binding free
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energy scores (most favourable poses) were selected for a patentability study aimed at general-

izing their chemical formulas.

Then, this database was populated with additional compounds, selected through a finger-

print-based similarity search performed with MOE, useful for generalizing the chemical struc-

tures into three families. Standard Tanimoto coefficient was used to compute chemical

distances between molecules.

Combinatorial library enumeration

Three different enumerative combinatorial libraries were subsequently generated from the

generic chemical formula of Family I, through the MedChem Transformations tool of the

MOE suite.

For generating the first database (DBI), the scaffold was functionalized by applying itera-

tively a set of transformation rules to specific attachment points (ports). The MedChem Trans-

formation was carried out using default parameters by applying an interaction cut-off value of

50 and a Transformation Limit of 300,000 molecules. Minimization was carried out using the

MMFF94x force field and the R-field method as solvation model. For the R-substituent

belonging to the aryl ring, 3 different ports were defined for the ortho, meta and para position,

respectively, setting a cut-off of 300,000 molecules for each arene substitution pattern. The

whole database was filtered using the MOE SD Tool, in order to select, for the subsequent

HTS, only non-reactive molecules satisfying Oprea’s test for lead-likeness [39].

For generating the second library (DBII), the 2-[[3-(2-methoxyphenyl)-1H-1,2,4-triazol-

5-yl]thio]-acetamide scaffold was enumerated by adding a set of 53 aromatic heterocycles

designed ad hoc (DBII) as R-groups through the MOE MedChem Transformation module

using default parameters and setting 10 as Interaction limit.

The third database (DBIII) was generated by adding a dataset of commercially available aro-

matic amines as R-group to the 2-[[3-(2-methoxyphenyl)-1H-1,2,4-triazol-5-yl]thio]-acetamide

scaffold, through the specific MOE “Add Group to Ligand” tool. The input database was

obtained from the Aldrich Market Select chemical database (www.AldrichMarketSelect.com).

Briefly, before enumeration, the library (originally containing 6784 entries) was pre-processed

with the Database preparation tool for filtering and washing operations; then, each aminic

nitrogen atom of the resulting library (6769 entries) was transformed in a hydrogen leaving

group, and specific attachment points were defined using the MOE clip R-group function.

All the three distinct datasets were submitted to a multistage molecular docking workflow.

In addition, in this case, after the first virtual HTS step, in which the binding free energy for

each ligand::receptor complex was computed through the London dG scoring function, and

only one solution for each ligand was kept, all the complexes were rescored and ranked accord-

ing to their GBVI/WSA dG binding free energy score. After rescoring, the best 1,000 top-scor-

ing molecules for each database were submitted to a more extensive docking procedure

consisting of a placement stage, followed by a refinement step based on an explicit MM force

field method.

During the placement and refinement stages, poses were scored according to the London

dG and to the GBVI/WSA dg scoring functions, respectively, and only the best 30 poses were

kept for each step. The same docking procedure was applied also to a chemical library of 5162

commercially available compounds (DBIV) from the Aldrich Market Select chemical database.

Finally, the 30 top-scoring complexes emerged from either DBI, DBII and DBIII, were opti-

mized by applying the LigX procedure, in which MM minimization of both the ligand and the

receptor binding site are performed. A detailed explanation of the computational strategy is

reported also in Supplementary Material.
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[35S] GTPγS binding assay

[35S]GTPγS binding assays were carried out as previously described [25,31]. Briefly, control

and astrocytoma 1321N1 cells stably transfected with human pcDNA3.1 (control cells) and

human HA-tag GPR17 were homogenized in 5 mM Tris/HCl and 2 mM EDTA (pH 7.4) and

centrifuged at 48,000g for 15 min at 4˚C. The resulting pellets were washed in 50 mM Tris/

HCl and 10 mM MgCl2 (pH 7.4). After protein dosage, aliquots of cell membranes were incu-

bated with increasing concentrations of each investigated ligand (1 pM–10 μM) and GTPγS

binding to activated G-proteins was quantified as previously described. Compounds were pur-

chased from two external providers, i.e., Ambinter (Ambinter c/o Greenpharma, Orléans,

France http://www.ambinter.com/) and Asinex (http://www.asinex.com/).

For analysis and graphic presentation of [35S]GTPγS binding data, a nonlinear multipur-

pose curve fitting computer program (Graph-Pad Prism) was used. All data are presented as

the mean ± SEM of three different experiments.

In silico ADME prediction

The ADME profile of the investigated compounds was predicted through the Schrödinger

QikProp tool (Small-Molecule Drug Discovery Suite 2015–1, Schrödinger, LLC, New York,

NY), which uses an algorithm based on the correlation between experimentally determined

properties and Monte Carlo statistical mechanics simulations of organic solutes in a periodic

box of explicit water molecules.

In parallel, ADME was predicted also through a combination of quantitative structure-

activity relationship (QSAR) models, as implemented in the ACD/Percepta ADME Suite pre-

dictions (ACD/Labs, Toronto, Canada).

In vitro myelination assay

OPC-DRG co-cultures were prepared according to a previously described protocol [14,40].

DRG explants from E14.5 mice were directly put in culture after being plucked off from

embryo spinal cords. Then, they were grown in Neurobasal medium (Life Technologies) in

presence of 100 ng/ml nerve growth factor (NGF, Sigma-Aldrich), and in presence of 10 μM

fluorodeoxyuridine (FUDR, Sigma-Aldrich) in order to remove all non-neuronal cells [41].

