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This paper introduces and investigates Depth-bounded Belief functions, a logic-based 
representation of quantified uncertainty. Depth-bounded Belief functions are based on 
the framework of Depth-bounded Boolean logics [4], which provide a hierarchy of 
approximations to classical logic. Similarly, Depth-bounded Belief functions give rise to 
a hierarchy of increasingly tighter lower and upper bounds over classical measures of 
uncertainty. This has the rather welcome consequence that “higher logical abilities” lead 
to sharper uncertainty quantification. In particular, our main results identify the conditions 
under which Dempster-Shafer Belief functions and probability functions can be represented 
as a limit of a suitable sequence of Depth-bounded Belief functions.

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction and motivation

The link between the rules of rational reasoning and the probabilistic representation of uncertainty is a strong and old 
one. Since Jacob Bernoulli’s 1713 Ars Conjectandi, a number of arguments have been put forward to the effect that departing 
from a probabilistic assessment of uncertainty leads to irrational patterns of behaviour, as fixed by the well known results 
of de Finetti and Savage [7,25] ([16] and [22] provide recent introductory reviews).

Over the past few decades, however, a number of concerns have been raised against the adequacy of probability as a 
norm of rational reasoning and decision-making. Following the lead of [9], whom in turn found himself on the footsteps 
of [15] and [14], many decision theorists took issue with the normative adequacy of probability. As a result, considerable 
formal and conceptual effort has gone into extending the scope of the probabilistic representation of uncertainty, as briefly 
recalled in Section 1.1 below.

One key commonality among those “non probabilistic” approaches is the conviction that probability fails on represen-
tational grounds. On those grounds, they insist that the rational representation of uncertainty need not necessitate that 
all uncertainty be quantified probabilistically. But this was precisely a key concern tackled by the “Mathematical theory of 
evidence” put forward by Glenn Shafer and which has become known as the Dempster-Shafer theory of Belief functions 
(see [8] for a retrospective on the development of the theory and a comprehensive bibliography). Shafer’s original aim in 
[27] was to provide a general theory of evidence and uncertain reasoning: in his interpretation, given a Belief function 
Bel, the value Bel(θ) stands for the degree of support that a piece of evidence provides for the event or proposition θ , 
according to the judgment of a certain agent. Since then, various interpretations of Belief functions have been advanced, 
especially concerning their relation with probability. Of particular relevance for our present purposes is Shafer’s own later 
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work [28], in which he suggests to take degrees of belief to be degrees of support to answers for a given question, for which 
no probability distribution is known, but that nevertheless can be computed by resorting to answers to a related question, 
which imply the original ones, and for which at the same time a probability distribution is actually known. This approach 
is exemplified by assessing the degree of support for a certain proposition in terms of reliability of witnesses (which can be 
probabilistically evaluated) asserting that proposition. An instance of such view of Belief functions, relevant for us later, is 
also the so-called probability of provability interpretation, as presented e.g. in [23] and [19].

Inspired by the setting of [19], the investigation reported in this paper tackles the representational shortcomings in the 
probabilistic uncertain reasoning from a logical point of view. We observe that these issues can be traced back to analogous 
shortcomings of classical logic, which provides a decidedly poor representation of the key notion of “information”, cognate 
concept of “evidence”. Armed with this simple but very important observation, we take a step back and rethink the logic in 
the first place. Hence, developing ideas first discussed in [5], we will cast the question of quantifying rational degrees of 
belief in the framework of Depth-bounded Boolean logics, recalled in Section 2 below.

This approach leads to a definition of Depth-bounded Belief functions, which are introduced in Section 3. On this basis, 
in Section 4 we provide a novel representation of classical Belief functions, which we see as the limit of sequences of 
Depth-bounded Belief functions. We will then investigate, in Section 5 and 6 interesting subclasses of Depth-bounded Belief 
functions, which arise by some principled restriction of the set of formulas where rational degrees of belief are quantified. 
In particular, one such subclass lead also to a representation theorem for classical Probability functions, which are obtained 
as the limit of sequences of (suitably constrained) Depth-bounded Belief functions.

Before delving into the details of our proposal, however, it will be useful to motivate its relevance against the wider 
landscape of rational reasoning and decision-making under uncertainty.

1.1. Uncertainty, ignorance and information

Uncertainty has to do, of course, with not knowing, and in particular not knowing the outcome(s) of an event of interest, 
or the value of a random variable. Ignorance has more subtle features, and is often thought of as our inability to quantify our 
own uncertainty. In [15], Knight gave this impalpable distinction an operational meaning in actuarial terms. He suggested 
that the presence of ignorance is detected by the absence of a complete insurance market for the goods at hand. On 
the contrary, a complete insurance market provides an operational definition of probabilistically quantifiable uncertainty. 
Contemporary followers of Knight insist that the inevitability of ignorance implies that not all uncertainty is probabilistically 
quantifiable and seek to introduce more general norms of rational belief and decision under “Knightian uncertainty” or 
“ambiguity” (see e.g. [12]). A telling illustration of this argument from information is due to David Schmeidler [26]:

The probability attached to an uncertain event does not reflect the heuristic amount of information that led to the 
assignment of that probability. For example, when the information on the occurrence of two events is symmetric they 
are assigned equal probabilities. If the events are complementary the probabilities will be 1/2 independent of whether 
the symmetric information is meager or abundant.

Gilboa [12] interprets Schmeidler’s observation as expressing a form of “cognitive unease”, namely a feeling that the 
theory of subjective probability which springs naturally from Bayesian epistemology is silent on one fundamental aspect of 
rationality, namely how the available information, or the lack thereof, guides the process of uncertainty quantification. But 
why is it so? Suppose that some matter is to be decided by the toss of a coin. According to Schmeidler’s line of argument, 
I should prefer tossing my own, rather than some one else’s coin, on the basis, say of the fact that I have never observed 
signs of “unfairness” in my coin, whilst I just don’t know anything about the stranger’s coin. This qualitative information 
should be reflected in how uncertainty is to be rationally evaluated.

Similar considerations had been put forward in the foundations of statistics and later penetrated the broad field of 
uncertainty in Artificial Intelligence. As anticipated above, an early amendment of probability theory aimed at capturing the 
asymmetry between uncertainty and ignorance is the theory of Belief functions. Key to representing this asymmetry is the 
relaxation of the additivity axiom of probability. This in turn may lead to situations in which the probabilistic excluded middle
does not hold. That is to say an agent could rationally assign belief less than 1 to the classical tautology φ ∨ ¬φ. Indeed, 
as we now illustrate, the problem with normalising on the tautologies of classical logic can be taken as a starting point for 
more general considerations.

1.2. Probability and classical logic

It is well-known that every probability function arises from distributing the unit mass across the 2n atoms of the Boolean 
(Lindenbaum) Algebra generated by the propositional variables {p1, . . . pn} of a language L, and conversely, that a probability 
function on formulas over L is completely determined by the values it takes on such atoms (see, e.g. [19] for a presentation 
in the spirit of our work). Such a representation makes explicit the twofold role played by classical logic and its extensions 
in the theory of probability.

