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ABSTRACT
We investigated the use of a Deep Learning approach to radio sig-
nal de-noising. This data-driven approach has does not require ex-
plicit use of expert knowledge to set up the parameters of the de-
noising procedure and grants great �exibility across many chan-
nel conditions. The core component used in this work is a Con-
volutional De-noising AutoEncoder, known to be very e�ective in
image processing. The key of our approach consists in transform-
ing the radio signal into a representation suitable to the CDAE:
we transform the time-domain signal into a 2D signal using the
Short Time Fourier Transform. We report about the performance
of the approach in preamble denoising across protocols of the IEEE
802.11 family, studied using simulation data. This approach could
be used within a machine learning pipeline: the denoised data can
be fed to a protocol classi�er. A perspective advantage of using the
AutoEncoders in that pipeline is that they can be co-trained with
the downstream classi�er, to optimize the classi�cation accuracy.
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1 INTRODUCTION
The adoption of intelligent techniques in the management of spec-
trum sharing can support the coexistence of heterogeneous radio-
access technologies and the signi�cantly improve capacity and spec-
trum utilization. However, it has to face some key challenges: the
e�ectiveness of the algorithms is required to generalize across radio-
access scenarios; furthermore, the adopted solutions must be easily
applicable across multiple radio standards.

Machine learning (ML) methods, and, more speci�cally, a set of
recently developed techniques, known as Deep Learning (DL) [8],
bear the potential of advancing the intelligence of radio devices,
providing data-driven �exible solutions, without relying heavily
on expert knowledge. Among the problems that the ML can target
are protocol detection, and classi�cation, and signal denoising; fur-
ther applications might include device or user pro�ling and classi-
�cation, source counting.

Here we focus on the problem of signal denoising: we apply
a Deep Learning model to protocol preambles. By noise, here we
mean the ensemble of channel e�ects, which degrades the signal
up to reception. Speci�cally, we propose a method to unfold the
spectrogram of the transmitted preamble from noise by means of a
Convolutional Denoising AutoEncoder (CDAE, de�ned in Section
2). Since such a spectrogram is essentially a 2D image, the con-
volutional approach is very e�ective. We illustrate the technique
using simulated data of protocols: IEEE802.11n and IEEE 802.11a.

After denoising the signal, one could in principle apply to it a
classi�er (e.g. a standard or a convolutional multi-layer percep-
tron (MLP)). An advantage of using CDAEs is that – di�erently
from other traditional techniques used for denoising – they can be
co-trained with the downstream classi�er, to optimize accuracy.
Obviously, CDAEs and classi�ers can also be trained separately if
the denoising already achieves satisfactory results, as it happens
with our application case: we have a reconstruction loss of the or-
der around 1% − 5%, depending on the SNR. Despite these results,
we stress that this work does not aim at competing with tradi-
tional well-established denoising techniques in terms of accuracy:
the point is that most of those techniques are based on domain
expert knowledge, whereas our method is completely data-driven:
thus it allows for high �exibility.
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Notice that the CDAEs could be used also within a classi�cation
pipeline, to enhance the classi�cation performance. Their advan-
tage would be that not only they can be trained in isolation, but
also co-trained with the classi�er algorithm, so as to improve the
overall pipeline performance: this option would not be available
using more traditional denoising techniques.

The present paper is structured as follows: Section II recalls the
de�nitions of ML, DL, and the related work of ML applications
to radio signal processing. In section III, Denoising AutoEncoders
are described. Data sets and analysis tools are discussed in Section
IV. The architecture of the proposed Denoising AutoEncoders, loss
function, and optimization algorithms are discussed in Section V.
The experimental con�gurations and results are discussed in Sec-
tion VI; conclusions are drawn in Section VII.

2 DEFINITIONS AND RELATEDWORK

2.1 Deep Learning: Convolutional
AutoEncoders

A special role in the recent developments of Machine Learning has
been taken by Arti�cial Neural Network algorithms (ANNs). The
most common ANN is the Multi-Layer Perceptron (MLP) used both
for classi�cation and regression. An MLP learns from examples a
certain set of input-output mappings, by optimizing the weights
that link successive layers of arti�cial neurons [16]. In the latest
few years, new architectures and training methods have been de-
veloped for ANNs: they go under the name of Deep Learning (DL)
methods. DL methods allow the use of larger and more complex
models and can face harder tasks, using reasonable computational
time and hardware resources.