Purified primary rat OPCs were obtained from mixed glial cultures by orbital shaking for 3

hours. The cell suspension was then centrifuged at 1200 rpm for 7 minutes, the supernatant

was carefully discarded and the pellet was resuspended and dissociated in 6.5 ml of NM15 con-

taining MEM (Life Technologies), 15% foetal bovine serum (FBS, Euroclone), 2 mM L-Gluta-

mine (Euroclone), 6 mg/ml Glucose (Sigma-Aldrich), 5 μg/ml Insulin (Sigma-Aldrich), 100 U/

ml Penicillin-100 μg/ml Streptomycin (Euroclone). The cell suspension was incubated for 20

minutes at room temperature with one of Ran-2 coated-dishes, which were previously rinsed 3

times with sterile PBS. Non-attached cells were collected and re-incubated for further 20 min-

utes with a second Ran-2 coated-dish. After incubation, the cell suspension was centrifuged at

1200 rpm for 10 minutes. Finally, the supernatant was discarded, and the pellet was resus-

pended in MEM, 10% FBS, 4 g/L Glucose, 2 mM L-Glutamine 100 U/ml Penicillin-100 μg/ml

Streptomycin.

After 20 days, when neurites were well extended radially from DRG explants, purified

OPCs were seeded onto DRG (35,000 cells/DRG) and kept in medium consisting of MEM,

10%FBS, 2mM L-Glutamine and P/S. In the so-obtained co-cultures, myelination was induced

by adding 1 μg/ml TrkA-Fc (Space Import-Export). Tested compounds were added to cultures

at day 4 at a final concentration of 10 nM, in parallel to vehicle as control (CTRL). The
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pharmacological treatment was repeated every 2 days up to day 15, when the cells were fixed

for immunocytochemical analysis.

Immunocytochemistry

At day 15, OPC/DRG co-cultures treated with either the selected compounds or the vehicle

were fixed and treated with rat anti-MBP (Millipore), mouse anti-SMI 31 and mouse anti-SMI

32 (Cell Signaling), followed by the secondary goat anti-rat/-mouse antibody, conjugated to

Alexa Fluor 555 or Alexa Fluor 488 (Life Technologies). The quantification of myelin segments

was performed following a previously described protocol [42] with ZEISS LSM Image Browser

by acquiring 6 random fields of 4–5 coverslips for each experimental condition. Stacks of

images of MBP and Smi31/Smi32 positive cells were taken at 40X magnification; images in the

stack were merged at each level and pixels overlapping in the red and green fields above a pre-

defined threshold intensity value were highlighted in white. The amount of myelin per axon

(myelination index) was calculated as the ratio between the white pixels area and the green pix-

els area.

To account for pseudo-replication, a linear mixed effects model (lmer procedure of lme4 R

package) was used for statistical analysis:

Myelination index
e Treatmentþ ð1jCoverslipÞ þ ð1jExperimentÞ

where Treatment was considered as fixed effect and coverslip and experiment as random

effects.

In vivo mouse DMPK study

In vivo DMPK studies were performed as an external service by Aptuit (Verona, Italy) accord-

ing to standard procedures.

Two compounds were tested in a single dose pharmacokinetic (PK) study in mouse, in

which a 1 mg/kg single dose solution (15% Ethanol, 85% PEG400) was administered by subcu-

taneous injection to naïve CD1 male mice from accredited supplier (n = 3), weighed prior to

dosing. Blood samples were collected for 8 time-points (0.25, 0.50, 1, 2, 4, 6, 8, 24 hours).

Plasma samples were prepared and diluted according standard in-house procedures and

stored at approximately -20˚C, pending analysis. Briefly, blood samples were collected into

tubes containing anticoagulant (K3EDTA), stored on ice and centrifuged to prepare plasma

within 2 hours of collection. Plasma samples were diluted in Hepes Buffer and deproteinised

using CH3CN containing rolipram as internal reference compound for positive ion mode,

according standard procedure (20 ng/ml). After vortexing and centrifugation (3000 rpm per

10 min), sample supernatants were transferred in 96 well plate and diluted with water for

analysis.

Blood concentrations of the tested compounds and their metabolites were detected through

Liquid Chromatography-tandem Mass Spectrometry (QTRAP1 4000 LC-MS/MS System,

Sciex). The results for each test compound in plasma were subjected to non-compartmental PK

analysis using WinNonlin Phoenix v.6.3 for generation of appropriate PK parameters, reported

along with graphical representation of the mean plasma concentration profiles over time.

At 24 hours, animals were sacrificed, and brains were collected and processed for measur-

ing compound concentrations through mass spectrometry.

Afterwards, the presence of the top compound in the brain was assessed in a single dose

time course study consisting of a subcutaneous administration of a 10 mg/kg dose (15% Etha-

nol, 85% PEG400) to 24 naïve C57BL/6 male mice. Eight time-points (n = 3/time-point) were

drawn over 24 hours after dosing. Each animal was sampled for blood collection at two time-
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points (the first via a tail vein, the second via cardiac puncture under anaesthesia). Blood sam-

ples were collected and centrifuged to prepare plasma according to standard procedures and

stored at approximately -20˚C, pending analysis (n = 48 samples). The brain of each animal

was collected at sacrifice and analysed alongside plasma samples for compound quantification

(n = 24 samples). Plasma and brain homogenate samples were analysed for test compound

quantification using an optimised method based on protein precipitation followed by

HPLC-MS/MS analysis. The results for test substance in plasma and brain homogenates were

subjected to non-compartmental PK analysis using WinNonlin Phoenix v.6.3 for generation

of appropriate pharmacokinetic parameters to be reported along with graphical representation

of the mean plasma concentration profiles over time.