First, it provides a language in which events – the bearers of probability – can be expressed, combined and evaluated. 
The precise details depend on the framework. See [10] for a characterisation of probability on classical logic, and [11] for the 



28 P. Baldi, H. Hosni / International Journal of Approximate Reasoning 123 (2020) 26–40
general case of Dempster-Shafer Belief functions on the many-valued extension of classical logic. In contrast, the measure-
theoretic presentations of probability identifies events with subsets of the field generated by a given sample space �. A 
popular interpretation for � is that of the elementary outcomes of some experiment, a view endorsed by A.N. Kolmogorov, 
who insisted on the generality of his axiomatisation. More precisely, let M = (�, F , P ) be a measure space where, � =
{ω1, ω2 . . .} is the set of elementary outcomes, F = 2� is the field of sets (σ−algebra) over �. We call events the elements 
of F , and P :F → [0, 1] a probability measure if it is normalised, monotone and σ -additive, i.e.

(K1) P (�) = 1
(K2) A ⊆ B ⇒ P (A) ≤ P (B)

(K3) If {E}i is a countable family of pairwise disjoint events in F then P (
⋃

i Ei) = ∑
i P (Ei)

The Stone representation theorem for Boolean algebras and the representation of probability functions recalled above 
guarantee that the measure-theoretic axiomatisation of probability is equivalent to the logical one yielded by classical logic, 
which is obtained by letting a function from the formulas FmL of a language L to the real unit interval be a probability 
function if

(PL1) |= θ ⇒ P (θ) = 1
(PL2) |= ¬(θ ∧ φ) ⇒ P (θ ∨ φ) = P (θ) + P (φ).

Less straightforward but equally compelling is the case yielded by the many-valued extension of classical logic, see [17].
Obvious as the logical “translation” of the Kolmogorov axioms may be, it highlights a second and crucial role for logic in 

the theory of probability, which is best appreciated by focussing on the consequence relation |=.
In its measure-theoretic version, the normalisation axiom (K1) is quite uncontroversial. Less so, if framed in terms of 

classical tautologies, as in PL1. Indeed the arguments against the probabilistic representation of rational belief recalled 
above, emerge now formally. For |= interprets symmetrically “knowledge” and “ignorance” as captured by the fact that 
|= θ ∨ ¬θ is a tautology. Indeed similarly bothersome consequences follow directly from P L1 and P L2, namely

1. P (¬θ) = 1 − P (θ)

2. θ |= φ ⇒ P (θ) ≤ P (φ)

Those examples suffice to make a key point: Many of the features of probability with which the critics recalled above take 
issue clearly have their logical roots in the semantics of classical logic.

The logical framing of probability allows us to refine this analysis. For it is the semantics of classical logic that provides 
the uncertainty resolution device for the evaluation of probability. This is best illustrated by the piecemeal identification 
of “events” with the “sentences” of the logic. On the one hand, an event, understood classically, either happens or not. A 
sentence expressing an event, on the other hand is evaluated in the binary set as follows

v(θ) =
{

1 if the event obtained

0 otherwise.

Hence, the probability of an event P (θ) ∈ [0, 1] measures the agent’s degree of belief that the event did or will obtain. 
Finding this out is, in most applications, relatively obvious. However, as pointed out in [10], a general theory of what it 
means for “states of the world” to “resolve uncertainty” is far from trivial.

A methodologically more adequate way of evaluating events arises by taking an information-based view on uncertainty 
resolution. The key difference with the previous, classical case, lies in the fact that this leads naturally to a partial evaluation 
of events, that is

vi(θ) =

⎧⎪⎨
⎪⎩

1 if I am informed that θ

0 if I am informed that ¬θ

∗ if I am not informed about θ.

Quite obviously standard probability logic does not apply here, because the classical resolution of uncertainty has no way 
of expressing the ∗ condition. To model this we turn to the theory of Depth-bounded Boolean Logics [4,3].

2. An informational view of propositional logic: Depth-bounded Boolean logics

Depth-bounded Boolean logics are based on the idea that classical propositional connectives should be given an informa-
tional meaning. This is achieved by replacing the notions of “truth” and “falsity” by “informational truth” and “informational 
falsity”, namely holding the information that a sentence ϕ is true, respectively false. Here, by saying that an agent a holds the 
information that ϕ is true or false it is meant that this information is available to a in the sense that a is ready to act upon 
it.
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Fig. 1. Informational tables for the classical operators.

Both proof-theoretic and model-theoretic presentations of Depth-bounded Boolean logics are available, and indeed ow-
ing to completeness results, they are provably equivalent. Whilst our main results below are cast proof-theoretically, it is 
certainly helpful to the unfamiliar reader if we start by presenting Depth-bounded Boolean logics semantically. Indeed, as 
anticipated, they arise naturally by shifting the interpretation of boolean tables from “truth” to “informational truth”. This 
apparently innocent shift makes undesirable the classical principle of Bivalence: it may well be that for a given ϕ , we nei-
ther hold the information that ϕ is true, nor do we hold the information that ϕ is false. So, the informational semantics 
which we are now ready to recall, has a built-in feature that marks the asymmetry between “knowledge” and “ignorance”.

2.1. Semantics

For the rest of the paper we fix a language L, over a finite set V ar = {p1, . . . , pn} of propositional variables. We let FmL
be the formulas built from the propositional variables by the usual classical connectives ∧, ∨, ¬, → and the constant for 
falsum �. For each pi ∈ V ar we denote by ±pi any of the literals pi and ¬pi . Finally, for each set of formulas � we denote 
by S f (�) the subformulas of the formulas in �. We use the values 1 and 0 to represent, respectively, informational truth 
and falsity. When a sentence takes neither of these two defined values, we say that it is informationally indeterminate. It is 
technically convenient to treat informational indeterminacy as a third value that we denote by “∗”.1 The three values are 
partially ordered by the relation 
 such that v 
 w (“v is less defined than, or equal to, w”) if, and only if, v = ∗ or v = w
for v, w ∈ {0, 1, ∗}.

Note that the old familiar boolean tables for ∧, ∨ and ¬ are still intuitively sound under this informational reinterpreta-
tion of 1 and 0. However, they are no longer exhaustive: they do not tell us what happens when one or all of the immediate 
constituents of a complex sentence take the value ∗. A remarkable consequence of this approach is that the semantics of 
∨ and ∧ becomes, as first noticed by Quine [24], non-deterministic. In some cases an agent a may accept a disjunction 
ϕ ∨ ψ as true while abstaining on both components ϕ and ψ . This is often the case when, trying to log in to a website, we 
are prompted with the error message “either your username (ϕ) or password (ψ ) are wrong”. Possessing this disjunctive 
piece of information does not give us any definite information about either disjunct, and therefore its seems only rational 
to refrain to act as if either was true or false. Similarly, a may reject a conjunction ϕ ∧ ψ as false while abstaining on 
both components. Suppose a holds the information that Alice and Bob are not siblings ¬(ϕ ∧ ψ). With this information a
is clearly not in a position to either assent or dissent to sentences like “Is John Alice’s father?” and “Is John Bob’s father?”. 
However a should certainly dissent to “John is Alice’s father and Bob’s father”. Continuing with informal examples of this 
sort, one can also see that depending on the information actually possessed by the agent, when ϕ and ψ are both assigned 
the value ∗, the disjunction ϕ ∨ ψ may take the value 1 or ∗, and the conjunction ϕ ∧ ψ may take the value 0 or ∗. This 
motivates the informational tables introduced in Fig. 1.