Among the DL architectures are the Convolutional Neural Net-
works (CNNs) and the AutoEncoders (AEs): those two techniques
are used together to create Convolutional AutoEncoders (CNN-
AE). Hereafter, we explain brie�y their approach to automatic learn-
ing. Di�erently from standard fully connected MLP, where every
inner neuron can feed all the neurons of the next layer, in CNNs
there is a limited number of connections from one layer to an-
other, and the same pattern of weights is used for a layer to the
next; this, and the presence of special down-sampling layers (the
"pooling" layers) greatly reduces the number of parameters search
space. CNNs are very e�ective in image processing since they ex-
ploit image coherence and local correlation.

AutoEncoders (AEs), are multilayered ANNs characterized by a
symmetric input-encoding-output architecture and a special train-
ing procedure. AEs are often used to �nd a compact data encoding.
They learn by self-supervision, i.e. they do not try to output a la-
bel associated to an input example, but try to replicate the input
example on the output, i.e. use each input record as its own (struc-
tured) label. The standard architecture of an AE consists of at least
three layers: an input layer, a hidden layer, and an output layer. The
hidden layer (the encoding layer) is (in dimensionality reduction)
smaller than the input. AEs are trained using the back-propagation
algorithm, then their learned weights are frozen, and the layer(s)
beyond the central (encoding) one are discarded. What is left is a
function that maps the input into a di�erent representation, which
presented to a classi�er learning algorithm typically yields perfor-
mance improvements. Stacking successively trained AEs one can

build very deeper models, by optimizing just a moderate number
of parameters at a time. AEs can be used also independently from
a downstream classi�er: indeed �nding a better (in some sense)
representation is a worthwhile result in itself. Denoising AEs (see
below) are trained by providing them a noisy input and challeng-
ing them to output, not the input itself, but a non-noisy version of
it (see Figure 1): they try to �nd a representation where the signal
is unfolded from noise.

CNN-AEs merge the advantages of the AutoEncoders represen-
tation learning and the reduced complexity of the CNN paradigm.
When trained for �nding a denoised representation the CNN-AEs
are called Convolutional De-noising AutoEncoders (CDAEs).

2.2 Signal Denoising by ML Techniques
Several ML models have been applied to radio signals problems.
Here we restrict to denoising applications.

In [7], H-SVMs have been proposed to estimate the noise level
for an Additive White Gaussian Noise (AWGN) channel in MIMO
wireless network. In [14], the CNN classi�er is proposed for mod-
ulation classi�cation in presence of di�erent Signal-to-Noise Ra-
tios (SNRs). In [15], CNNs are used for spectral identi�cation over
di�erent SNRs. In this paper, we apply the CNN AEs (CDAE) to de-
noise the radio signals from the fading channel e�ects. We are not
aware of attempts to improve the signal quality using ML models
before signal identi�cation, under fading channel conditions.

3 DE-NOISING AUTOENCODERS
Here we brie�y describe the Denoising AutoEncoders [18], which
are used to reconstruct data from a corrupted input. In contrast to
standard AEs – which receive in input an example and is trained
to reconstruct the input as faithfully as possible – the Denoising
AE are given in input a noisy example and forced to reconstruct
a denoised version. To do so, one needs both the non-noisy and
the noisy version of each example: those can be obtained, for in-
stance, from a radio simulation environment (input=Rx, target out-
put=Tx), or by corrupting arti�cially non-noisy data, or by measur-
ing the Tx and Rx signals in a physical environment.

AutoEncoders [18] consists of an encoder which represents the
mapping FΘ of the input vector X into hidden representation y =

fΘ(x) = s(Wx + b) where s is a nonlinear function such as Rec-
ti�ed Linear Unit (ReLU) or a sigmoid, while Θ represents the set
of parameters Θ = (W ,b).W is the weight matrix and b is the o�-
set vector. The representation y is then decoded into an array z
(with the same size as the input x ), by z = дΘ(y) = s(W ′y + b ′).
The parameters W , W ′, b, and b ′ are optimized by minimizing
a suitable loss function. For binary data where x ∈ [0, 1]d , the
loss function typically used is Mutual Information (MI) [17]: MI ≡
−

∑
j [x j loд(zj ) + (1 − x j )loд(1 − zj )].