Selectivity profile

The selectivity of the top compound versus a subset of selected class-A GPCRs was assessed

through either binding or functional assays performed by Eurofins Cerep (Le Bois l’Evêque,

France), as an external service. For evaluating both agonist and antagonist effects, a 100 nM

solution of the top compound was tested against the 40 human receptors, listed in S2 Table,

using known ligands as reference. Depending upon the assay, the ability of the top compound

to target a specific GPCR was detected through scintillation counting, cellular dielectric spec-

troscopy, and fluorimetry.

Animal health and experimental design

The Università degli Studi di Milano–La Statale (Italy) is compliant with all applicable national

(D.Lgs. 26/2014) and European (Directive 2010/63/EU) regulations, for using animals in scien-

tific research. All the experiments were approved by the Animal Care Committee of the Univer-

sità degli Studi di Milano–La Statale, which is legally entitled for the use of animals for scientific

purposes and by the Italian Ministry of Health (Authorization #473/2012-PR, 05/06/2015).

Twenty-four 6-week-old female C57BL/6N mice (Mus musculus; Charles River Laborato-

ries Italia, Milan, Italy) were obtained and acclimatized for 2 weeks. Vendor health reports

indicated that the animals were free of known viral, bacterial and parasitic pathogens. Animals

were housed for a maximum of 3 per cage under a 12-h light/12-h dark cycle at 21C, with food

and water ad libitum and in the presence of environmental enrichment. Before carrying out

any procedure, the animals were subjected to a 2-week acclimatization period. Animal health

was monitored daily to assess the presence of any signs of suffering. In particular, the parame-

ters that were considered to assess the severity of the suffering and to define the endpoints

beyond which the animal would be immediately suppressed, after consultation with the desig-

nated veterinary doctor, were: 1) lack of spontaneous intake of food and water for a 24 hour

period; 2) rapid loss of body weight (up to 20% of the initial weight); 3) persistent hypother-

mia; 4) weakness; 5) visible and persistent changes in the coat (shine, hair loss, etc.); 6) reduced

movement of the animal in the cage for at least 48h; 7) changes in grooming behaviour (for at

least 48h); 8) blood loss from the orifices; 9) accelerated breathing for at least 24h; 10) inconti-

nence or continuous diarrhoea for at least 48 hours. After surgery mice were placed over a

heating mat to counteract hypothermia. Eyewash was used to counteract dry eyes. The experi-

ments were designed in compliance with the ARRIVE guidelines. Control groups were

included in all experiments, randomizing the procedures and applying blinded analysis when

possible. Sample size was calculated with G-Power, to achieve a significant difference of P 0.05

and a power of 0.8.
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EAE induction and drug delivery

A 10 μg/μl solution of the top compound in 15% ethanol and 85% PEG (vehicle) was freshly

prepared and loaded into 28-day Alzet mini-osmotic pumps (infusion rate of 0.11 μl/hour for

28 days) with a reservoir volume of 100 μl (Alzet, Charles River), so that each animal received

1.5 mg/Kg/die. This concentration had been calculated based on DMPK studies to reach a

blood levels compatible with in vitro [35S]GTPγS EC50 values. Mini-pumps were incubated in

saline at 37˚C overnight to ensure a steady pump rate.

One day before immunization, mice were divided in two groups (n = 12 per group) based

on their weight, in order to have similar mean weight between groups (control

group = 19.5 ± 1.1 g; treated group = 19.1 ± 1.4 g). Then, the two groups received, in blind,

subcutaneous implantation on the back of the mini-pumps, loaded with either vehicle or com-

pound 9. The following day, EAE induction was performed as previously described [43].

Briefly, EAE was induced by subcutaneous immunization, with 200 μg of myelin oligodendro-

cyte glycoprotein (MOG35-55) per mouse. Immunized mice received 500 ng of pertussis toxin

(PTX) intravenously the day of immunization and 48 h later. For both immunization and

mini-pump implantation, mice were anesthetized with isoflurane.

Clinical scores were assessed daily, in blind, according to the following scale: 0 = healthy,

1 = flaccid tail, 2 = ataxia and/or paresis of hindlimbs, 3 = paralysis of hindlimbs and/or paresis

of forelimbs, 4 = tetraparalysis, 5 = moribund or dead. For each animal, the onset day was

recorded as the day post-immunization (dpi), corresponding to the appearance of the first

clinical manifestations (score>0). The specific human points (HEP) indicated in the severity

assessment framework for the EAE model were evaluated. In particular, we monitored mantle

conditions, breathing, bladder control, nest conditions and social interactions. To avoid suffer-

ing related to food deprivation, at the first signs of weakness or paralysis of the limbs, fluid

food was introduced into the cage. In addition, the amount of litter was increased to allow the

animals to reach the water dispenser with minimum difficulty, and daily consumption was

monitored. In this study it was not necessary to practice euthanasia.

Animals were anesthetized with ketamine (100 mg/kg) / xylazine (10 mg/kg) and sacrificed

at day 28 after treatment.

The clinical outcomes analysed were: i) weight and clinical score changes during disease

course between the two groups and ii) change in the day of onset between the two groups.

Data are presented as mean ± SEM of DPI and were analysed with the GraphPad Prism 7.04

software. Shapiro-Wilk normality test was performed to assess normal distribution of data.

One sample two tailed t-test was performed to assess data statistical significance. P< 0.05 was

considered as statistically significant.