As a consequence of this informational interpretation, the classical boolean tables for the ∨, ∧ and ¬ should be replaced 
by the “informational tables” in Fig. 1, where the value of a complex sentence, in some cases, is not uniquely determined by 
the value of its immediate components. A non-deterministic table for the informational meaning of the Boolean conditional 
can be obtained in the obvious way, by considering ϕ → ψ as having the same meaning as ¬ϕ ∨ ψ [see3, p. 82].

2.2. Derivation

The inferences which are allowed by taking the closure of the informational tables just described can be characterised 
equivalently in terms of Introduction (Table 1) and Elimination rules (Table 2).

The rules in Tables 1 and 2 determine a notion of 0-depth consequence relation as follows.

Definition 1. For any set of formulas � ∪ {α} ⊆ FmL , we let � �0 α iff there is a sequence of formulas α1, . . . , αn such that 
αn = α and each formula αi is either in � or obtained by application of the rules in Table 1 and Table 2 on the formulas α j
with j < i.

The key feature of the consequence relation �0 is that only information actually possessed by the agent is allowed 
in a “0-depth deduction”. This makes a sharp distinction with classical deduction where unbounded use can be made of 
virtual information, i.e. information not actually possessed by the agent at the time of carrying out the deduction. Virtual 
information is used to fill out, in all possible completions, gaps in the agent’s information, as illustrated by Example 1 below.

1 This is the symbol for “undefined”, the bottom element of the information ordering, not to be confused with the “falsum” logical constant.
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Table 1
Introduction rules.

ϕ ψ

ϕ ∧ ψ
(∧I)

¬ϕ

¬(ϕ ∧ ψ)
(¬ ∧ I1)

¬ψ

¬(ϕ ∧ ψ)
(¬ ∧ I2)

¬ϕ ¬ψ

¬(ϕ ∨ ψ)
(¬ ∨ I)

ϕ

ϕ ∨ ψ
(∨I1)

ψ

ϕ ∨ ψ
(∨I2)

ϕ ¬ψ

¬(ϕ → ψ)
(¬ → I)

¬ϕ

ϕ → ψ
(→ I1)

ψ

ϕ → ψ
(→ I2)

ϕ ¬ϕ

� (�I)
ϕ

¬¬ϕ
(¬¬I)

Table 2
Elimination rules.

ϕ ∨ ψ ¬ϕ

ψ
(∨E1)

ϕ ∨ ψ ¬ψ

ϕ
(∨E2)

¬(ϕ ∨ ψ)

¬ϕ
(¬ ∨ E1)

¬(ϕ ∨ ψ)

¬ψ
(¬ ∨ E2)

ϕ ∧ ψ

ϕ
(∧E1)

ϕ ∧ ψ

ψ
(∧E2)

¬(ϕ ∧ ψ) ϕ

¬ψ
(¬ ∧ E1)

¬(ϕ ∧ ψ) ψ

¬ϕ
(¬ ∧ E2)

ϕ → ψ ϕ

ψ
(→ E1)

ϕ → ψ ¬ψ

ϕ
(→ E2)

¬(ϕ → ψ)

ϕ
(¬ → E1)

¬(ϕ → ψ)

¬ψ
(¬ → E2)

¬¬ϕ

ϕ
(¬¬E)

�
ϕ

(�E)

While �0 allows for no use of virtual information, the central idea of Depth-bounded Boolean Logics consists in keeping 
track of the amount k of virtual information which agents are allowed to use in their deductions. This naturally leads to the 
recursive definition of the consequence relation �k , for k > 0, as follows.

Definition 2. For each k > 0 and set of formulas � ∪ {α} ⊆ FmL , we let � �k α iff there is a finite sequence of formulas 
α1, . . . , αn and a formula β ∈ S f (� ∪ {α}), such that αn = α, and for each αi , with i < n, we have α1, . . . , αi−1, β �k−1 αi

and α1, . . . , αi−1, ¬β �k−1 αi .

In other words, we suppose that β is a piece of “virtual information” which is not actually possessed by the agent at 
level k − 1 but which can be seen to be sufficient to derive α through case-based reasoning.2 Note that the consequence 
relation presented in Definition 2 is an instance of a strong depth-bounded consequence relations, which is transitive, in 
contrast to its weak counterpart, see [4] for an exhaustive discussion. Variants of both strong and weak depth-bounded 
consequence relations arise when allowing different kind of formulas to be used as virtual information (virtual spaces in the 
terminology of [4]).

Example 1. Consider the excluded middle formula p ∨ ¬p. Direct inspection of the rules in Tables 1 and 2 shows that the 
formula is not 0-depth derivable, i.e. �0 p ∨ ¬p. However, if we allow the use of virtual information p, we find out that 
both p �0 p ∨ ¬p and ¬p �0 p ∨ ¬p. From this follows that �1 p ∨ ¬p.

Let us just recall a small set of properties of Depth-bounded Boolean logics, which will play a role in what follows.
First, it is shown in [4] that the relation �0 is sound and complete with respect to the consequence relation defined on 

the basis of the non-deterministic semantics illustrated in Section 2.1. As an immediate consequence we can observe that 
Example 1 implies that it is not the case that φ ∨ ¬φ is a 0-depth tautology. This matches quite naturally the concerns 
raised against the so-called probabilistic excluded middle. In the framework of Depth-bounded Boolean logics, if an agent 
has no information about φ, then they should not be forced to assign it the highest degree of belief, for it is not a tautology.

Second, the recursive definition of �k ensures that the bounded use of virtual information is monotonic and eventually 
becomes “unbounded”, thereby providing a hierarchy of consequence relations approximating the classical one.

Theorem 1. [4] The relations �k approximate the classical consequence relation �, that is, limk→∞ �k = �.

2 The definition of �k can be reformulated in terms of calculi that add to the rules in Table 1 and 2, a branching rule, to be applied only in limited form. 
Such rule (see e.g. [6]) bears some similarity to the elimination rule for disjunction in natural deduction, where the virtual information plays the role of 
formulas to be discharged.
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Finally, as we shall discuss in the concluding section of this paper, the hierarchy of depth-bounded logics has a very nice 
computational feature: each consequence relation �k is polynomial.

3. Belief functions and Depth-bounded logic

In this section we will use the tools of Depth-bounded logics and the informational perspective to rethink the very idea 
of degrees of belief, making it sensitive to the distinction between the manipulation of actual and virtual information [5].

First, for each formula α ∈ FmL , we define the function vk
α : FmL → {0, 1} such that vk

α(ϕ) = 1 iff α �k ϕ and vk
α(ϕ) = 0

otherwise.
We add to these the function vk∗ (where ∗ is a symbol not occurring in FmL), such that vk∗(ϕ) = 1 iff �k ϕ . Note that, 

since the 0-depth logic �0 does not have tautologies [4], v0∗(ϕ) = 0 for each ϕ ∈ FmL . We will also have a valuation vk
� , 

assigning vk
�(α) = 1 iff � �k α. In the following, we call all the functions vk

α , for α ∈ FmL ∪ {∗} the k-depth information 
states.