De-noising AutoEncoders (DAEs) follow the general concept of
AutoEncoder but use a noisy input x̂ , x . The reconstructed z is
however compared to the clear signal x in the loss function.

Such a loss function is very often minimized by means of the
stochastic gradient descent (SGD) algorithm [10]. We chose for our
model a variant of SGD, the Adaptive Gradient Descent (AGD) [6].
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Figure 1: Schematic view of the operation of aConvolutional
De-noising Auto-Encoder (CDAE). The input can consist in
both noisy and non-noisy data in some proportion: here the
noisy data are the spectrograms of the received signal, (gen-
erated propagating the transmitted signal in the non-ideal
channel). The input spectrograms are processed by the en-
coder, which consists of multiple convolutional layers, and
by the decoder: the output is compared to the spectrogram
of the clean signal. By optimizing the loss function, the net-
work �nds a compressed representation which is to some
extent denoised.

The main di�erence between the two is that in the latter, the learn-
ing rate is not �xed, but depends on the loss value. We preferred
AGD because in general it is known to work better for images.

In our case, we used convolutional layers (i.e. we used a Con-
volutional De-noising AutoEncoder): the parameters W and b of a
patch of the image are shared among all the locations to enforce
spatial locality. In general, CDAEs perform better than classical
DAEs in image processing [10].

4 SIMULATION DATA
We study the simpli�ed setting in which we know that a single
source is transmitting, this assumption will be lifted in future works.
We performed several experiments related to distinct multi-path
fading channel conditions (presence or absence of Doppler e�ect,
di�erent Signal-to-Noise Ratios), with the two protocols IEEE 802.11a,
and IEEE 802.11n. We studied the performances of CDAE at the
following tasks:

• de-noising of received signals from one known protocol (ei-
ther IEEE 802.11a or IEEE 802.11n);

• de-noising of the received signals from an unknown proto-
col taken from a set of two protocols (the received protocol
was either IEEE 802.11a or IEEE 802.11n).

We carried on the investigation using of simulated data, and fo-
cusing on the reconstruction of the preamble of each protocol. For
the sake of simplicity, we implicitly assumed that the denoiser was
provided in input with a well-delimited preamble. Of course, in
practice, this would imply a preliminary phase in which the pre-
amble is singled out from the received data stream. This task can be
accomplished with a segmentation algorithm, however, its speci-
�cation is out of the scope of the present paper. The operational
issues from the problem will be discussed in a future work.

4.1 Simulation and analysis tools
We used mainly MATLAB for generating simulated data and the
TensorFlow and Keras libraries (in Python) for building the Deep
Learning models.

Speci�cally, we used the MATLAB/SIMULINK suite to simulate
the whole model of the physical layer of the IEEE wireless local
area network (WLAN). The WLAN System Toolbox allows the con-
�guration of the physical layer waveform for each IEEE standard
and makes it possible to design the transmitter, the channel model,
and the receiver [11]. For example, we used the wlanTGnChannel
component to pass input signalsTx through an 802.11n (TGn) mul-
tipath fading channel. Various parameters could be set up for a spe-
ci�c WLAN scenario: the sample rate f s , channel bandwidth cbw ,
large-scale fading e�ect, path loss and shadowing, delay pro�le,
and the channel model.

Several tools have been used for building arti�cial neural net-
works. TensorFlow (TF) is a set of Python libraries to develop deep
neural networks [2]. We used the Keras libraries to control the TF
back-end [4].

The simulation and the learning procedures were carried on
both under Windows 10 and Linux, utilizing graphical processing
units (GPUs).

4.2 Noise model used in the data
We focussed on Wi-Fi signals operated in 2.4GHz and 5GHz range.
Speci�cally, we generated the end-to-end radio signal environment
for the following standards: IEEE 802.11a and IEEE 802.11n. The
design parameters for each protocol (channel bandwidth BW , car-
rier frequency fc , modulation scheme, channel model, number of
transmitters and receivers, etc.) are summarized in Table 1 [1, 3, 9].