Five mice did not show any symptom along the whole experiments; 2 mice rejected the

minipump few days after implantation. Thus, 7 animals were excluded from analysis (3 control

and 4 treated mice).

Results

In silico identification of new hit compounds for GPR17

An iterative step-by-step procedure, consisting of HTS and combinatorial chemistry, was car-

ried out to identify new potential hit agonists able to operate GPR17.

High-throughput screening. HTS of a large database of commercially available lead-like

compounds provided by Asinex was performed on the GPR17 three-dimensional model, driv-

ing the molecular docking calculations into the binding site identified through MOE, encom-

passing the residues previously identified as crucial for the recognition of orthosteric GPR17
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ligands [29,31,44]. The docking solutions were ranked according to their predicted binding

free energy values. The 6 top-scoring molecules coming from this first step (S1 Fig, com-

pounds 1–6) were found to belong to three distinct structural clusters. These compounds were

subjected to patentability evaluation aimed at generalizing their chemical structures. In paral-

lel, a similarity search within the database of the 1,000 top-scoring docking solutions was also

performed to make the general chemical formulas of the hit structures as inclusive as possible

and to extend them to a chemical progeny already included in the database. As a result, the

three identified families were populated with a total of 29 compounds, now protected by a Pat-

ent Cooperation Treaty (PCT/EP2012/058500). The three chemical families derived from

these structures are reported in Fig 1.

Combinatorial expansion of Family I. Among the 3 chemical families, priority was given

to Family 1, which, in a patent prior art search, resulted the most promising in view of a future

deployment. The expansion of its general structure (Fig 1A) was performed through in silico
combinatorial chemistry. To enhance the diversity of the chemical library, an iterative proce-

dure was applied, which included chemical expansion of the scaffold, evaluation of results, and

in silico screening, coupled to analysis of the drug-like properties and filtering according to

drug-likeness [39].

Thanks to this strategy, a large combinatorial library containing diverse molecule subsets

(each one produced with a different enumerative approach) was prepared, generating a final

database of more than 1,000,000 compounds, as described in detail in Supplementary Material.

This procedure allowed us to identify, among the whole set of explored R-groups in position

R, R2, and R3 of the scaffold, specific requirements that increase the in silico affinity for

GPR17, such as a hydrogen atom, an aromatic amine group and an ortho-methoxy-aryl group

for R, R2 and R3, respectively.

As shown in Fig 2, comparison of the evolution of binding free energies computed for the

1,000 top-scoring compounds of each diverse chemical subset shows that the introduced

chemical modifications, such as the cyclization of–R2 with aromatic groups, progressively led

to an improvement of the affinity for GPR17 of the designed compounds.

In order to speed-up the drug-discovery pipeline, the final database was checked for simi-

larity across a library of commercial chemicals characterized by either a N-phenyl-2-[(3-phe-

nyl-1H-1,2,4-triazol-5-yl)thio]- or a 2-[(4,5-diphenyl-4H-1,2,4-triazol-3-yl)thio]-N-phenyl-

‘aromatic’ amide scaffold.

Binding free energy values obtained for the two different subgroups of compounds (R = H,

phenyl ring) are reported in S2 Fig. For all the compounds in which–R was replaced by a

hydrogen atom the binding free energy values were lower than those obtained for the

Fig 1. Generic chemical formula of the 3 patented families. (A) Family I; (B) Family II, (C) Family III.

https://doi.org/10.1371/journal.pone.0231483.g001
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compounds holding a phenyl ring, confirming that the complete removal of this group does

not affect their ability to recognize GPR17 but instead increases affinity.

Then, the combinatorial chemistry databases were searched against commercially available

compounds. Thanks to this analysis, some of the top-scoring compounds from HTS turned

out to be commercially available. In order to select the most promising hits to be further inves-

tigated and to validate our discovery strategy, a collection of 15 chemically diverse molecules,

chosen among all the hit compounds derived from the whole in silico pipeline, was selected for

in vitro testing. The structures of these compounds are reported in Fig 3. Indeed, the first 6

compounds reported in Fig 3 (compounds 1–6), are the progenitors of the three chemical fam-

ilies (see also S1). Compounds tested through the [35S]GTPγS are indexed with the following

numbers: 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19. Thirteen out of the 15 tested com-

pounds, namely numbers 4, 6, 7–17, belong to Family I. Thus, to enhance the heterogeneity of

the chemical structures to be tested, and to collect preliminary data on at least one lead com-

pound per chemical family, as a back-up strategy, also members of both Family II (18) and

Family III (19) were included in this analysis. While 18 has indeed a completely different struc-

ture from that of Family I, 19 resembles a cyclized form of the Family I scaffold.

A representative docking pose of one of the 15 selected compounds at the GPR17 binding

site is shown in S3 Fig.

In vitro [35S]GTPγS binding activity

The selected 15 molecules were evaluated in our in-house [35S]GTPγS functional assay in

membranes from cells transfected with human GPR17. Human 1321N1 cells were selected as

this cell line does not constitutively express GPR17. Moreover, this assay has been already suc-

cessfully used in the past to measure the ability of both endogenous and novel synthetic com-

pounds to activate GPR17 [25,31]. All tested molecules were able to potently activate GPR17

with nanomolar/sub-nanomolar affinities. Affinity and efficacy values compared to basal or to

LTD4, here used as a reference agonist [12,13], are reported in Table 1. Concentration-

response curves obtained for each selected compound are reported in S4 Fig.