A couple of observations are in order. First, the evaluations vk
α can be thought of as lower approximations of a set of 

partial evaluations satisfying α, which send all the undetermined truth values to 0. An upper approximation, sending all 
the undetermined truth values to 1 is just obtained by letting wk

α(ϕ) = 0 iff α �k ¬ϕ and wk
α(ϕ) = 1 otherwise. Clearly, 

wk
a(ϕ) = 1 − vk

α(¬ϕ). We can relate the pair (vk
α, wk

α) to the nondeterministic semantics (the indeterminate value should 
correspond to the case where vk

α(ϕ) �= wk
α(ϕ)).

Finally, note that the function associating to each formula α the corresponding vk
α is not injective: two distinct formulas 

α and β might determine the same function vk
α and vk

β . We can thus think of such functions as determining a partition of 
the set of formulas FmL .

The first step in our characterisation of Belief functions based on Depth-bounded Boolean logics consists in defining a 
basic assignment over the set of formulas FmL . In doing so, we assume that it is nonzero over a finite subset of FmL . 
In addition to being mathematically convenient, this matches our general concern for maintaining the asymmetry between 
knowledge and ignorance. For, contrary to what happens for probability, assigning a degree 0 to the evidence for a formula 
α is not equivalent, in our setting, to assigning 1 to the negation ¬α. Assignment of degree 0, even to infinitely many 
formulas, come in a sense at no cost.

Definition 3 (k-depth mass function). Let mk : FmL ∪ {∗} → [0, 1] be such that

Supp(mk) = {α ∈ FmL ∪ {∗} | mk(α) �= 0}
is finite. Then mk is a k-depth mass function if

1.
∑

α∈Supp(mk)
mk(α) = 1

2. α /∈ Supp(mk) if vk
α = vk

�

The idea is that mk(α) expresses the portion of belief that a k-depth bounded agent would assign exclusively to α, based 
on its actual information. On the other hand, mk(∗) stands just for the portion of belief not assigned to any proposition. In 
case there is a formula γ , such that α �0 γ for each α ∈ Supp(mk), we will denote the support by Suppγ (mk).

Mass functions mk whose supports have the latter form, express the more realistic situation where an agent is judging 
the evidence, when already in possession of a background information, represented by γ . Henceforth, if no such formula 
exist, with a slight abuse of notation, we will sometimes denote the support by Supp∗(mk), so that we can uniformly use 
the notation Suppγ , for γ in FmL ∪ {∗}. Adapting from the terminology in use for classical Belief functions, we will call the 
formulas in Suppγ (mk) focal formulas.

We are now ready to introduce the notion of k-depth Belief function.

Definition 4 (k-depth Belief function). Let γ ∈ FmL ∪ {∗}, and let mk be a k-depth mass function with support Suppγ . We 
define a corresponding k-depth Belief function as follows:

Bk(ϕ|γ ) :=
∑

α∈Suppγ (mk)

mk(α) · vk
α(ϕ)

for any ϕ ∈ FmL . Correspondingly, a k-depth plausibility function is

Plk(ϕ|γ ) :=
∑

α∈Suppγ (mk)

mk(α) · wk
α(ϕ)

where we take into account all the α compatible with ϕ i.e. those which do not prove ¬ϕ .
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It is easy to see that

Plk(ϕ|γ ) = 1 − Bk(¬ϕ|γ ).

Given a formula ϕ and a background information γ , the k-depth belief an agent possesses about ϕ can be framed in 
terms of the interval [Bk(ϕ|γ ), Plk(ϕ|γ )].

Note the strong link between the representation of uncertainty provided by the interval [Bk(ϕ|γ ), Plk(ϕ|γ )] and the 
nondeterministic semantics of k-depth logics. On the one hand Bk(ϕ|γ ) counts as evidence for ϕ only the (syntactic repre-
sentations of the) partial evaluations which suffice to obtain that ϕ is true, deterministically; Plk(ϕ|γ ), on the other hand, 
takes into account all the partial evaluations which do not suffice to obtain that ϕ is false, deterministically. Clearly, within 
this range of evaluations lie also all the evaluations which might make ϕ true, but nondeterministically.

Henceforth, for ease of visualization, given a set A, we will find it helpful at times to denote simply by 
∑

A the expres-
sion 

∑
a∈A a. With a little abuse of notation, we let now:

mk(vk
α) :=

∑
{mk(β) | β ∈ Suppγ (mk), vk

β = vk
α}

and

Ik
γ := {vk

α | α ∈ Suppγ (mk)}.
We obtain that

Bk(ϕ|γ ) =
∑

α∈Suppγ (mk)

mk(α)vk
α(ϕ) =

∑
vk
α∈Ik

γ

mk(vk
α) · vk

α(ϕ). (1)

Hence, we can equivalently think of k-depth mass functions as actually defined over Ik
γ , which is a finer frame of discernment

(see e.g. [27]) than FmL ∪ {∗}, since it identifies formulas having the same k-depth consequences.
Note also that, in passing from m0 to mk , the frame of discernment Ik

γ gets much coarser than I0
γ : functions which were 

previously distinct turn out to be the same. As an example, consider that v0∗ and v0
p∨¬p boil down to the same function, i.e. 

v1∗ = v1
p∨¬p .

A final comment on Definition 4, and its equivalent reformulation (1), is in order. To quantify their degree of belief in a 
formula ϕ , an agent collects and “sums up” all the actual information or evidence which permits to infer ϕ . What our logical 
analysis adds to this classical view is a way of distinguishing two features of this belief formation process which are usually 
conflated in set-theoretic models of belief: on the one hand the representation of the evidence possessed by an agent, and 
on the other hand their inferential ability. As to the first feature, our model borrows the concept of information states from 
the theory of Depth-bounded Boolean logics. Information states are built starting from any formula of the language: for each 
α, we consider the information state where the agent holds only that α and its logical consequences (up to a fixed k) are 
true. This accounts for the second feature of belief formation: (limited) inferential ability. Definition 4 accounts transparently 
for the role of both. Confront this with the usual “possible worlds” representation which is typical of set-theoretic models of 
belief: each possible world corresponds to a classical evaluation, hence it requires that the truth value of each propositional 
variables is settled and that agents are capable of full deductive closure.

Our first proposition collects the main properties of k-depth belief functions, and indeed justifies the terminology.

Proposition 1. Each Bk is (a-b) normalized, (c) monotone and (d) totally monotone function, i.e. for each formulas γ , ϕ, ϕ1, . . . , ϕn, 
it satisfies:

(a) γ �k ϕ implies Bk(ϕ|γ ) = 1
(b) γ �k ¬ϕ implies Bk(ϕ|γ ) = 0
(c) γ , ϕ �k ψ implies Bk(ϕ|γ ) ≤ Bk(ψ |γ )

(d) Bk(
∨n

i=1 ϕi |γ ) ≥ ∑
∅�=S (−1)|S|−1 Bk(

∧
i∈S ϕi |γ )

Proof. (a). By the definition of Suppγ (mk), we have α �0 γ for each α ∈ Suppc(mk). Hence since �0⊆�k , we obtain α �k γ , 
and by the transitivity of �k , α �k ϕ , i.e. vk

α(ϕ) = 1 for each α ∈ Suppγ (mk). Finally, by the definition of Bk , we obtain

Bk(ϕ|γ ) =
∑

α∈Suppγ (mk)

mk(α)vk
α(ϕ) =

∑
α∈Suppγ (mk)

mk(α) = 1.