Table 1: WLAN Standards Characteristics

Protocol Maximum
Data
rate

Channel
Band-
width

Frequency
Band
(GHz)

Modu-
lation

IEEE
802.11n

600
Mbps 4
spatial
streams

20MHz,
40MHz

2.4 GHz, 5
GHz

OFDM

IEEE
802.11a

54Mbps 20MHz 5GHz OFDM
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Figure 2: Spectrograms for radio signals for IEEE 802.11n.
Top: transmitted signals (Tx). Bottom: received signals (Rx)
under the hypothesis of SNR 0 dB and NLOS fading channel
described in Table 2 (standard model E from reference [12]).

Table 2: Rayleigh channel model E

Path Delays
(nanoseconds)

[0 10 20 40 70 100 140 190 240 320 430 560
710 880 1070 1280 1510 1760]

Average path
gains (dB)

[-4.9 -5.1 -5.2 -0.8 -1.3 -1.9 -0.3 -1.2 -2.1 0.0
-1.9 -2.8 -5.4 -7.3 -10.6 -13.4 -17.4 -20.9]

In the practical radio spectrograms, the radio signal su�ers from
noise due to the No-Line of Sight (NLOS), multi-path, inter-symbol
interference, Doppler e�ect, and fading e�ects. In our experiments,
the radio signals were modeled by a Rayleigh channel and NLOS
e�ects. Several standard indoor channel models have been devel-
oped in [12]. In our research, we chose to study model E, corre-
sponding to a typical large open space, indoor or outdoor, with
large delay spread (we set 250 ns delay spread), a highly disper-
sive channel. Table 2 details path delays and average path gains
for Model E.

4.3 The datasets
Our dataset consisted of 1000 radio spectrogram images correspond-
ing to as many preambles for each studied IEEE 802.11 protocol.
The speci�c details of the experimental con�gurations, for which
the quantized spectrograms have been generated, are detailed be-
low, in Section 6.

4.3.1 Spectrograms. Each spectrogram represented the Short Time
Fourier Transform (STFT) [13] of the raw time series x(t) corre-
sponding to the signal of a preamble. More speci�cally, a spectro-
gram pictures the STFT Sx (τ ,ω) as a function of the (discretized)
time τ and frequency ω. Each preamble was partitioned into 3782
time intervals, for each interval 64 frequencies were computed.
Thus, each image consisted in 64 × 3782 gray-level pixels, where
gray-level expressed the modulus |Sx (τ ,ω)|.

Examples of spectrograms are shown in Figure 2 where the dif-
ferent levels of intensity are mapped into di�erent colors. One can
notice the di�erence between the transmitted signal spectrogram
and the received signal spectrograms, i.e. the degradation under-
gone by both protocol preambles, due to the channel.

4.3.2 �antization. The spectrogram has very high dimension-
ality. To reduce it, the values |Sx (τ ,ω)| have been quantized and
encoded with binary values bx (τ ,ω) as follows: bx (τ ,ω) = 1 if
|Sx | > 〈Sx (τ ,ω)〉 (where the average 〈·〉 is taken over the spectro-
gram pixels) and zero otherwise.

4.4 Trimming and padding
One can also observe that there are regions of the transmitted sig-
nal that seem not to be carrying special visual information. We
exploit this observation in order to simplify the reconstruction
task: we trim away those uninformative regions. Speci�cally, the
regions corresponding to the upper third and the lower third of
the left side of each spectrogram have been padded with zeros and
excluded from the learning and reconstruction process.

Dropping those pixels, i.e. dropping those features, is expected
to be unin�uential on the parts that a hypothetical classi�er (down-
stream of the denoiser) would use.

Examples of quantized and trimmed spectrograms are shown in
Figure 3 which illustrates the process.

5 DENOISINGWITH CDAES
The problem we address hereafter is the denoising of the preamble
spectrograms of a single radio protocol at a time. In other words,
we adopt the simplifying assumptions that, in the sensed area, only
one protocol is used and only one transmitter is operational. Fur-
thermore, we posit that we are able to identify the time interval
in which lies the preamble and distinguish it from the subsequent
part of the frame. To de-noise the radio spectrograms, we used the
CDAEs introduced in Section 3.