Fig 2. Binding free energy plots of the 1,000 top-scoring compounds selected for each combinatorial subset after

complete docking procedure. Binding free energies, computed through the force field based GBVI/WSA ΔG

empirical scoring function and sorted according to ascending order, are shown in progressive order for DBI, DBII,

DBIII, respectively.

https://doi.org/10.1371/journal.pone.0231483.g002
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In silico ADME prediction

The absorption, distribution, metabolism, and excretion (ADME) properties of the 15 tested

compounds, in comparison with the same properties for well-characterized drugs, were simu-

lated in silico, using two different approaches. Data from the two analyses were then

Fig 3. Chemical structures of the hit compounds selected through in silico HTS on GPR17. Compounds from 1 to 6 are the

progenitors of the three chemical families (see also S1 Fig) identified through the earliest virtual screening. Together with compounds 4

and 6, compounds from 7 to 19 were selected among the ~1,000,000-compound library for preliminary in vitro testing. Compounds from

7 to 17 belong to Family I; compound 18 and 19 are representative of Family II and III, respectively.

https://doi.org/10.1371/journal.pone.0231483.g003
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crosschecked to select the best hits for further in vitro and in vivo testing. Among the selection

criteria, we gave priority to predicted CNS penetration and chemical stability. Also, physico-

chemical descriptors and other general properties connected with overall good DMPK profiles

were considered, such as good oral and intestinal absorption, plasmatic transport, etc.

Among all the selected compounds, 9 showed the best in silico DMPK profile, on the basis

of a set of more than 100 descriptors and/or ADME models, as described in the Materials and

methods section. Among all the investigated properties, brain penetration was considered as a

mandatory feature for the selected compounds. The most relevant DMPK properties com-

puted for compound 9 are recapitulated in Table 2; essential DMPK parameters for progeni-

tors of Family II and Family III are reported alongside for comparison. In view of its

promising properties, compound 9 soon attracted our attention, including receiving a fantasy

name - galinex.

Previous in vitro assay showed that all the tested compounds are potent GPR17 activators,

and therefore they all result of potential interest from a pharmacological point of view. In silico
DMPK data were then used to prioritize molecules to be further investigated. Together with

compound 9, as a backup strategy, also compound 18, which belongs to a different chemical

class, was progressed to the subsequent in vivo DMPK phase.

Determination of in vivo pharmacokinetic properties

ADME parameters for both 9 and 18 were evaluated in an in vivo single dose DMPK study in

mice. Essential DMPK values for the two molecules, after a single subcutaneous administration

of a 1 mg/kg dose, are reported in Table 3. Plasma concentrations used for deriving these data

are reported in S1 Table.

Compound 9 was characterized by more favourable PK parameters than 18, suggesting a

higher bioavailability and a better in vivo manageability.

Table 1. [35S]GTPγS binding assay.

Compound EC50 (nM) Emax (% vs basal) % Emax (ratio vs Emax of the standard)
†4 0.43 ± 0.08 160.0 ± 10.6 110.8
†6 0.52 ± 0.09 135.0 ± 10.2 93.5�

†7 0.48 ± 0.09 151.3 ± 6.7 104.8
†8 0.24 ± 0.02 144.8 ± 6.4 100.3
†9 0.64 ± 0.12 127.8 ± 3.0 88.5��

†10 0.24 ± 0.06 142.0 ± 5.8 98.3
¶11 22.5 ± 4.30 134.3 ± 8.8 95.3
¶12 7.11 ± 1.96 127.7 ± 4.1 90.6�

¶13 3.29 ± 0.28 141.3 ± 7.6 100.2
¶14 2.70 ± 0.40 139.3 ± 2.5 98.8
¶15 2.90 ± 0.10 137.1 ± 1.3 97.23
¶16 3.45 ± 0.50 139.6 ± 1.5 99.0
¶17 8.48 ± 0.90 136.2 ± 0.5 96.6
¶18 1.68 ± 0.10 147.5 ± 5.8 104.6
¶19 9.50 ± 1.47 153.7 ± 1.1 108.5�

†LTD4 50 nM 144.4 ± 7.1 100.0
¶LTC4 50 nM 141.0 ± 3.9 100.0

� P< 0.05.

�� P< 0.01 vs LTD4 or LTC4 set to 100%.

https://doi.org/10.1371/journal.pone.0231483.t001
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The metabolic stability of the two compounds was also analysed. DMPK experiments

showed that 9 is poorly metabolized; in fact, no detectable metabolites were found in vivo
under the selected experimental conditions. In contrast, 18 generated 5 major metabolites,

whose plasmatic concentrations are reported in S5 Fig. These data are in good agreement with

the in silico predictions suggesting chemical stability for 9, but not for 18.

Overall, 9 showed a better DMPK profile in comparison with 18, and was thus selected for

further evaluations.

To verify whether 9 was indeed able to reach the CNS, the presence of this compound in

mouse brain after subcutaneous administration of a single dose of 10 mg/kg was assessed in a

time-course experiment.

The following DMPK parameters were found for 9 in mice brain, when dosed at 10 mg/kg:

Cmax = 270 ng/ml, Tmax = 0.25 h; Clast 5.80 ng/ml, Tlast = 6.00 h, AUClast = 205 h�ng/ml. In

parallel, the plasma concentration of this compound was evaluated, generating the following

Table 3. In vivo DMPK plasma parameters of compounds 9 and 18.

Plasma DMPK parameters 9 18

Cmax (ng/ml) 72.3 26.4

Tmax (h) 0.50 1.00

Clast (ng/ml) 4.81 1.00

Tlast (h) 4.00 4.00

AUClast (ng h/ml) 85.8 46.7

t1/2 (h) 1.09 0.759

https://doi.org/10.1371/journal.pone.0231483.t003

Table 2. Most relevant in silico DMPK parameters for the selected compounds.