(b). From the definition of Bk , we have Bk(ϕ|γ ) �= 0 if and only if there is at least a formula α ∈ Suppγ (mk), such that 
α �k ϕ . On the other hand, since α ∈ Suppγ (mk), α �0 γ , hence α �k ¬γ . The latter together with the assumption γ �k ¬ϕ , 
gives us by transitivity that α �k ¬ϕ . Hence we obtain α �k �, that is, vk

α = vk
� . By Definition 3 this means that mk(α) = 0, 

which is in contradiction with α ∈ Suppγ (mk).
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(c) Given the definition of Bk(ϕ|γ ), it suffices to show that, whenever α is such that vk
α(ϕ) = 1 then vk

α(ψ) = 1. Assume 
that vk

α(ϕ) = 1, i.e. α �k ϕ . Since α ∈ Suppγ (mk), we also have α �k γ . On the other hand we get, by our hypothesis, 
γ , ϕ �k ψ , hence by the transitivity of �k , we obtain α �k ψ , i.e. vk

α(ψ) = 1.
(d). We adapt a similar proof in Theorem 4.1 in [19]. Let us recall (see equation (1)) that mk can be seen as a probability 

distribution over the set Ik
γ , and hence straightforwardly defines a probability measure (in usual, set-theoretical terms) over 

the finite set P(Ik
γ ). We thus obtain:

Bk(

n∨
i=1

ϕi|γ ) =
∑

vk
α∈Ik

γ

mk(vk
α)vk

α(ϕ1 ∨ · · · ∨ ϕn)

≥
∑

vk
α∈Ik

γ

mk(α)max(vk
α(ϕ1), . . . , vk

α(ϕn))

= mk({vk
α | for some i, vk

α(ϕi) = 1})
=

∑
∅�=S⊆ {1,...,n}

(−1)|S|−1mk({vk
α | vk

α(ϕi) = 1 for all i ∈ S})

=
∑

∅�=S⊆{1,...,n}
(−1)|S|−1 Bk(

∧
i∈S

ϕi).

The inequality in the second line follows from the obvious fact that, for all the vk
α such that vk

α(ϕ) = 1, i.e. α �k ϕi , we have 
that vk

α(ϕ1 ∨ · · · ∨ϕn) = 1, i.e. α �k ϕ1 ∨ · · · ∨ϕn , by the ∨I rule in Table 1. The third line is a reformulation of the previous 
one, using the additivity of mk as a probability measure over P(Ik

γ ).
The fourth line follows from the application of the inclusion-exclusion principle for probability measures. Finally, the last 

equality follows from the introduction and elimination rules for conjunction. Such rules determine indeed that, given any 
∅ �= S ⊆ {1, . . . , n}, we have that α �k ϕi for each i ∈ S , iff α �k

∧
i∈S ϕi . �

Example 2. Assume that a 0-depth bounded agent judges that the actual information it possesses provides a strong support 
only for the formula p ∨ q, and none for its disjuncts. We can represent such a situation, for instance by m0(p ∨ q) = 0.8, 
m0(∗) = 0.2 and m0(α) = 0, for any other α ∈ FmL . Note in particular that p ∨ q �0 q ∨ p and p ∨ q �0 (q ∧ p) ∨ (q ∧
¬p) ∨ (¬q ∧ p), hence one has B0(p ∨ q) = 0.8 and B0(q ∨ p) = B0((q ∧ p) ∨ (q ∧ ¬p) ∨ (¬q ∧ p)) = 0, although both 
q ∨ p and (q ∧ p) ∨ (q ∧ ¬p) ∨ (¬q ∧ p) classically are logically equivalent to p ∨ q. Consider now a 1-depth agent, using 
the same piece of evidence, i.e. m1(p ∨ q) = m0(p ∨ q) = 0.8 and m1(∗) = m0(∗) = 0.2. For such agent v1

p∨q = v1
q∨p and 

v1
p∨q = v1

(q∧p)∨(q∧¬p)∨(¬q∧p) . Hence even though it gave no direct support for the information state on the right of both 
equalities, it will assign B1(p ∨ q) = 0.8 = B1(q ∨ p) and B1(p ∨ q) = 0.8 = B1(q ∧ p) ∨ (q ∧ ¬p) ∨ (¬q ∧ p).

4. The hierarchy of Depth-bounded Belief functions

So far, in correspondence to each k-depth bounded logic, we have defined a notion of k-depth Belief function, based on a 
very general definition of k-depth mass function. Whilst this responds to the natural question of grounding Belief functions 
on Depth-bounded Boolean logics, it still leaves important representational desiderata unaddressed. To see this, note that 
while each k-depth logical consequence (k > 0) is recursively defined in terms of logical consequences at lower depth, 
no analogous restriction has yet been imposed on the mass functions, as we move across different depths. In particular, 
given a formula α, our Definition 3 would in principle allow an agent to assign completely unrelated values to m0(α) and 
mk(α). Addressing this issue will provide a novel, to the best of our knowledge, presentation of Belief function in terms of 
a hierarchy of approximations thereof.

Let us recall that mass functions in Dempster-Shafer theory [27] are meant to represent an agent’s judgment of evidence: 
in this section, we take such evidence to be determined only at a “shallow” level, corresponding to the mass function m0. 
We cannot, however, just assume that each mk equals m0, since we need to take into account the increased logical capacity 
of the agent.

Indeed, m0 is required to assign value 0 only to the α such that v0
α = v0

� . It might be the case, however, that incon-
sistencies are recognized as such only at a certain depth k > 0. Each mk is obtained then from m0 by distributing among 
noncontradictory formulas all the masses of the formulas which can be shown to be contradictory at depth k. This motivates 
the following definition.

Definition 5. Let γ ∈ FmL ∪ {∗} and m0 : FmL ∪ {∗} → [0, 1] be a 0-depth mass function with support Suppγ (mk). We say 
that mk is an m0-based k-depth mass function if it satisfies the following:
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• For each α ∈ Suppγ (mk), such that vk
α �= vk

�

mk(α) = m0(α)

1 − ∑{m0(β) | vk
β = vk�} .

Moreover, if for each k > 0, Suppγ (m0) = Suppγ (mk), we say that the mk are constant m0-based k-depth mass functions.
The k-depth m0-based Belief functions are then just obtained as in Definition 4, on the basis of m0-based k-depth mass 

functions.

The m0-based Belief functions are just special cases of those in Definition 4, hence the results of the previous section 
still apply.