Already from the example of spectrograms shown in Figure 1,
one can see that such a 2D signal presents regions of qualitatively
homogeneous behavior: e.g. one can notice a horizontal central
strip, consisting in vertical strips of low values, alternated to higher
values.
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(Tx)

(Rx)

(RC)

Figure 3: Quantized spectrograms of preambles for IEEE
802.11n: transmitted spectrogram (Tx), received spectro-
gram (Rx) (with 0 dB SNR) and the spectrogram recon-
structed (RC) using the CDAE neural network. The black
regions on the left represent parts of the spectrogram not
used in the learning process, on account of their apparent
lack of distinctive visual content (compare with Figure 2).

The spectrogram can be considered a sort of picture, with coher-
ent regions. The reasons why we chose to experiment with convo-
lutional versions of the AE are several, however we counted on the
fact that the convolutional mechanisms are known to be e�ective
in processing/learning images.

It is true that the special kind of image under study had rather
unbalanced dimensions (64×3782 pixels per spectrogram instance),
but the internal coherence of di�erent regions of the image sug-
gested that the spectrogram could be dealt with almost like an or-
dinary gray-scale image.

Among the main parameters to choose for setting up a CDAE
are the loss function and the optimization algorithm for the neu-
rons’ link weights. As an evaluation metric for CDAE several loss
functions can be used: we used binary cross entropy.

The CDAE follows the standard approach of de-noising AutoEn-
coders with encoded and decoded convolution neural layers but
uses also some convolutional layers. Convolutional layers are known
to preserve the spatial image distribution so that the corresponding
networks perform better than non-convolutional neural networks
in image processing [10].

The operation of a CDAE network was shown in Fig. 1.
The architecture of CDAE we used is summarized in Table 3. It

encompasses a sequence of sixteen layers: an input layer, seven
2D convolutional layers for the encoder, and eight 2D convolu-
tional layers for decoder. The 2D encoder includes convolutional
layers, use recti�ed linear unit (ReLU) layers, a dropout layer, and a
2D max-pooling layer. The ReLU layer computes element-wise the
maximum between a value and a threshold. The dropout layer is
used for better generalization and to avoid over�tting. The max-
pooling performs a deterministic down-sampling operation to re-
duce the spatial dimensions (width, height) of the convolutional
layer.

The �rst hidden layer is a convolutional layer with 16 feature
maps. Each feature map is connected to a di�erent kernel. Each
kernel has size 3 by 3 in each feature map. The decoder convolu-
tional layers includes a ReLU layer, an up-sampling layer, and a
dropout layer. The up-sampling layer is adapted to change the out-
put of convolutional layers in the decoder to a higher resolution
that matches the original input size image. The AE is trained at
the learning rate 0.001 [5].

Table 3: CDAE model architecture

Layer Type Output Shape
Input layer (None, 300, 64, 1)
2D convolutional layer (Conv2D) (None, 300, 64, 16)
Dropout layer (None, 300, 64, 16)
MaxPooling (None, 150, 32, 16)
Conv2D (None, 150, 32, 16)
MaxPooling (None, 75, 16, 16)
Conv2D (None, 75, 16, 16)
MaxPooling (None, 25, 8, 16)
Conv2D (None, 25, 8, 16)
Upsampling (None, 75, 16, 16)
Conv2D (None, 75, 16, 16)
Upsampling (None, 150, 32, 16)
Conv2D (None, 150, 32, 16)
Dropout (None, 150, 32, 16)
UpSampling (None, 300, 64, 16)
Conv2D (None, 300, 64, 1)

6 EXPERIMENTAL CONFIGURATIONS AND
RESULTS

6.1 Studied Con�gurations
The WLAN environment for both IEEE 802.11a and IEEE 802.11n
has been modeled as Single Input Single Output (SISO) consists
of one transmitter Tx , a channel model, and one receiver Rx . The
speci�cation parameters for IEEE standards as mentioned in sec-
tion 4.2 were followed. The channel has been modeled as a Rayleigh
channel. Di�erent levels of Signal-to-Noise-Ratio (SNR) were also
introduced to study the robustness of the neural network perfor-
mance. The simulation model included also the Doppler E�ect.

For all transmitted and received packets for both IEEE stan-
dards, the signal was mapped into the corresponding spectrogram.

6.2 Results and Discussion
Overall, we generated 40, 000 spectrogram images, a half for IEEE
802.11a and a half for IEEE 802.11n): 90% was used for the training
and 10% for the test. Half of the training spectrograms were non-
noisy, half were noisy. Table 4 summarizes these data.