Recommended range Compound 9 Compound 18 Compound 19

LogP 2.68 3.62 5.72

Number of violations of Lipinski’s rule of five <4 0 2 1

Number of violations of Jorgensen’s rule of three <3 0 2 1

Number of property or descriptor value outside the 95% range of similar values for known

drugs

0–5 0 2 2

Predicted brain/blood partition coefficient -3.0 –+1–2 -0.958 -0.407 -0.197
1MDCK cell permeability in nm/sec <25 poor 536 1029 4503

>500 great

Number of reactive functional groups 0–2 0 1 0

Number of likely metabolic reactions 1–8 3 7 4
2Predicted apparent Caco-2 cell permeability in nm/sec <25 poor 446.138 1969.945 1506.359

>500 great

Prediction of the binding to human serum albumin -1.5 –+1.5 -0.041 0.0672 0.905

Prediction of human oral absorption <25% poor 88.5 100 100

>80% high

Brain penetration sufficient for CNS activity yes yes low

Absorption across intestinal barrier yes yes yes

Passive absorption across intestinal barrier good good good

First-pass metabolism in liver and/or intestine no no yes

1MDCK cells are a well-established model for BBB.
2Caco-2 cells are a well-established model for the gut-blood barrier.

https://doi.org/10.1371/journal.pone.0231483.t002
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PK parameters: 10 mg/kg: Cmax = 6520 ng/ml, Tmax = 0.25 h; Clast 17.4 ng/ml, Tlast = 8.00 h,

AUClast = 3930 h�ng/ml.

In line with activity at picomolar concentrations, as obtained in vitro (EC50 = 0.64 ± 0.12

nM), these data confirm our hypothesis that 9 may display activity in the CNS, as predicted by

our in silico approach.

In vitro pro-myelinating activity

On the basis of in silico and in vivo DMPK data, which showed a promising pharmacokinetic

profile for 9, we decided to further progress to in vitro validation. In parallel, also 18 was tested

as a backup strategy. We thus tested the ability of these compounds to promote myelination in

the in-house in vitro model of myelination on primary OPC-DRG neuronal co-cultures

[40,41,45]. As shown in Fig 4, both compounds were able to significantly promote the forma-

tion of newly myelinated segments positive for the Myelin Basic Protein (MBP+) when tested

at a concentration of 10 nM, as demonstrated by the increased value of myelin segments (Mye-

lination Index, CTRL: 100 ± 9.28%; compound 9: 155.0 ± 12.08%, and compound 18:

144.7 ± 14.28%). This increase was associated to the presence of more MBP+-myelinated axons

in the compound-treated cultures compared to vehicle-treated ones. Based on the in vitro mye-

linating data, we decided to further progress compound 9 to the subsequent in vivo study.

Selectivity profile

Before proceeding to the in vivo study, the affinity of compound 9 for a total of 40 structurally

and phylogenetically related GPCRs, including purinergic P2Yn, CysLT1 and CysLT2 and che-

mokine receptor sub-families (for selection of investigated receptors, please, see [36]) was eval-

uated through classical binding assays, when available, or through cellular assays. A subset of

GPCRs with a relevant role in demyelination/remyelination was also included in this analysis.

We found that, at the tested concentration of 0.1 μM, 9 exhibits no significant pharmaco-

logical activity on all the tested GPCRs. Results from this screening are collected in S2 and S3

Tables, showing data from binding and cellular assays, respectively.

Since, for the selectivity studies, 9 was tested at a concentration markedly higher than its in
vivo active concentration (approx. 156-fold over its EC50 value), no off-target effects are

expected for this compound, at least for the investigated GPCRs.

These results suggest that compound 9 is extremely selective for GPR17 and a promising

candidate for in vivo studies.

Effect of compound 9 (galinex) in the EAE mouse model

Then, to evaluate if compound 9 was able to act as a disease-modifying agent in vivo, we

administered it to EAE mice according to a chronic preventive protocol. Compound 9 was

loaded into osmotic mini pumps implanted subcutaneously on the back of mice to obtain a

continuous 28-day infusion starting on the day before disease induction. The 1.5 mg/kg/die-

dose was determined making reference to the in silico prediction and in vivo DMPK experi-

ments described above.

Both weight and clinical score were monitored daily during EAE. Compound 9 globally

attenuated the weight loss typically observed during disease course, which was significant from

15 to 18 days after induction (Fig 5A). We also observed that compound 9 significantly

reduced the clinical scores in the early phases of EAE compared to controls (Fig 5B). Both

experimental groups reached a 100% incidence of disease at the end of the observation period,

but the Kaplan-Meier curve of compound 9-treated mice was shifted compared to the control
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group (Fig 5C), suggesting a delaying effect on disease onset. Symptoms onset was indeed sig-

nificantly postponed by 2.5 days (Fig 5D).

Globally, these results suggest that, by activating GPR17, compound 9 has a protective activ-

ity on EAE development, thus delaying the appearance of neurological symptoms. This repre-

sents the first evidence in favour of the in vivo disease-modifying properties of a selective

GPR17 agonist.