We can think of m0-based k-depth mass functions as arising from a peculiar kind of belief revision, which is not due 
to new information, but only to (higher-depth) logical reasoning. In particular, Definition 5 expresses an agent’s update of 
degrees of belief, only upon the following new piece of information: some of the formulas to which she originally assigned 
non-zero mass are, in fact, contradictory. Such information could also be encoded, for instance, as a simple mass-function 
m�k , such that

m�k (
∧

α∈FmL
vk
α=vk�

¬α) = 1

and m�k(β) = 0 for any other formula. Then the mk in Definition 5 can also be obtained by just updating m0 with such a 
m�k via the Dempster-Shafer [27] rule of combination.

Note that, by Equation (1), we can also express mk , in terms of the apparently looser constraint:

mk(vk
α) =

∑{m0(β) | vk
β = vk

α}
1 − ∑{m0(β) | vk

β = vk�} (2)

resulting in the same class of k-depth m0-based Belief functions.
Our next proposition shows that Belief functions which are based on constant m0-based k-depth mass functions, deter-

mine intervals [Bk(ϕ|γ ), Plk(ϕ|γ )] for each ϕ ∈ FmL , which get smaller as k increases. This has the welcome consequence 
to the effect that higher logical abilities, as measured by �k , lead to sharper uncertainty quantification.

Proposition 2. Let γ ∈ F ormL , m0 be a 0-depth mass function, mk be a constant m0-based k-depth mass function with support 
Suppγ (mk), and Bk and Plk the corresponding belief and plausibility functions. For each k ≥ 0, we have Bk(ϕ|γ ) ≤ Bk+1(ϕ|γ ); 
Plk(ϕ|γ ) ≥ Plk+1(ϕ|γ )

Proof. For each α ∈ Suppγ (mk), clearly α �k ϕ implies α �k+1 ϕ , hence vk
α(ϕ) ≤ vk+1

α (ϕ) for each ϕ ∈ FmL . On the other 
hand, by Definition 5, it follows that for each α ∈ Suppγ (mk) = Suppγ (mk+1) such that vk

α �= vk
� , we have mk(α) = mk+1(α). 

Hence from Definition 4, we have Bk(ϕ|γ ) ≤ Bk+1(ϕ|γ ). As an easy consequence of this fact, we get Plk(ϕ) ≥ Plk+1(ϕ). �
Let us consider now the connection between the k-depth Belief functions defined above and the Belief functions in the 

classical setting. A customary presentation of Belief functions is as set functions, see e.g. [27,13], satisfying the set-theoretic 
counterpart of the (a-d) in Proposition 1.

In a logical setting [19], they can be represented as functions over the boolean Lindenbaum algebra of classical logic (see 
e.g. [19]). Recall that elements of such algebra are the equivalence classes of the form [α]≡γ , determined by the relation 
≡γ defined by α ≡γ β iff γ , α � β and γ , β � α.

Let us now introduce, for α ∈ FmL , a function vα , such that vα(ϕ) = 1 if α � ϕ and vα(ϕ) = 0 otherwise. Note that 
distinct formulas α and β may give rise to the same valuation: we have distinct vαs only for distinct classes of the Linden-
baum algebra Lindγ . Hence, in analogy to what we did for Depth-bounded Belief functions, we can equivalently formulate 
classical Belief functions in terms of a probability distribution over the set Iγ = {vα | α ∈ FmL, α � γ }. More precisely, given 
any classical Belief function B : FmL → [0, 1] we can find a mass function m (also called Moebius transform) m : Iγ → [0, 1]
such that∑

vα∈Iγ

m(vα) = 1,

m(v�) = 0, and the Belief function B is obtained by

B(ϕ|γ ) =
∑

v ∈I

vα(ϕ)m(vα),
α γ
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for any formula ϕ . This shows that Belief functions are obtained as convex combinations of functions (which are not classical 
evaluations) vα : Fm → {0, 1}.

Against this background we can now state the main result of this section.

Theorem 2. Let γ ∈ FmL ∪{∗} and B : FmL → [0, 1] be a Belief function. Then there is a sequence of Depth-bounded Belief functions 
Bk such that, for each ϕ we have

B(ϕ|γ ) = lim
k→∞

Bk(ϕ|γ ).

Proof. By the argument above we have

B(ϕ|γ ) =
∑

vα∈Iγ

m(vα)vα(ϕ),

so it suffices to take any mass function m0 such that, for each vα ∈ Iγ∑{
m0(β) | β ∈ FmL, vα = vβ

} = m(vα).

Clearly, since 
∑

vα∈Iγ m(vα) = 1 we also get∑
α∈Suppγ (m0)

m0(α) = 1.

Moreover, by the definition of m0, since m(v0
�) = 0, we get m0(α) = 0 for each vα = v� . Hence m0 is a 0-depth mass 

function and, letting mk be the corresponding m0-based k-depth mass function (see Definition 5 and the reformulation 
thereafter in Equation (2)), we have

mk(vk
α) =

∑{
m0(β) | vk

β = vk
α

}
.

By Theorem 1 we know that limk→∞ vk
α(ϕ) = vα(ϕ), hence we get

lim
k→∞

mk(vk
α) = lim

k→∞
∑

{m0(β) | vk
β = vk

α}
=

∑
{m0(β) | vβ = vα}

= m(vα).

We finally obtain

lim
k→∞

Bk(ϕ|γ ) = lim
k→∞

∑
α∈Suppγ (mk)

vk
α(ϕ)mk(vk

α)

=
∑

vα∈Iγ

vα(ϕ) · m(vα) = B(ϕ|γ ). �

To sum up, the conditions on the mass function pinned down by Definition 5 lead to the construction of a hierarchy of 
Belief functions which approximate Dempster-Shafer Belief functions. Each element in the hierarchy identified by Theorem 2
can thus be interpreted as an approximation of the Dempster-Shafer degree of belief of a realistic agent, i.e. one whose 
logical abilities are bounded by �k .

5. Restricting the focal formulas: atoms and subatoms

Let us now investigate some classes of k-depth Belief functions arising from restrictions of the set of focal formulas. 
Throughout this section, we fix V arL = {p1, . . . , pn} and assume, for simplicity, no background information, or, which is the 
same, that the background information amounts to ∗.

We first consider the case of Supp(m0) ⊆ AtL , where

AtL = {
∧

±pi | pi ∈ V arL}.
In the classical setting, this reduces Belief functions to probabilities. Atoms correspond indeed to boolean evaluations: it is 
easy to see that for each boolean evaluation v : Fm → {0, 1} there is a unique atom α such that for all ϕ ∈ Fm, we have 
α � ϕ iff v(ϕ) = 1, i.e. v(ϕ) = vα(ϕ).
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The restriction to atoms produces also a collapse of the hierarchy of the Depth-bounded logics: atoms correspond indeed 
to evaluations where (informational) truth and falsity is assigned to all propositional variables, and the tables in Fig. 1
coincide with the classical ones, when the indeterminate value ∗ is not assigned. As a proof-theoretical counterpart of this 
fact, it is easy to check that, for any atom α ∈ AtL , for each k ≥ 0, we have α �k ϕ iff α � ϕ for every ϕ ∈ FmL , i.e. vk

α = vα .
In light of such considerations, we obtain that for any 0-depth mass assignment m0, with Supp(m0) ⊆ AtL , the corre-

sponding m0-based k-depth Belief function is such that Bk(ϕ) = Bk+1(ϕ) for each k ≥ 0 and for each ϕ ∈ FmL . Each Bk
thus satisfies, in addition to the properties of Lemma 1, also finite additivity, and therefore is just as a probability function.