Fig. 3 shows a sample results of the denoising process on the
trimmed and padded spectrograms. It is apparent that the devel-
oped CDAE is capable of performing an e�ective denoising oper-
ation for the IEEE protocol preambles considered. This is due to
the application of convolutional layers as they preserve the spatial
locality of the input image.
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Table 4: Size of the datasets in terms of number of images

Data Type Noisy
Datasets

Clean
Datasets

Testing
Datasets

Training
Datasets

IEEE
802.11a

10000 10000 2000 18000

IEEE
802.11n

10000 10000 2000 18000

IEEE 802.11a
and
IEEE 802.11n

20000 20000 4000 36000

Figure 4: Test reconstruction accuracy of the developed
CDAEmodel as a function of the number of training epochs
for the full spectrogram (SNR=0 dB) and for the Reduced
Spectrogram under di�erent SNR conditions (SNR=0 dB,
SNR=+20 dB, SNR=−20 dB).

The reconstruction accuracy of signal de-noising has been as-
sessed with di�erent metrics. Figure 4 shows the behavior of the
testing accuracy de�ned in terms of cross-correlation, as a function
of the number of training epochs. Figure 5 shows the behavior of
the testing loss de�ned in terms of average squared di�erence. We
consider three di�erent SNR conditions: SNR=−20, 0, 20 dB.

Referring to Figure 4, for the case SNR=0 dB (i.e. power of the
signal equal to the power of the noise), the accuracy of denois-
ing the trimmed/reduced spectrograms reached the 95% after about
500 epochs (we ran the learning process up to 2000 epochs slowly
increasing the accuracy up to 96%, but, for the sake of clarity, those
results are not shown here). The training was stopped at 2000 epochs
because further gains after that point were negligible. The recon-
struction accuracy was approximately 4% lower for SNR = −20
dB, and 4% higher for SNR = 20 dB. For comparison, show also
the untrimmed spectrogram outcomes (86% accuracy).

In Figure 5, one can see the box-plots of the errors for three
di�erent conditions SNR=−20, 0, 20 dB, plus the full spectrogram
at SNR=0 dB: one can see that the latter has a higher loss with
respect to the trimmed case at SNR=0 dB.

Figure 5: The distribution of the loss value for di�erent SNR
value. Each box plot corresponds to a di�erent SNR con-
dition. From left to right: Full spectrogram (no trimming)
and SNR=0 dB; Reduced Spectrogram SNR=−20 dB; SNR=0
dB; SNR=+20 dB. The results were obtained using a model
trained for 2000 training epochs: each boxplot summarizes
2000 test examples. The loss of an example is de�ned as the
squared distance averaged over the pixels.

7 CONCLUSION
We proposed a system for signal de-noising based on machine
learning algorithms and demonstrate its e�ectiveness using var-
ious WLAN protocols. The advantage of such systems is that they
can perform such a task without relying on expert knowledge: this
can potentially provide high �exibility. The de-noising algorithm
for radio protocols was developed designing and training a Con-
volutional De-noising AutoEncoder (CDAE). The results show that
the system is capable of performing de-noising for radio protocol
and of reconstructing the transmitted radio signals even in pres-
ence of severe noise in the radio spectrograms. The overall accu-
racy of the training (1-loss) is about 95%.

Although we demonstrated the approach for protocols of the
IEEE 802.11 family, this approach could be generalized to all radio
protocols: further studies are required to examine the challenges
and the e�ectiveness of such generalization.

The current study was performed using simulation data; we
plan to apply this approach to data sets of real radio signals.

Among the assumptions of the current study was that only one
radio source was active. Future investigations will consider multi-
ple concurrent sources and the problem of �ltering out the recip-
rocal interference.

We assumed that the denoiser was provided a well-delimited
preamble: of course, this implies a preliminary phase in which the
preamble is singled out from the received data stream. We will
specify and study this part of the procedure, which can be mapped
into a segmentation task, in a future work.

We plan, �nally, to optimize the Convolutional AutoEncoder
structure within an actual classi�cation pipeline so as to improve
the classi�cation performance: this would be the main application
scenario for this kind of denoising.
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