Discussion

Here, we propose and validate an iterative drug discovery pipeline through which novel puta-

tive GPR17 modulators have been designed and then validated using screening paradigms pro-

ceeding from in silico simulations to an in vivo model of disease. At each run, this pipeline is

characterized by increasing degrees of complexity and an increasingly stringent selection of

the compounds on the basis of their drug likeness. More than 1,000,000 compounds were

Fig 4. Effect of compounds 9 and 18 on myelin deposition in OPC-DRG co-cultures. Representative micrographs of

OPC/DRG co-cultures treated with either vehicle (A), or compound 9 (B) or compound 18 (C). Immunostaining for

anti-MBP antibody and anti-neurofilament (NF) antibodies are shown in red and green fluorescence, respectively. The

myelination rate is represented by the colocalization of MBP with NF (in yellow) and is highlighted in the insets as

white pixels (A’, B’, C’); scale bar = 20μm. (D) Histograms show the quantification of myelin segments (Myelination

Index). Data are expressed as mean ± S.E.M. of the Myelination Index obtained from the analysis of 5 random fields of

5 coverslips for each experimental condition from 3 independent experiments. One-way ANOVA with Tukey’s

multiple comparisons test, � p< 0.05, �� p< 0.01 vs vehicle group.

https://doi.org/10.1371/journal.pone.0231483.g004
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filtered through this step-by-step production chain, ending with one single molecule that

indeed proved to be effective in vivo, thus validating the predictivity of the whole procedure

(S6 Fig). Accordingly, our results demonstrate that the proposed strategy could largely super-

sede serendipitous or exclusively wet-based approaches [46,47].

As a first step, we needed to develop an in silico model of our target. We did so using

class-A GPCR comparative modelling, a well-known bioinformatics strategy aimed at gath-

ering novel structural information on this receptor family that indeed encompasses about

70% of all drug-targets [48,49]. Although GPR17 experimental structure has not been

solved yet, the availability of homologous proteins to be used as templates, combined with

specific class-A GPCR modelling techniques [50,51], allowed us to obtain an accurate and

validated model, with a well-shaped binding site, useful for the subsequent HTS procedures

[29,31,36,52,53]. Accordingly, in the very last years, homology modelling has been success-

fully applied also by other groups for identifying both similar and chemically diverse

GPR17 ligands [23,54].

Fig 5. Evaluation of the activity of compound 9 (galinex) in vivo in the EAE mouse model. (A, B) Weight and clinical scores (CS) of

EAE mice during disease course (vehicle-treated group in black, galinex-treated group in red). Error bars represent mean of CS/

weight ± SEM. Multiple t test; � p<0.05. (C) Kaplan-Meier curves showing EAE incidence in vehicle- and galinex-treated mice.

Incidence is reported as percentage of diseased mice/group size. Gehan-Breslow-Wilcoxon test; p-value = 0.034. (D) Day of EAE onset

in vehicle (15% ethanol, 85% PEG; n = 9) and compound 9 (galinex; 10 μg/μl in vehicle; n = 8) treated mice. Data are expressed as the

mean ± S.E.M of DPI. Unpaired two-tailed Student’s test, � p<0.05.

https://doi.org/10.1371/journal.pone.0231483.g005
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High-performance molecular docking of large chemical libraries was then used to quickly

and inexpensively prioritise chemicals according to their affinity for GPR17, and immediately

deliver them to subsequent more in-depth tests, useful to select the most promising hits.

In silico combinatorial chemistry was used to efficiently explore drug-like chemical space of

potential novel hits, and to increase chemical diversity. The use of commercial chemical

regents for exploding the parent structures was used to overcome the synthetic bottleneck and

make chemical synthesis easier. However, to quickly obtain a validation of our pipeline, our

combinatorial chemistry databases were searched against commercially available compounds,

characterised by a high degree of drug-likeness in accordance with specific organic chemistry

rules, such as Lipinski’s [55] and Oprea’s [39] rules.

After these initial phases, use of a well-established in vitro reference pharmacological assay

for class-A GPCRs, namely the GTPγS binding assay [33], allowed us to classify the chemical

hits according to classical pharmacological parameters, such as potency, efficacy and intrinsic

activity, and to validate our computational procedure.

All the in silico identified compounds resulted being GPR17 agonists, with nanomolar EC50

values.

As molecular docking estimates binding free energy, this approach is not intrinsically able

to specifically pick up agonists from an in silico screening if a quantitative structure–activity

relationship (QSAR) model is not available, as is the case for GPR17. However, these results

are not surprising since all compounds of Family I derive from a common scaffold with ago-

nist activity. Of note, previous independent virtual screening on the receptor led to the identi-

fication of GPR17 agonists with demonstrated promyelinating activity on in vitro rodent

models characterized by similar structure [23,31,44] and potency, suggesting that this scaffold

may be suitable for defining a lead compound for GPR17. Moreover, this potency is in line

with that of other class-A GPCR agonists [56], and of our previous set of novel GPR17 activa-

tors [31].

In silico DMPK evaluations, through which compounds were ranked according to various

parameters (including drug-likeness, metabolic stability, oral absorption, affinity to plasma

proteins, ability to penetrate the BBB, etc), were useful to expedite the identification of com-

pounds to be forwarded to in vivo DMPK experimental validation.

As a backup strategy, alongside with the most promising hit of Family I (i.e., compound 9,

or galinex), also a reference compound from Family II (compound 18) was selected for further

in vitro and in vivo evaluations. No further activities were pursued on chemicals from Family

III, since the latter can be considered as a cyclized derivative of Family I.

As expected from the accumulated evidence on GPR17 role in oligodendrocyte differentia-

tion [13,14,24], both these agonists promoted myelination in a well-established OPC-DRG co-

culture model [14,40].