A more interesting example arises, when letting

SubatL = {
∧
i∈I

±pi | I ⊆ {1, . . . ,n}} ∪ {∗}

we assume that Supp(m0) ⊆ SubatL . While atoms are in one-to-one correspondence with boolean evaluations, each sub-
atom α determines a corresponding three-valued non-deterministic evaluation, i.e. the one which assigns the value ∗ to 
each propositional variable not occurring in α.

Given this correspondence, we can take m0(α) to represent the belief that an agent assigns exclusively to a single (three-
valued) evaluation, i.e. the one corresponding to the formula α. This amounts to the agent being in possess of information 
about the truth or falsity of some propositional variables, but not necessarily all of them. This case is intermediate between 
the general setting presented in Section 6, where the agent expresses belief over arbitrary formulas (which we can think 
of as belief committed to sets of partial evaluations) and the case just discussed above, reducing to probability, where the 
agent expresses belief over a classical evaluation, i.e. a belief concerning the truth or falsity of every propositional variable 
in the language.

Let us observe a few interesting features of this family of k-depth Belief functions.
First, unlike the previous case based on atoms, the k-depth Belief functions Bk will be in general distinct from each 

other.
Second, the B0 Belief functions turn out to be finitely additive, as we show in the following.

Proposition 3. Let m0 be a 0-depth mass function, such that Suppγ (m0) ⊆ SubatL . For each formulas ϕ, ψ ∈ FmL , we have

B0(ϕ ∨ ψ) = B0(ϕ) + B0(ψ) − B0(ϕ ∧ ψ).

Proof. By definition

B0(ϕ ∨ ψ) =
∑

α∈Supp(m0)

m0(a)v0
α(ϕ ∨ ψ) =

∑
α∈SubatL

m0(a)v0
α(ϕ ∨ ψ).

Note that �0 has the disjunction property, i.e. ϕ ∨ ψ is derivable iff either ϕ or ψ are derivable. This means that, if 
α ∈ SubatL , then v0

α(ϕ ∨ ψ) = 1 iff v0
α(ϕ) = 1 or v0

α(ψ) = 1. We obtain then

v0
α(ϕ ∨ ψ) = v0

α(ϕ)(1 − v0
α(ψ)) + v0

α(ψ) · (1 − v0
α(ϕ)) + v0

α(ϕ) · v0
α(ψ).

Hence, using the latter, we get:

B0(ϕ ∨ ψ) =
∑

α∈SubatL

m0(v0
α)v0

α(ϕ ∨ ψ)

=
∑

α∈SubatL

m0(α)[v0
α(ϕ) + v0

α(ψ) − v0
α(ϕ) · v0

α(ψ)]

=
∑

α∈SubatL

m0(α)v0
α(ϕ) +

∑
α∈SubatL

m0(α)v0
α(ψ)

−
∑

α∈SubatL

m0(α)v0
α(ϕ ∧ ψ)

= B0(ϕ) + B0(ψ) − B0(ϕ ∧ ψ). �
Remark 1. Note that the result for B0 is also an immediate consequence of Theorem 5 in [20], since the evaluations v0

α
satisfy T2 and T3, in the terminology of [20].

Let us see now some other examples of m0-based k-depth Belief functions based on the support SubatL .
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Example 3. Let V arL = {p, q} and m0 be a 0-depth mass function, which is uniformly distributed over the set

Supp(m0) = SubatL = {∗, p,¬p,q,¬q, p ∧ q, p ∧ ¬q,¬p ∧ q,¬p ∧ ¬q}
i.e. we let m0(a) = 1/9 for each formula α ∈ Supp(m0). It is easy to see that, if α is one of p, q, p ∧ q, p ∧ ¬q, ¬p ∧ q then 
α �0 p ∨ q. On the other hand, only if α is ¬p ∧ ¬q then α �0 ¬(p ∨ q). Hence by the definition of B0, we have:

B0(p ∨ q) = 5/9 B0(¬(p ∨ q)) = 1/9 Pl0(p ∨ q) = 8/9.

Recall that, under a uniform probability distribution over atoms in the classical case, we would get P (p ∨ q) = 3/4 ∈
[5/9, 8/9].

Note that α �k p ∨ q and α �k ¬(p ∨ q) holds exactly in the same cases as for �0, hence we have

Bk(p ∨ q) = B0((p ∨ q) = 5/9 Bk(¬(p ∨ q)) = B0(¬(p ∨ q) = 1/9

Plk(p ∨ q) = Pl0(p ∨ q) = 8/9,

for each k ≥ 1.

Example 4. Let us consider the formula p ∨ ¬p, with a mass function m0 such that Supp(m0) = {∗, p, ¬p}. We have:

p �0 p ∨ ¬p ¬p �0 p ∨ ¬p ∅ �0 p ∨ ¬p

p �1 p ∨ ¬p ¬p �1 p ∨ ¬p ∅ �1 p ∨ ¬p

We obtain:

B0(p ∨ ¬p) = m0(p) + m0(¬p) B0(¬(p ∨ ¬p)) = m0(v�) = 0

Pl0(p ∨ ¬p) = m0(p) + m0(¬p) + m0(∗) = 1

On the other hand:

B1(p ∨ ¬p) = m0(p) + m0(¬p) + m0(∗) = 1

B1(¬(p ∨ ¬p)) = 0 Pl1(p ∨ ¬p) = 1

We have thus B0(p ∨ ¬p) = B0(p) + B0(¬p), while B1(p ∨ ¬p) > B1(p) + B1(¬p) − B1(¬(p ∨ ¬p).

The last example helps to illustrate the reason why B0 behaves as a finitely additive measure, while the Bk with k > 0
are superadditive. As we have seen, B1(p ∨ ¬p) includes the belief in m(∗), which is only “virtually” in favour of p ∨ ¬p: 
neither B1(p) nor B1(¬p) include such belief. The example also shows that k-depth Belief functions are a proper subclass 
of Belief functions, due to the lack of normalization on classical tautologies: one can have indeed B0(p ∨ ¬p) < 1 while this 
cannot occur for classical Belief functions.

6. Approximating classical probability

In this section we suggest yet another way to restrict the focal formulas of k-depth mass functions, resulting in sequences 
of Depth-bounded Belief functions which approximate classical probability functions.

In Section 4 and 5, we assumed that the set of focal formulas Suppγ (mk) for some γ ∈ FmL ∪ {∗} and k > 0 was the 
same as Suppγ (m0), except for the possible removal (and redistribution of the mass) of formulas which turn out to be 
inconsistent at depth k. We will now provide some more restrictive constraints on Suppγ (mk).

The guiding idea is that Suppγ (m0) should only contain formulas which an agent is able to judge already at a shallow 
level. As the depth increases, we assume that, besides higher inferential capacity, the agents have also higher “imaginative” 
capacity, i.e. capacity for weighting the uncertainty of scenarios not immediately given to them (see [21] for a related 
approach).

Let us now give our formal definition of the k-depth mass function, with focal formulas defined according to the ideas 
sketched above.