Such promising findings, together with the good in silico and in vivo DMPK properties of

compound 9, led us to eventually test it in EAE mice, a model resembling several clinical fea-

tures of human MS and the most credited model for testing the efficacy of disease modifying

compounds [34]. Based on DMPK studies, that revealed relatively short half-life, a constant

infusion through Alzet osmotic minipumps was set-up as administration route for the EAE

model, in order to guarantee accurate blood levels of compound 9 for the whole treatment

time, as well as to avoid to animals stressful conditions due to repeated administrations. The

preventive administration of compound 9 significantly delayed the symptomatic onset of EAE,

suggesting the predictivity of our in silico and in vitro pipeline, which has therefore the poten-

tial to be successfully used to identify other in vivo protective compounds. Based not only on

specific in silico strategy, but also on the selectivity study carried out on the 40 most similar

and more phylogenetically closely related class-A GPCRs [44], we believe the beneficial effects
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of 9 be due to a specific protective interaction with GPR17 on resident oligodendrocytes, the

only cells expressing the receptor in this model [15,20]. However, since one of the main chal-

lenges for new chemical entities are the off-target effects, future studies should be also focussed

on the investigation of other possible non-specific targets of this compound. Moreover, further

analysis in the pre-symptomatic phase will be necessary to confirm this hypothesis and also to

evaluate a possible anti-inflammatory/antioxidant/immunomodulatory effect of 9.

We have previously demonstrated that prolonged activation of GPR17 leads to receptor

desensitization and internalization [24]. Thus, we cannot exclude that the beneficial in vivo
effect of the GPR17 agonist presented here could be a consequence of receptor adaptive

changes due to long term agonist administration in vivo. This could explain why, in some in
vitro studies, GPR17 inactivation at specific oligodendrocyte maturation stages could also

improve oligodendrocyte differentiation [21]. In a similar way, in the middle cerebral artery

occlusion model, acute treatment with the non-selective antagonist cangrelor resulted in a

reduction of the brain infarct size [13]. Finally, in old mice showing typical signs of cerebral

degeneration, chronic treatment with another non-selective antagonist (Montelukast) was

proved to fully revert the associated cognitive impairment through mechanisms specifically

involving GPR17 [57]. Thus, differences in the administration protocol and in in vivo receptor

adaptation events may account for the detected protective effects of both agonists and

antagonists.

In the present paper, due to the severity of the experimental model, we have chosen a pre-

ventive administration protocol, reasoning that the continuous stimulation of GPR17 on resi-

dent intact OPCs during disease development could have been more effective in contrasting

MOG-induced myelin deterioration, rather than the intervention on already established severe

myelin damage with a curative protocol. Thus, the beneficial effects shown by compound 9 in

the preventive protocol are likely due to a myelin protective activity, rather that indicative of

remyelination. Future studies using a therapeutic protocol in the chronic phase of EAE will be

necessary to test the actual in vivo remyelinating capability of compound 9.

However, since we cannot exclude that the strong pro-inflammatory environment associ-

ated to later EAE stages may inhibit the activity of compound 9, a combination treatment with

an anti-inflammatory drug might be necessary. As this compound proceeds towards the pre-

clinical development, future efforts should also take into account the optimization of a formu-

lation and a route of administration associated to higher compliance, such as an oral

administration.

Conclusions

The present data confirm the effectiveness of our drug discovery pipeline in the identification

of novel and selective GPR17 modulators, and show, for the first time, that a selective GPR17

agonist can effectively alter disease development in vivo. It is currently believed that a strategy

in which myelin protection is combined with immune suppression and/or inflammation alle-

viation to face all MS components at once could be more effective and ameliorate disease prog-

nosis [58]. Thus, we believe that targeting GPR17 with new selective compounds in

combination with the already available immunosuppressive/anti-inflammatory drugs could

represent a promising reparative strategy for MS and other neurodegenerative diseases charac-

terized by demyelination.

Supporting information

S1 Text. In silico combinatorial expansion of Family I.

(PDF)

PLOS ONE Galinex delays EAE onset via GPR17

PLOS ONE | https://doi.org/10.1371/journal.pone.0231483 April 22, 2020 18 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0231483.s001
https://doi.org/10.1371/journal.pone.0231483


S1 Fig. Chemical structures of the 6 top-scoring compounds selected through in silico HTS

on GPR17. Binding free energy values for the selected compounds, computed according to the

force field based GBVI/WSA ΔG empirical scoring function, are: -35.60 kcal/mol for 1 (A); for

2 (B); -33.02 kcal/mol for 3 (C); -32.57 kcal/mol for 4 (D); -32.20 kcal/mol for 5 (E); -31.98

kcal/mol for 6 (F).

(TIF)

S2 Fig. Binding free energy plots of the top-scoring compounds from DBIV. Binding free

energies, computed through the force field based GBVI/WSA ΔG empirical scoring function

and sorted according to ascending order, are shown as black and red lines for the 2-

[(4,5-diphenyl-4H-1,2,4-triazol-3-yl)thio]-N-phenyl- (in black) and the N-phenyl-2-[(3-phe-

nyl-1H-1,2,4-triazol-5-yl)thio]- (in red) ‘aromatic’ amide scaffold, respectively.

(TIF)
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binding assay dose-response curves for compounds 4, 6, 7–19. The endogenous GPR17 ligand

LTD4 was used as reference compound. All data are expressed as percentage of basal [35S]

GTPγS binding (set to 100%) and are mean ± SEM of 3 different experiments, each one per-

formed in duplicate.

(TIF)
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lowed by a progressive number.
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