Definition 6 (k-depth revising mass function). Let γ ∈ FmL ∪{∗} and m0 be a 0-depth mass function with support Suppγ (m0). 
We say that the functions mk for k > 0 are m0-based k-depth revising mass functions iff

1. Suppγ (mk+1), for k ≥ 0, contains only formulas of the kind α ∧ pi and α ∧ ¬pi , for each α ∈ Suppγ (mk), pi ∈ V arL , 
provided that ±pi does not occur already as one of the conjuncts of α.
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2. For each α ∈ Suppγ (mk)∑{
mk+1(α ∧ ±pi) | α ∧ ±pi ∈ Suppγ (mk+1)

} = mk(α).

3. For each α ∈ Suppγ (mk),

mk+1(α ∧ ±pi) = 0 if α ∧ ±pi �k+1 �.

Note that the second condition in the definition above amounts to redistributing, for each α ∈ Suppγ (mk) the mass 
mk(α) among the formulas α ∧ ±pi ∈ Suppγ (mk+1). It is easy to check that∑

α∧±pi∈Suppγ (mk+1)

mk+1(α ∧ ±pi) = 1,

hence the m0-based k-depth revising mass functions are just a particular case of k-depth mass functions, which determine 
corresponding Belief functions Bk(|γ ) by Definition 4. All the results in Section 3 will still hold.

Example 5. Consider a 0-depth mass function such that Supp(m0) = {p ∨ q, ∗} V arL = {p, q}. Let us determine the support 
of the corresponding m0-based k-depth revising mass functions mk and Belief functions Bk . We have

Supp(m1) = {(p ∨ q) ∧ p, (p ∨ q) ∧ ¬p, (p ∨ q) ∧ q, (p ∨ q) ∧ ¬q} ∪ {p,¬p,q,¬q}
At depth 2, we get

Supp(m2) = {p ∧ q, p ∧ ¬q,¬p ∧ q,¬p ∧ ¬q,q ∧ p,q ∧ ¬p,

q ∧ p,q ∧ ¬q} ∪ {(p ∨ q) ∧ p ∧ q, (p ∨ q) ∧ ¬p ∧ q,

(p ∨ q) ∧ q ∧ p, (p ∨ q) ∧ q ∧ ¬p, (p ∨ q) ∧ ¬q ∧ p}.
All the formulas in Supp(m2) are actually already 2-depth logically equivalent to atoms (with many repetitions of logically 
equivalent formulas), hence B2 is just a probability function.

Our last result shows that Definition 6 identifies the conditions that mass functions must satisfy in order for k-depth 
Belief functions to approximate classical probability functions.

Theorem 3. Let P : FmL → [0, 1] be a classical probability function and γ ∈ FmL ∪ {∗}. Then there is a sequence of revising Depth-
bounded Belief functions Bk such that, for each ϕ ∈ FmL , we have P (ϕ|γ ) = limk→∞ Bk(ϕ|γ ).

Proof. First, we know that

P (ϕ|γ ) =
∑

vα∈Iγ

m(vα)vα(ϕ)

where Iγ ⊆ {vα | α ∈ AtL} and m(vα) = P (α|γ ). Let us take the mass function m0 such that Suppγ (m0) = {γ }, and m0(γ ) =
1. Since our language is finite and |V arL| = n, we will obtain by construction that, for any m0-based n-depth revising mass 
function, all the formulas in Suppγ (mn) are n-depth logically equivalent to atoms. Let now mn be any such mass function, 
that satisfies:∑{

mn(β) | β ∈ Suppγ (mn) , vn
β = vn

α

}
= m(vα)

for each α ∈ AtL . All the remaining mass functions mi for i < n are then uniquely determined, by Definition 6. Now, for all 
Bk(ϕ|γ ) with k ≥ n, we get Bk(ϕ|γ ) = Bn(ϕ|γ ), hence:

limk→∞Bk(ϕ|γ ) = Bn(ϕ|γ ) = P (ϕ|γ ). �
This result sheds new light on the relation between probability functions and Belief functions. It has long been known 

that probability functions are a special case of Belief functions in which the unit mass is distributed on all the “singletons” 
of a suitable sample space. Our non-classical logical setting uncovers a further dimension of comparison which depends on 
the rather subtle interplay between the information possessed by an agent and their inferential abilities.
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7. Future work

As recalled in Section 2 it is shown in [4] and [3] that the informational semantics of Depth-bounded Boolean logics 
forms the basis to define an infinite hierarchy of tractable deductive systems (with no syntactic restriction on the language 
adopted) whose upper limit coincides with classical propositional logic. Hence this hierarchy can be seen as a tractable 
approximation to classical logic. It is therefore natural to ask whether the hierarchy of Depth-bounded Belief functions 
inherit this highly desirable feature.

Unfortunately, grounding Belief functions on Depth-bounded consequence relations is not outright sufficient to make the 
representation of belief itself feasible. Indeed the opposite is true. Our description of how a bounded agent would quantify 
their belief is likely to be computationally harder than the description of the ideal case, based on classical logic. Our k-
depth mass functions require indeed to specify a much larger number of values than required by the classical case. Note 
that this phenomenon occurs in a sense already where the underlying logic is classical. While we can arguably consider 
Belief functions to be less idealized models of uncertainty than probabilities, to the extent that they treat knowledge and 
ignorance asymmetrically, defining the latter functions on a language with n propositional variables requires to specify 
2n − 1 values, while for the former one needs 22n − 1 (see [19]). Already in the classical setting, computational complexity 
is recognized as one of the soft spots of Belief functions, since in particular combining Belief functions is known to be #P -
complete [18]. Still unfeasible, though computationally better, is the problem of deciding whether there is a Belief function 
satisfying some constraints, given in the form of a system of linear polynomials. This is indeed shown to be NP-complete, 
see [19].

In practice various methods exist for reducing the computational complexity for application purposes, among them the 
use of Monte Carlo methods: an overview of efficient algorithms can be found in [29]. In particular, some works [1,2] show 
how a dramatic reduction of complexity bounds (from exponential to linear) results from imposing constraints on the focal 
sets. This gives a good hint that the Belief functions defined in Section 5 and 6 are a promising starting point to obtain a 
more tractable treatment of uncertainty, since they add to the polynomial-time decidability of the underlying consequence 
relation �k , a stricter control over the set of focal formulas. But the full-fledged investigation on how to exploit the hierarchy 
of approximations of Belief functions to get a computationally feasible quantification of uncertainty must be postponed to 
future work.

Future work will also relate the hierarchy of Depth-bounded Belief functions to the general coherence-based approach 
of [11], therefore providing tighter connections with the very idea of rational quantification of uncertainty. As a promising 
starting point, note that each Bk(α|γ ) in Definition 4 is a convex combination of evaluations. It follows from results in [20]
that Bk(ϕ|γ ) does not permit a Dutch Book, i.e. there do not exist formulas ϕ1, . . . , ϕn in FmL and odds s1, . . . , sn ∈R such 
that for all vk

α ∈ Ik
γ

n∑
i=1

si(vk
α(ϕi) − Bk(ϕi|γ )) < 0.

This clearly paves the way for a detailed analysis of the coherence conditions of each element in the hierarchy of Depth-
bounded Belief functions.
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